1
|
Wang Z, Jiao Y, Diao W, Shi T, Geng Q, Wen C, Xu J, Deng T, Li X, Zhao L, Gu J, Deng T, Xiao C. Neutrophils: a Central Point of Interaction Between Immune Cells and Nonimmune Cells in Rheumatoid Arthritis. Clin Rev Allergy Immunol 2025; 68:34. [PMID: 40148714 DOI: 10.1007/s12016-025-09044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease involving activation of the immune system and the infiltration of immune cells. As the first immune cells to reach the site of inflammation, neutrophils perform their biological functions by releasing many active substances and forming neutrophil extracellular traps (NETs). The overactivated neutrophils in patients with RA not only directly damage tissues but also, more importantly, interact with various other immune cells and broadly activate innate and adaptive immunity, leading to irreversible joint damage. However, owing to the pivotal role and complex influence of neutrophils in maintaining homoeostasis, the treatment of RA by targeting neutrophils is very difficult. Therefore, a comprehensive understanding of the interaction pathways between neutrophils and various other immune cells is crucial for the development of neutrophils as a new therapeutic target for RA. In this study, the important role of neutrophils in the pathogenesis of RA through their crosstalk with various other immune cells and nonimmune cells is highlighted. The potential of epigenetic modification of neutrophils for exploring the pathogenesis of RA and developing therapeutic approaches is also discussed. In addition, several models for studying cell‒cell interactions are summarized to support further studies of neutrophils in the context of RA.
Collapse
Affiliation(s)
- Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Shi
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaoying Wen
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Tiantian Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100193, China
| | - Lu Zhao
- China-Japan Friendship Clinical Medical College, Capital Medical University, Beijing, 100029, China
| | - Jienan Gu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China.
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly Variable Aggregation and Glycosylation Profiles and Their Roles in Immunogenicity to Protein-Based Therapeutics. J Pharm Sci 2025:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA; Human Immunology Core, University of Iowa, Iowa City, IA
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA; Human Immunology Core, University of Iowa, Iowa City, IA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA.
| |
Collapse
|
3
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2025; 117:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
4
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
5
|
Gysemans C, Beya M, Pedace E, Mathieu C. Exploring Neutrophil Heterogeneity and Plasticity in Health and Disease. Biomedicines 2025; 13:597. [PMID: 40149573 PMCID: PMC11940349 DOI: 10.3390/biomedicines13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils, the most abundant polymorphonuclear leukocytes, are critical first responders to infection, and have historically been underappreciated in terms of their functional complexity within the immune response. Once viewed primarily as short-lived, innate immune cells with limited functional plasticity, recent research has illuminated their considerable heterogeneity and diverse functional roles, which extend beyond their involvement in steady-state immunity. This review seeks to provide an updated analysis of neutrophil development, maturation, heterogeneity, and plasticity, with a focus on how these characteristics influence immune modulation in both healthy and diseased tissues. Beginning with the origin of neutrophils, we explore their maturation into effector cells and their evolving roles in immune defense under homeostatic and disease-associated conditions. We then delve into their heterogeneity, discussing recent breakthroughs in neutrophil research that challenge the traditional view of neutrophils as a uniform population. We address the significant advances that have been made in identifying distinct neutrophil subsets, the emerging complexities of their plasticity, and the challenges that remain in fully understanding their functional diversity. Finally, we highlight future directions and opportunities for continued exploration in this rapidly advancing field, shedding light on how these insights could open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Conny Gysemans
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Mateson Beya
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100 Siena, Italy;
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Chantal Mathieu
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| |
Collapse
|
6
|
Gomez‐Casado G, Jimenez‐Gonzalez A, Rodriguez‐Muñoz A, Tinahones FJ, González‐Mesa E, Murri M, Ortega‐Gomez A. Neutrophils as indicators of obesity-associated inflammation: A systematic review and meta-analysis. Obes Rev 2025; 26:e13868. [PMID: 39610288 PMCID: PMC11791391 DOI: 10.1111/obr.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION The aim of this study is to evaluate and compare the suitability of routine blood neutrophil values as indicators of obesity-associated inflammation. METHODS In this systematic review and meta-analysis, we assess absolute neutrophil counts (ANCs) and neutrophil-to-lymphocyte ratio (NLR) values in subjects with and without obesity and analyze the weight of both parameters on the disease. Additionally, correlation studies between ANC and NLR with BMI, a parameter internationally accepted to define obesity are performed. RESULTS Quantitative data from 12 (ANC) and 11 (NLR) studies were included, with a total of 4475 participants. The meta-analysis shows that while both parameters are increased in the obesity group, ANC values present higher differences with the control and less heterogeneity among studies. Additionally, unlike NLR, ANC demonstrates a positive and significant correlation with BMI. CONCLUSION Overall, this meta-analysis demonstrates that ANC is a more reliable and stable parameter than NLR for the assessment of obesity-related inflammation, which offers clinicians a novel tool to assist in preventing complications related to obesity.
Collapse
Affiliation(s)
- Gema Gomez‐Casado
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- Department of Surgical Specialties, Biochemistry and Immunology Department, Faculty of MedicineUniversity of MalagaMálagaSpain
| | | | - Alba Rodriguez‐Muñoz
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
| | - Francisco J. Tinahones
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
- Department of Dermatology and Medicine, Faculty of MedicineUniversity of MalagaMálagaSpain
| | - Ernesto González‐Mesa
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- Department of Surgical Specialties, Biochemistry and Immunology Department, Faculty of MedicineUniversity of MalagaMálagaSpain
- Obstetrics and Gynecology ServiceRegional University Hospital of MalagaMálagaSpain
| | - Mora Murri
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
- Heart AreaVirgen de la Victoria University HospitalMálagaSpain
| | - Almudena Ortega‐Gomez
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
| |
Collapse
|
7
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2025; 21:305-321. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Zhang H, Guo R, Han Y, Yao Z, Quan M, Li B, Guo L. Alterations in neutrophil mRNA profiles in multiple sclerosis and identification of candidate genes for further investigation. Front Neurol 2025; 16:1548196. [PMID: 40035034 PMCID: PMC11873095 DOI: 10.3389/fneur.2025.1548196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic and debilitating inflammatory disease of the central nervous system (CNS), characterized by demyelination and neurodegeneration. Emerging evidence implicates neutrophils in MS pathogenesis, particularly through processes like neutrophil extracellular traps (NETs) formation and degranulation, which may exacerbate inflammation and autoimmunity. Methods RNA sequencing of peripheral blood neutrophils from MS patients and healthy controls identified differentially expressed genes (DEGs). Pathway enrichment and protein-protein interaction (PPI) analyses highlighted potential biomarkers, validated using reverse transcription quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results Our analysis identified 1,968 DEGs in neutrophils from MS patients, comprising 1,068 upregulated and 900 downregulated genes. Pathway enrichment analysis revealed significant involvement of immune processes, including antigen presentation, B and T cell receptor signaling, intracellular signaling cascades, and neutrophil degranulation. Notably, KEGG analysis highlighted a pivotal role for upregulated genes in neutrophil extracellular traps (NETs) formation, a process increasingly associated with autoimmunity. PPI network analysis pinpointed five key hub genes-LCN2, LTF, ELANE, CAMP, and CTSG-as central players in neutrophil-mediated immune modulation. Protein-level validation using ELISA confirmed elevated levels of LCN2, ELANE, CAMP, and CTSG, consistent with transcriptomic findings, further supporting their role as biomarkers. Subsequent RT-qPCR validation demonstrated robust diagnostic potential for these genes, with area under the curve (AUC) values of 0.952 (LCN2), 0.827 (LTF), 0.968 (ELANE), 0.950 (CAMP), and 0.862 (CTSG). Discussion These findings uncover a previously underappreciated role for neutrophils in MS pathogenesis, driven by alterations in gene expression linked to immune modulation and NET formation. The identified biomarkers, particularly ELANE and LCN2, demonstrate strong diagnostic potential, offering a new avenue for non-invasive MS diagnostics. Beyond clinical utility, this study highlights the importance of neutrophil-driven immune responses in MS, providing mechanistic insights into the complex interplay between innate and adaptive immunity in demyelinating diseases. Furthermore, these findings suggest that targeting neutrophil-specific processes, such as NETs formation and degranulation, could mitigate inflammatory damage and provide novel therapeutic approaches for MS treatment. These results lay the groundwork for future studies exploring therapeutic strategies targeting neutrophil functions in MS.
Collapse
Affiliation(s)
- Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yusen Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Zhichao Yao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Clinical Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
10
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Tchalla EYI, Betadpur A, Khalil AY, Bhalla M, Bou Ghanem EN. Sex-based difference in immune responses and efficacy of the pneumococcal conjugate vaccine. J Leukoc Biol 2024; 117:qiae177. [PMID: 39141715 PMCID: PMC11684992 DOI: 10.1093/jleuko/qiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Vaccine-mediated protection and susceptibility to Streptococcus pneumoniae (pneumococcus) infections are influenced by biological sex. The incidence of invasive pneumococcal disease remains higher in males compared to females even after the introduction of the pneumococcal conjugate vaccine. However, sex-based differences in the immune response to this conjugate vaccine remain unexplored. To investigate those differences, we vaccinated adult male and female mice with pneumococcal conjugate vaccine and assessed cellular and humoral immune responses. Compared to females, male mice displayed lower levels of T follicular helper cells, germinal center B cells, and plasmablasts, which are all required for antibody production following vaccination. This was linked to lower IgG and IgM levels against pneumococci and lower isotype switching to IgG3 in vaccinated males. Due to lower antibody levels, sera of vaccinated male mice had lower efficacy in several anti-pneumococcal functions, including neutralization of bacterial binding to pulmonary epithelial cells as well as direct cytotoxicity against S. pneumoniae. Importantly, while the vaccine was highly protective in females, vaccinated males succumbed to infection more readily and were more susceptible to both lung-localized infection and systemic spread following S. pneumoniae challenge. These findings identify sex-based differences in immune responses to pneumococcal conjugate vaccine that can inform future vaccine strategies.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Anagha Betadpur
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Andrew Y Khalil
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203, United States
| |
Collapse
|
13
|
Prendecki M, Gurung A, Pisacano N, Pusey CD. The role of neutrophils in ANCA-associated vasculitis. Immunol Lett 2024; 270:106933. [PMID: 39362307 DOI: 10.1016/j.imlet.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a group of rare systemic autoimmune diseases characterised by necrotising inflammation of small blood vessels and usually associated with circulating ANCA. The pathophysiology of AAV is complex, involving many aspects of the innate and adaptive immune system. Neutrophils are central to the pathogenesis of AAV as they are both the target of the autoantibody and effector cells mediating vascular injury. We describe mechanisms for ANCA induced activation of neutrophils, the pathogenic mechanisms by which this leads to endothelial cell injury, and how neutrophil crosstalk modulates other aspects of the immune system in AAV.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| | - Angila Gurung
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Noelle Pisacano
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
14
|
Roy M, Sengupta R, Chakraborty BC, Chatterjee U, von Stebut E, Kaye PM, Chatterjee M. Role of neutrophils in the pathogenesis of Post Kala-azar Dermal Leishmaniasis (PKDL). PLoS Negl Trop Dis 2024; 18:e0012655. [PMID: 39602398 PMCID: PMC11602034 DOI: 10.1371/journal.pntd.0012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Post Kala-azar Dermal Leishmaniasis (PKDL) is a dermal sequel of visceral leishmaniasis (VL), poses a significant threat to the success of ongoing kala-azar elimination program, due to its potential role in sustaining transmission cycles and complicating disease management strategies. In VL, neutrophils have been identified as the 'first line of defence', having multiple roles in disease pathogenesis, but their role in PKDL, if any, still remains elusive; presenting a critical gap in knowledge, and was the aim of this study. METHODOLOGY/PRINCIPAL FINDINGS In a cohort of PKDL patients, CD66b+ neutrophils were quantified in skin biopsies, followed by immunostaining of FFPE sections to identify activated neutrophils (CD66b+/CD64+) and degranulated (CD66b+/MPO+), along with expression of neutrophil elastase (NE), matrix metalloprotease 9 (MMP9) and collagen I. Plasma levels of neutrophil chemo-attractants CXCL8/1/2/5, CCL2 and 20 and cytokines, (IL-6, IFN-γ, IL-4, IL-10, TNF-α, IL-17 and IL-22, 23) were evaluated by a multiplex assay, while lesional expression of IL-8, IL-10 and IL-17 was evaluated by immunohistochemistry. As compared to healthy individuals (control skin samples), PKDL cases at the lesional sites had an increased number of activated CD66b+ neutrophils (positive for CD64+, MPO+ and NE+). The plasma levels of neutrophil chemo-attractants, pro-inflammatory and regulatory cytokines were raised as was circulating and lesional IL-8, along with an enhanced lesional expression of IL-10 and IL-17A. An increase in circulatory and lesional MMP9 was accompanied by decreased collagen I, suggesting disintegration of matrix integrity. CONCLUSIONS/SIGNIFICANCE Taken together, in PKDL, activated neutrophils possibly contribute towards modulating the lesional landscape. Understanding this involvement of neutrophils in patients with PKDL, particularly in the absence of an animal model, could offer better understanding of the disease pathogenesis and provide insights into novel therapeutic strategies for the ongoing elimination program.
Collapse
Affiliation(s)
- Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Bidhan Chandra Chakraborty
- Multidisciplinary Research Unit (MRU) Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Uttara Chatterjee
- Pathology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| |
Collapse
|
15
|
Creusat F, Jouan Y, Gonzalez L, Barsac E, Ilango G, Lemoine R, Soulard D, Hankard A, Boisseau C, Guillon A, Lin Q, de Amat Herbozo C, Sencio V, Winter N, Sizaret D, Trottein F, Si-Tahar M, Briard B, Mallevaey T, Faveeuw C, Baranek T, Paget C. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. SCIENCE ADVANCES 2024; 10:eadn3257. [PMID: 39392875 PMCID: PMC11468905 DOI: 10.1126/sciadv.adn3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Neutrophil subsets endowed with regulatory/suppressive properties are widely regarded as deleterious immune cells that can jeopardize antitumoral response and/or antimicrobial resistance. Here, we describe a sizeable fraction of neutrophils characterized by the expression of programmed death-ligand 1 (PD-L1) in biological fluids of humans and mice with severe viral respiratory infections (VRI). Biological and transcriptomic approaches indicated that VRI-driven PD-L1+ neutrophils are endowed with potent regulatory functions and reduced classical antimicrobial properties, as compared to their PD-L1- counterpart. VRI-induced regulatory PD-L1+ neutrophils were generated remotely in the bone marrow in an IFN-γ-dependent manner and were quickly mobilized into the inflamed lungs where they fulfilled their maturation. Neutrophil depletion and PD-L1 blockade during experimental VRI resulted in higher mortality, increased local inflammation, and reduced expression of resolving factors. These findings suggest that PD-L1+ neutrophils are important players in disease tolerance by mitigating local inflammation during severe VRI and that they may constitute relevant targets for future immune interventions.
Collapse
Affiliation(s)
- Florent Creusat
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
- Service de Chirurgie Cardiaque et de Réanimation Chirurgicale Cardio-Vasculaire, CHRU de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emilie Barsac
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Guy Ilango
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Roxane Lemoine
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Cytometry and Single-cell Immunobiology Core Facility, University of Tours, Tours, France
| | - Daphnée Soulard
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Antoine Hankard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Chloé Boisseau
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Winter
- INRAe (Institut National de la Recherche pour l'Agriculture, l'Alimentation et l’Environnement), Université de Tours, ISP, 37380 Nouzilly, France
| | - Damien Sizaret
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service d’Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christelle Faveeuw
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Thomas Baranek
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
16
|
Xiao C, Feng X, Aini W, Zhao Z, Ding G, Gao Y. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024. Front Immunol 2024; 15:1448818. [PMID: 39430756 PMCID: PMC11486681 DOI: 10.3389/fimmu.2024.1448818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophils have long been consistently adjudged to hold a dominant position in acute inflammation, which once led people to undervalue their role in chronic malignancy. It is now acknowledged that neutrophils also infiltrate into the tumor microenvironment in substantial quantities and form a highly abundant immune population within the tumor, known as tumor-associated neutrophils (TANs). There has been a surge of interest in researching the eminent heterogeneity and plasticity of TANs in recent years, and scholars increasingly cotton on to the multifaceted functions of TANs so that strenuous endeavors have been devoted to enunciating their potential as therapeutic targets. Yet it remains much left to translate TAN-targeted immunotherapies into clinical practice. Therefore, there is great significance to comprehensively appraise the research status, focal point, and evolution trend of TAN by using bibliometric analysis. Methods Publications related to TAN research from 2000 to 2024 are extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were performed by tools encompassing Microsoft Excel, VOSviewer, CiteSpace, R-bibliometrix, and so on. Results The bibliometric analysis included a total of 788 publications authored by 5291 scholars affiliated with 1000 institutions across 58 countries/regions, with relevant articles published in 324 journals. Despite China's maximum quantity of publications and top 10 institutions, the United States is the leading country with the most high-quality publications and is also the global cooperation center. FRONTIERS IN IMMUNOLOGY published the most papers, whereas CANCER RESEARCH is the highest co-cited journal. Israeli professor Fridlender, Zvi G. is the founder, pioneer, and cultivator with the highest citation counts and H-index in the TAN area. Our analysis prefigures the future trajectories: TAN heterogeneity, neutrophil extracellular trap, the crosstalk between TANs and immunocytes, and immunotherapy will likely be the focus of future research. Conclusion A comprehensive bibliometric and visual analysis is first performed to map the current landscape and intellectual structure of TAN, which proffers fresh perspectives for further research. The accurate identification of distinct TAN subpopulations and the precise targeting of key pro-tumor/anti-tumor subpopulations hold immense potential to develop into a TAN-targeted immunotherapy.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wufuer Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gouping Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Chukwuma IF, Okafor KC, Apeh VO, Nworah FN, Odo CP, Okafor IP, Anoh K, Anthony OC. Utilizing mechatronic agilent gas chromatography to validate therapeutic efficacy of Combretum paniculatum against oxidative stress and inflammation. Heliyon 2024; 10:e36586. [PMID: 39309764 PMCID: PMC11415660 DOI: 10.1016/j.heliyon.2024.e36586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The quest for novel antioxidant and anti-inflammatory medications from medicinal plants is crucial since the plants contain bioactive compounds with a better efficacy and safety profile than orthodox therapy. This study harnesses the capabilities of mechatronics-driven Agilent Gas Chromatography, deploying in vitro, in vivo, and in silico models to unravel the antioxidant and anti-inflammatory attributes within Combretum paniculatum ethanol extract (CPEE). Employing gas chromatography-mass spectroscopy (GC-MS), our analysis efficiently segregates and evaluates volatile compound mixtures, a technique renowned for identifying organic compounds, as exemplified by its success in detecting fatty acids in food and resin acids in water. Using gas chromatography-mass spectrometry (GC-MS) and GC-FID analyses, this paper ascertains the comprehensive phytochemical composition of CPEE. Also, Molecular interactions of identified compounds with cyclooxygenase (COX-2) implicated in inflammatory urpsurge is verified. GC-MS and GC-FID analyses unveil 41 phytoconstituents within CPEE. Based on the in vitro research, CPEE demonstrated potential in inhibiting thiobarbituric acid-reactive substances, nitric oxide, and phospholipase lipase A2 with inhibition rates of 2.284, 6.547, and 66.8 μg/mL respectively. In vivo experiments confirm CPEE's efficacy in inhibiting granuloma tissue formation, lipid peroxidation, and neutrophil counts compared to untreated rats. Moreover, CPEE elicited a significant (P < 0.05) increase in the activities of SOD, CAT, and GSH concentrations while decreasing C-reactive protein, signifying promising therapeutic potential. Highlighting interactions between top-scoring phytoligands (epicatechin, catechin, and kaempferol) and COX-2, the findings underscore their drug-like characteristics, favorable pharmacokinetics, and enhanced safety toxicity profiles. Results from in vitro, in vivo, and in silico studies, highlights CPEE remarkable antioxidant and anti-inflammatory potentials.
Collapse
Affiliation(s)
- Ifeoma F. Chukwuma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Kennedy Chinedu Okafor
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, M1 5GD, Manchester, UK
- Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, 2006, South Africa
- Department of Mechatronics Engineering, School of Electrical Systems Engineering and Technology (SESET), Federal University of Technology Owerri, 1526, Nigeria
- School of Engineering, University of Chichester, Bognor Regis, PO21 1HR, UK
| | - Victor O. Apeh
- Department of Applied Sciences, Federal University of Allied Health Sciences, Enugu State, 01473, Nigeria
| | - Florence N. Nworah
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Chigozie Paul Odo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Ijeoma Peace Okafor
- Cardiff Metropolitan University, Department of Applied Public Health, Cardiff, CF5 2YB, UK
| | - Kelvin Anoh
- School of Engineering, University of Chichester, Bognor Regis, PO21 1HR, UK
| | - Okoronkwo Chukwunenye Anthony
- Department of Mechatronics Engineering, School of Electrical Systems Engineering and Technology (SESET), Federal University of Technology Owerri, 1526, Nigeria
| |
Collapse
|
18
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
19
|
Muto M, Suzuki H, Suzuki Y. New Insights and Future Perspectives of APRIL in IgA Nephropathy. Int J Mol Sci 2024; 25:10340. [PMID: 39408691 PMCID: PMC11476402 DOI: 10.3390/ijms251910340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
IgA nephropathy (IgAN) is characterized by immune-mediated glomerulonephritis, with the accumulation of galactose-deficient IgA1 (Gd-IgA1) in the glomeruli and increased levels of circulating Gd-IgA1 and Gd-IgA1-containing immune complexes. An incomplete understanding of the underlying mechanisms and differences in clinical and pathological features between individuals and ethnicities has contributed to the lack of established treatments for IgAN. A tumor necrosis factor (TNF) family member, a proliferation-inducing ligand (APRIL), is a crucial cytokine essential for the generation and survival of plasma cells. Recent studies demonstrated that APRIL is a pivotal mediator in the production of Gd-IgA1 in IgAN. As our understanding of the autoimmune pathogenesis underlying IgAN has improved, various pharmacological therapeutic targets, including APRIL antagonists, have emerged. Preliminary results showed that APRIL-targeting agents effectively reduced proteinuria and Gd-IgA1 levels without significantly increasing adverse events, indicating their potential as novel therapeutic agents for IgAN. In the present review, we discuss the current understanding of the role of APRIL in the pathogenesis of IgAN and novel therapeutic strategies focusing on APRIL-targeting agents for IgAN. APRIL inhibitors may offer new hope to patients with IgAN.
Collapse
Affiliation(s)
- Masahiro Muto
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
| |
Collapse
|
20
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
21
|
Obare LM, Bonami RH, Doran A, Wanjalla CN. B cells and atherosclerosis: A HIV perspective. J Cell Physiol 2024; 239:e31270. [PMID: 38651687 PMCID: PMC11209796 DOI: 10.1002/jcp.31270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Figueiredo Galvao HB, Lieu M, Moodley S, Diep H, Jelinic M, Bobik A, Sobey CG, Drummond GR, Vinh A. Depletion of follicular B cell-derived antibody secreting cells does not attenuate angiotensin II-induced hypertension or vascular compliance. Front Cardiovasc Med 2024; 11:1419958. [PMID: 38883991 PMCID: PMC11176447 DOI: 10.3389/fcvm.2024.1419958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Maggie Lieu
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Seyuri Moodley
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alexander Bobik
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Immunology, Monash University, Clayton, VIC, Australia
- Center for Inflammatory Diseases, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Sánchez-Ramón S, Fuentes-Antrás J, Rider NL, Pérez-Segura P, de la Fuente-Muñoz E, Fernández-Arquero M, Neves E, Pérez de Diego R, Ocaña A, Guevara-Hoyer K. Exploring gastric cancer genetics: A turning point in common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100203. [PMID: 38283086 PMCID: PMC10818086 DOI: 10.1016/j.jacig.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/30/2024]
Abstract
Background Gastric cancer (GC) stands as a prominent cause of cancer-related mortality and ranks second among the most frequently diagnosed malignancies in individuals with common variable immunodeficiency (CVID). Objective We sought to conduct a comprehensive, large-scale genetic analysis to explore the CVID-associated germline variant landscape within gastric adenocarcinoma samples and to seek to delineate the transcriptomic similarities between GC and CVID. Methods We investigated the presence of CVID-associated germline variants in 1591 GC samples and assessed their impact on tumor mutational load. The progression of GC was evaluated in patients with and without these variants. Transcriptomic similarities were explored by matching differentially expressed genes in GC to healthy gastric tissue with a CVID transcriptomic signature. Results CVID-associated germline variants were found in 60% of GC samples. Our analysis revealed a significant association between the presence of CVID-related genetic variants and higher tumor mutational load in GC (P < .0001); high GC mutational load seems to be linked to immunotherapy response and worse prognosis. Transcriptomic similarities unveiled key genes and pathways implicated in innate immune responses and tumorigenesis. We identified upregulated genes related to oncogene drivers, inflammation, tumor suppression, DNA repair, and downregulated immunomodulatory genes shared between GC and CVID. Conclusions Our findings contribute to a deeper understanding of potential molecular modulators of GC and shed light on the intricate interplay between immunodeficiency and cancer. This study underscores the clinical relevance of CVID-related variants in influencing GC progression and opens avenues for further exploration into novel therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicholas L. Rider
- Division of Clinical Informatics, Pediatrics, Allergy and Immunology, Liberty University College of Osteopathic Medicine and Collaborative Health Partners, Lynchburg, Va
| | - Pedro Pérez-Segura
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Alberto Ocaña
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
24
|
Fouda A, Maallah MT, Kouyoumdjian A, Negi S, Paraskevas S, Tchervenkov J. RORγt inverse agonist TF-S14 inhibits Th17 cytokines and prolongs skin allograft survival in sensitized mice. Commun Biol 2024; 7:454. [PMID: 38609465 PMCID: PMC11014929 DOI: 10.1038/s42003-024-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic antibody mediated rejection (AMR) is the major cause of solid organ graft rejection. Th17 contributes to AMR through the secretion of IL17A, IL21 and IL22. These cytokines promote neutrophilic infiltration, B cell proliferation and donor specific antibodies (DSAs) production. In the current study we investigated the role of Th17 in transplant sensitization. Additionally, we investigated the therapeutic potential of novel inverse agonists of the retinoic acid receptor-related orphan receptor gamma t (RORγt) in the treatment of skin allograft rejection in sensitized mice. Our results show that RORγt inverse agonists reduce cytokine production in human Th17 cells in vitro. In mice, we demonstrate that the RORγt inverse agonist TF-S14 reduces Th17 signature cytokines in vitro and in vivo and leads to blocking neutrophilic infiltration to skin allografts, inhibition of the B-cell differentiation, and the reduction of de novo IgG3 DSAs production. Finally, we show that TF-S14 prolongs the survival of a total mismatch grafts in sensitized mice. In conclusion, RORγt inverse agonists offer a therapeutic intervention through a novel mechanism to treat rejection in highly sensitized patients.
Collapse
Affiliation(s)
- Ahmed Fouda
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
| | - Mohamed Taoubane Maallah
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Araz Kouyoumdjian
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Sarita Negi
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
| | - Steven Paraskevas
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
| |
Collapse
|
25
|
Liao C, Luo S, Liu X, Zhang L, Xie P, Zhou W, Lu Y, Zhong H, Zhang X, Xiong Z, Huang X, Mo G, Ma D, Tang J. Siglec-F + neutrophils in the spleen induce immunosuppression following acute infection. Theranostics 2024; 14:2589-2604. [PMID: 38646647 PMCID: PMC11024851 DOI: 10.7150/thno.93812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Background: The mechanisms underlying the increased mortality of secondary infections during the immunosuppressive phase of sepsis remain elusive. Objectives: We sought to investigate the role of Siglec-F+ neutrophils on splenic T lymphocytes in the immunosuppressed phase of sepsis and on secondary infection in PICS mice, and to elucidate the underlying mechanisms. Methods: We established a mouse model of sepsis-induced immunosuppression followed by secondary infection with LPS or E. coli. The main manifestation of immunosuppression is the functional exhaustion of splenic T lymphocytes. Treg depletion reagent Anti-IL-2, IL-10 blocker Anti-IL-10R, macrophage depletion reagent Liposomes, neutrophil depletion reagent Anti-Ly6G, neutrophil migration inhibitor SB225002, Siglec-F depletion reagent Anti-Siglec-F are all used on PICS mice. The function of neutrophil subsets was investigated by adoptive transplantation and the experiments in vitro. Results: Compared to other organs, we observed a significant reduction in pro-inflammatory cytokines in the spleen, accompanied by a marked increase in IL-10 production, primarily by infiltrating neutrophils. These infiltrating neutrophils in the spleen during the immunosuppressive phase of sepsis undergo phenotypic change in the local microenvironment, exhibiting high expression of neutrophil biomarkers such as Siglec-F, Ly6G, and Siglec-E. Depletion of neutrophils or specifically targeting Siglec-F leads to enhance the function of T lymphocytes and a notable improvement in the survival of mice with secondary infections. Conclusions: We identified Siglec-F+ neutrophils as the primary producers of IL-10, which significantly contributed to T lymphocyte suppression represents a novel finding with potential therapeutic implications.
Collapse
Affiliation(s)
- Chaoxiong Liao
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Shuhua Luo
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xiaolei Liu
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Lina Zhang
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Pengyun Xie
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Wending Zhou
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Yue Lu
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Hanhui Zhong
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xuedi Zhang
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Ziying Xiong
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Xiao Huang
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
- Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Guixi Mo
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
- Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| |
Collapse
|
26
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
28
|
Abstract
Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Tommaso Vicanolo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Samuel Ovadia
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Andrés Hidalgo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| |
Collapse
|
29
|
Ruan Y, Bi H, Luo X, Pang A, Zhang P, Cui Y. Elevated plasma levels of specific antiplatelet glycoprotein autoantibodies in patients with primary Sjögren syndrome with thrombocytopenia. Clin Rheumatol 2024; 43:307-314. [PMID: 37999855 DOI: 10.1007/s10067-023-06818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Thrombocytopenia is one of the primary Sjögren's syndrome (pSS) hematological manifestations. The objective of this study was to evaluate the possible roles of antiplatelet glycoprotein autoantibodies in the pathogenesis of thrombocytopenia in primary Sjögren's syndrome (pSS). METHODS The level of plasma anti-glycoprotein Ib, IIIa and IIb/IIIa autoantibodies in 36 pSS patients without thrombocytopenia and 35 pSS patients with thrombocytopenia, 36 Idiopathic thrombocytopenic purpura (ITP) patients and 39 normal control were measured with enzyme-linked immunosorbent assay (ELISA). RESULTS The level of anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies (A490) in the pSS with thrombocytopenia was significantly higher than that of pSS without thrombocytopenia (0.813 ± 0.161 vs 0.688 ± 0.133; 0.917 ± 0.094 vs 0.802 ± 0.070; 0.911 ± 0.125 vs 0.782 ± 0.109). Incidences of the anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies in the pSS with thrombocytopenia was significantly higher than that of pSS without thrombocytopenia (25.7% vs 0%; 65.7% vs 11.1%; 31.4% vs 0%). In patients with pSS, there was a lower platelet count in anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies positive patients ((25.67 ± 5.5) × 10^9/L vs (116.8 ± 84.52) × 10^9/L; 29.04 ± 11.33 × 10^9/L vs (152.0 ± 75.47) × 10^9/L; (31.55 ± 14.0) × 10^9/L vs (118.8 ± 85.24) × 10^9/L). CONCLUSION Elevated plasma levels of anti-platelet glycoprotein autoantibodies may play a role in the pathogenesis of thrombocytopenia in pSS. Key Points • The level of anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies (A490) in the pSS with thrombocytopenia was increased. • Incidences of the anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies in the pSS with thrombocytopenia was increased. • In patients with pSS, there was a lower platelet count in anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies positive patients.
Collapse
Affiliation(s)
- Yingxin Ruan
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Hongchen Bi
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Xiaoli Luo
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Pengyu Zhang
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
30
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
31
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
32
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
33
|
Rajgopal S, Nakano K, Cook LM. Beyond the horizon: Neutrophils leading the way in the evolution of immunotherapy. Cancer Med 2023; 12:21885-21904. [PMID: 38062888 PMCID: PMC10757139 DOI: 10.1002/cam4.6761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/31/2023] Open
Abstract
Cancer is a complex and dynamic disease, initiated by a multitude of intrinsic mutations and progressed with the assistance of the tissue microenvironment, encompassed by stromal cells including immune cell infiltration. The novel finding that tumors can evade anti-cancer immune functions shaped the field of immunotherapy, which has been a revolutionary approach for the treatment of cancers. However, the development of predominantly T cell-targeted immunotherapy approaches, such as immune checkpoint inhibition, also brought about an accumulation of evidence demonstrating other immune cell drivers of tumor progression, such as innate immune cells and notably, neutrophils. In the past decade, neutrophils have emerged to be primary mediators of multiple cancer types and even in recent years, are gaining attention for their potential use in the next generation of immunotherapies. Here, we review current immunotherapy strategies and thoroughly discuss the roles of neutrophils in cancer and novel neutrophil-targeted methods for treating cancer.
Collapse
Affiliation(s)
- Sanjana Rajgopal
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kosuke Nakano
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Leah M. Cook
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterOmahaNebraskaUSA
| |
Collapse
|
34
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
35
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
36
|
Shrestha S, Hong CW. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw 2023; 23:e38. [PMID: 37970234 PMCID: PMC10643328 DOI: 10.4110/in.2023.23.e38] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
Neutrophils are professional phagocytes that provide defense against invading pathogens through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil extracellular traps (NETs). Although long been considered as short-lived effector cells with limited biosynthetic activity, recent studies have revealed that neutrophils actively communicate with other immune cells. Neutrophils employ various types of soluble mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular communication. Furthermore, extracellular vesicles play a crucial role as mediators of neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils and their roles in crosstalk with other cells.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
37
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
38
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
39
|
Valdivia G, Alonso-Miguel D, Perez-Alenza MD, Zimmermann ABE, Schaafsma E, Kolling FW, Barreno L, Alonso-Diez A, Beiss V, Affonso de Oliveira JF, Suárez-Redondo M, Fiering S, Steinmetz NF, vom Berg J, Peña L, Arias-Pulido H. Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Induces Local and Systemic Antitumor Efficacy in Canine Mammary Cancer Patients. Cells 2023; 12:2241. [PMID: 37759464 PMCID: PMC10527658 DOI: 10.3390/cells12182241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of optimal models to evaluate novel agents is delaying the development of effective immunotherapies against human breast cancer (BC). In this prospective open label study, we applied neoadjuvant intratumoral immunotherapy with empty cowpea mosaic virus-like particles (eCPMV) to 11 companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. We found that two neoadjuvant intratumoral eCPMV injections resulted in tumor reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of injected dogs. Tumor reduction was independent of clinical stage, tumor size, histopathologic grade, and tumor molecular subtype. RNA-seq-based analysis of injected tumors indicated a decrease in DNA replication activity and an increase in activated dendritic cell infiltration in the tumor microenvironment. Immunohistochemistry analysis demonstrated significant intratumoral increases in neutrophils, T and B lymphocytes, and plasma cells. eCPMV intratumoral immunotherapy demonstrated antitumor efficacy without any adverse effects. This novel immunotherapy has the potential for improving outcomes for human BC patients.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | | | | | - Fred W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
| | - Lucia Barreno
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
| | | | - María Suárez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Steven Fiering
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92039, USA
- Center for Nano Immuno-Engineering, University of California San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92039, USA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland; (A.B.E.Z.); (J.v.B.)
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
40
|
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 2023; 22:148. [PMID: 37679744 PMCID: PMC10483725 DOI: 10.1186/s12943-023-01843-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueshan Du
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisheng Yu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Qu J, Jin J, Zhang M, Ng LG. Neutrophil diversity and plasticity: Implications for organ transplantation. Cell Mol Immunol 2023; 20:993-1001. [PMID: 37386174 PMCID: PMC10468536 DOI: 10.1038/s41423-023-01058-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophils, as the first defenders against external microbes and stimuli, are highly active and finely regulated innate immune cells. Emerging evidence has challenged the conventional dogma that neutrophils are a homogeneous population with a short lifespan that promotes tissue damage. Recent findings on neutrophil diversity and plasticity in homeostatic and disease states have centered on neutrophils in the circulation. In contrast, a comprehensive understanding of tissue-specialized neutrophils in health and disease is still lacking. This article will first discuss how multiomics advances have contributed to our understanding of neutrophil heterogeneity and diversification in resting and pathological settings. This discussion will be followed by a focus on the heterogeneity and role of neutrophils in solid organ transplantation and how neutrophils may contribute to transplant-related complications. The goal of this article is to provide an overview of the research on the involvement of neutrophils in transplantation, with the aim that this may draw attention to an underappreciated area of neutrophil research.
Collapse
Affiliation(s)
- Junwen Qu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingsi Jin
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
42
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Balazs I, Horvath A, Heschl B, Khalil M, Enzinger C, Stadlbauer V, Seifert-Held T. Anti-CD20 treatment and neutrophil function in central nervous system demyelinating diseases. J Neuroimmunol 2023; 381:578136. [PMID: 37364519 DOI: 10.1016/j.jneuroim.2023.578136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION A contribution of neutrophil granulocytes to the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) is recognized. Anti-CD20 treatments applied in these diseases are associated with infectious complications and neutropenia. No data is available about functional characteristics of neutrophils obtained from patients with anti-CD20 treatments. METHODS In neutrophils isolated from 13 patients with anti-CD20 treatment (9 MS, 4 NMOSD), 11 patients without anti-CD20 treatment (9 MS, 2 NMOSD) and 5 healthy controls, we analyzed chemotaxis, production of reactive oxygen species (ROS), phagocytosis, and formation of neutrophil extracellular traps (NET) in vitro. RESULTS Chemotaxis and ROS production were found unchanged between patients with and without anti-CD20 treatment or between patients and healthy controls. We found a higher proportion of non-phagocytosing cells in patients without anti-CD20 treatment compared to patients with anti-CD20 treatment and healthy controls. As compared to healthy controls, a higher proportion of neutrophils from patients without anti-CD20 treatments underwent NET formation, either unstimulated or stimulated with phorbol 12-myristate 3-acetate for 3 h. In about half of patients with anti-CD20 treatment (n = 7), NET formation of unstimulated neutrophils occurred already within 20 min of incubation. This was not observed in patients without anti-CD20 treatment and healthy controls. CONCLUSION Anti-CD20 treatment in MS and NMOSD patients does not alter chemotaxis and ROS production of neutrophils in vitro but might restore their impaired phagocytosis in these diseases. Our study reveals a predisposition to early NET formation in vitro of neutrophils obtained from patients with anti-CD20 treatment. This may contribute to associated risks of neutropenia and infections.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria; Department of Neurology, Hospital Murtal, Gaaler Strasse 10, 8720 Knittelfeld, Austria.
| |
Collapse
|
44
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
45
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
46
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
47
|
Wang Z, Shen J, Ye K, Zhao J, Huang S, He S, Qin Y, Meng L, Wang J, Song J. Neutrophil-Derived IL-6 Potentially Drives Ferroptosis Resistance in B Cells in Lupus Kidney. Mediators Inflamm 2023; 2023:9810733. [PMID: 37273451 PMCID: PMC10239302 DOI: 10.1155/2023/9810733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Ferroptosis resistance is vital for B cell development, especially in inflammatory diseases, yet the underlying mechanism is still unclear. In this study, based on the scRNA-seq technique and flow cytometry, we discovered a proportion of neutrophils exhibited upregulated expression of the IL-6 and correlated with the expression of IL-6 receptor and SLC7A11 from B cells in lupus kidney. Moreover, we identified that in lupus kidney, neutrophils could provide IL-6 to facilitate ferroptosis resistance in B cells via SLC7A11, and inhibition of SLC7A11 could significantly enhance ferroptosis in B cells and could decrease B cell proliferation. This study helps understand the crosstalk between neutrophils and B cells in the kidney in the development of lupus.
Collapse
Affiliation(s)
- Zechen Wang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Jiajia Shen
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Kun Ye
- Department of Renal Diseases, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning Guangxi Province, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Shaoang Huang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Siyuan He
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Yujuan Qin
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi Province, China
| | - Jie Wang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
- Department of Renal Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| | - Jian Song
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, Guangxi Province, China
| |
Collapse
|
48
|
Pleskova SN, Erofeev AS, Vaneev AN, Gorelkin PV, Bobyk SZ, Kolmogorov VS, Bezrukov NA, Lazarenko EV. ROS Production by a Single Neutrophil Cell and Neutrophil Population upon Bacterial Stimulation. Biomedicines 2023; 11:biomedicines11051361. [PMID: 37239032 DOI: 10.3390/biomedicines11051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Department "Nanotechnology and Biotechnology", R.E. Alekseev Technical State University of Nizhny Novgorod, 603155 Nizhny Novgorod, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander N Vaneev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Petr V Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Sergey Z Bobyk
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vasilii S Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay A Bezrukov
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina V Lazarenko
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
49
|
Halade GV, Mat Y, Gowda SGB, Jain S, Hui S, Yadav H, Kain V. Sleep deprivation in obesogenic setting alters lipidome and microbiome toward suboptimal inflammation in acute heart failure. FASEB J 2023; 37:e22899. [PMID: 37002889 DOI: 10.1096/fj.202300184r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Sleep is a fundamental medicine for cardiac homeostasis, and sleep-deprived individuals are prone to higher incidences of heart attack. The lipid-dense diet (obesogenic diet-OBD) is a cumulative risk factor for chronic inflammation in cardiovascular disease; thus, understanding how sleep fragmentation (SF) in an obesity setting impacts immune and cardiac health is an unmet medical need. We hypothesized whether the co-existence of SF with OBD dysregulates gut homeostasis and leukocyte-derived reparative/resolution mediators, thereby impairing cardiac repair. Two-month-old male C57BL/6J mice were randomized first into two groups, then four groups; Control, control + SF, OBD, and OBD + SF mice subjected to myocardial infarction (MI). OBD mice had higher levels of plasma linolenic acid with a decrease in eicosapentaenoic and docosahexaenoic acid. The OBD mice had lower Lactobacillus johnsonii indicating a loss of probiotic microbiota. SF in OBD mice increased Firmicutes/Bacteroidetes ratio indicative of a detrimental change in SF-directed microbiome. OBD + SF group increased in the neutrophil: lymphocyte ratio suggestive of suboptimal inflammation. As a result of SF, resolution mediators (RvD2, RvD3, RvD5, LXA4 , PD1, and MaR1) decreased and inflammatory mediators (PGD2 , PGE2 , PGF2a , 6k-PGF1a ) were increased in OBD mice post-MI. At the site of infarction, the proinflammatory cytokines Ccl2, IL1β, and IL-6 were amplified in OBD + SF indicating a robust proinflammatory milieu post-MI. Also, brain circadian genes (Bmal1, Clock) were downregulated in SF-subjected control mice, but remained elevated in OBD mice post-MI. SF superimposed on obesity dysregulated physiological inflammation and disrupted resolving response thereby impaired cardiac repair and signs of pathological inflammation.
Collapse
Affiliation(s)
- Ganesh V. Halade
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| | - Yusuf Mat
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| | | | - Shalini Jain
- USF Center for Microbiome Research Microbiomes Institute Tampa Florida USA
- Center for Aging and Brain Repair University of South Florida Tampa Florida USA
| | - Shu‐Ping Hui
- Faculty of Health Sciences Hokkaido University Sapporo Japan
| | - Hariom Yadav
- USF Center for Microbiome Research Microbiomes Institute Tampa Florida USA
- Center for Aging and Brain Repair University of South Florida Tampa Florida USA
| | - Vasundhara Kain
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
50
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|