1
|
Bae K, Kim DE, Kim JH, Lee JY, Yoon KA. Oncogenic fusion of CD63-BCAR4 contributes cancer stem cell-like properties via ALDH1 activity. Mol Carcinog 2024; 63:2282-2290. [PMID: 39136580 DOI: 10.1002/mc.23808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
Gene fusions are common somatic alterations in cancers, and fusions with tumorigenic features have been identified as novel drivers of cancer and therapeutic targets. Few studies have determined whether the oncogenic ability of fusion genes is related to the induction of stemness in cells. Cancer stem cells (CSCs) are a subset of cells that contribute to cancer progression, metastasis, and recurrence, and are critical components of the aggressive features of cancer. Here, we investigated the CSC-like properties induced by CD63-BCAR4 fusion gene, previously reported as an oncogenic fusion, and its potential contribution for the enhanced metastasis as a notable characteristic of CD63-BCAR4. CD63-BCAR4 overexpression facilitates sphere formation in immortalized bronchial epithelial cells. The significantly enhanced sphere-forming activity observed in tumor-derived cells from xenografted mice of CD63-BCAR4 overexpressing cells was suppressed by silencing of BCAR4. RNA microarray analysis revealed that ALDH1A1 was upregulated in the BCAR4 fusion-overexpressing cells. Increased activity and expression of ALDH1A1 were observed in the spheres of CD63-BCAR4 overexpressing cells compared with those of the empty vector. CD133 and CD44 levels were also elevated in BCAR4 fusion-overexpressing cells. Increased NANOG, SOX2, and OCT-3/4 protein levels were observed in metastatic tumor cells derived from mice injected with CD63-BCAR4 overexpressing cells. Moreover, DEAB, an ALDH1A1 inhibitor, reduced the migration activity induced by CD63-BCAR4 as well as the sphere-forming activity. Our findings suggest that CD63-BCAR4 fusion induces CSC-like properties by upregulating ALDH1A1, which contributes to its metastatic features.
Collapse
Affiliation(s)
- Kieun Bae
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong Eon Kim
- College of Health Science, Cheongju University, Cheongju, Republic of Korea
| | - Jin Hee Kim
- College of Health Science, Cheongju University, Cheongju, Republic of Korea
| | - Ja Young Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Marchal MA, Moose DL, Varzavand A, Jordan NE, Taylor D, Tanas MR, Brown JA, Henry MD, Stipp CS. Abl kinases can function as suppressors of tumor progression and metastasis. Front Oncol 2023; 13:1241056. [PMID: 37746268 PMCID: PMC10514900 DOI: 10.3389/fonc.2023.1241056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Abl family kinases function as proto-oncogenes in various leukemias, and pro-tumor functions have been discovered for Abl kinases in many solid tumors as well. However, a growing body of evidence indicates that Abl kinases can function to suppress tumor cell proliferation and motility and tumor growth in vivo in some settings. Methods To investigate the role of Abl kinases in tumor progression, we used RNAi to generate Abl-deficient cells in a model of androgen receptor-indifferent, metastatic prostate cancer. The effect of Abl kinase depletion on tumor progression and metastasis was studied in an in vivo orthotopic model, and tumor cell motility, 3D growth, and signaling was studied in vitro. Results Reduced Abl family kinase expression resulted in a highly aggressive, metastatic phenotype in vivo that was associated with AKT pathway activation, increased growth on 3D collagen matrix, and enhanced cell motility in vitro. Inhibiting AKT pathway signaling abolished the increased 3D growth of Abl-deficient cells, while treatment with the Abl kinase inhibitor, imatinib, promoted 3D growth of multiple additional tumor cell types. Moreover, Abl kinase inhibition also promoted soft-agar colony formation by pre-malignant fibroblasts. Conclusions Collectively, our data reveal that Abl family kinases can function to suppress malignant cell phenotypes in vitro, and tumor progression and metastasis in vivo.
Collapse
Affiliation(s)
- Melissa A Marchal
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Devon L Moose
- Department of Molecular Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Afshin Varzavand
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Nicole E Jordan
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Destiney Taylor
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Munir R Tanas
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - James A Brown
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Urology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Michael D Henry
- Department of Molecular Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Christopher S Stipp
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Egeli DB, Hanfstein B, Lauseker M, Pfirrmann M, Saussele S, Baerlocher GM, Müller MC. SOCS-2 gene expression at diagnosis does not predict for outcome of chronic myeloid leukemia patients on imatinib treatment. Leuk Lymphoma 2021; 63:955-962. [PMID: 34872441 DOI: 10.1080/10428194.2021.2010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SOCS-2 gene expression at diagnosis has been suggested as a predictor of clinical outcome in chronic myeloid leukemia (CML). In this study SOCS-2 and GUS expression levels were determined by real-time PCR in pretherapeutic samples at diagnosis. First, three patient groups were compared after assessment at 48 months: optimal molecular responders (n = 35), patients with resistance to imatinib (n = 28), and blast crisis patients (n = 27). A significant difference in SOCS-2 gene expression at diagnosis was observed comparing blast crisis vs. resistant patients (p = 0.042) and optimal responders (p = 0.010). Second, a validation sample of consecutively randomized patients (n = 123) was investigated. No discriminative SOCS-2 gene expression cutoff could be derived to predict molecular or cytogenetic response, progression-free or overall survival. Although SOCS-2 gene was differentially expressed at the time of diagnosis in blast crisis patients when compared to other groups, a prognostic impact in consecutively randomized patients was not observed.
Collapse
Affiliation(s)
- Damla Buket Egeli
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Benjamin Hanfstein
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Michael Lauseker
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Saussele
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Gabriela M Baerlocher
- Department of BioMedical Research and Department of Hematology and Central Hematology Department, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Martin C Müller
- Institute for Hematology and Oncology (IHO GmbH), Mannheim, Germany
| |
Collapse
|
4
|
Influence of major BCR-ABL1 transcript subtype on outcome in patients with chronic myeloid leukemia in chronic phase treated frontline with nilotinib. Oncotarget 2020; 11:2560-2570. [PMID: 32655840 PMCID: PMC7335668 DOI: 10.18632/oncotarget.27652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of BCR-ABL1 transcript as a result of reciprocal translocation between chromosome 9 and 22. The most common transcripts subtypes are e13a2 (b2a2) and e14a2 (b3a2). The prognostic impact of the type of BCR-ABL1 transcript has been the subject of controversies over time. In the imatinib era, several studies have suggested a deeper and faster response in patients expressing e14a2. However, the impact on response after first line therapy with a second-generation tyrosine kinase inhibitor, nilotinib, is unknown. We retrospectively evaluated 118 patients newly diagnosed with chronic phase CML and treated frontline with nilotinib inside or outside clinical trial in five French centers. Only patients expressing e14a2 or e13a2 transcripts alone were analyzed. At baseline, 55.3% expressed e14a2, 44.7% expressed e13a2. The median age was 51 years and median follow-up was 49 months. Relative risks of CML at diagnosis were similar according to the ELTS score (p = .87). Complete hematological response and complete cytogenetic response rates were similar among groups. Patients expressing e14a2 transcripts compared to e13a2 transcripts had deeper and faster molecular responses, when considering MMR (100% vs 84.1%, p = .007) with a median time of 6.7 and 17.1 months or MR4.5 (100% vs 59.9%, p = .005) with a median time of 39.7 and 70.9 months, respectively. A sustained treatment free remission was observed in 10/10 patients with e14a2 versus 1/3 with e13a2 transcript (p = .04). In conclusion, even treated with nilotinib first line, patients with chronic phase CML expressing BCR-ABL1 e13a2 transcript have a lower rate of deep molecular responses.
Collapse
|
5
|
Krishna Chandran R, Geetha N, Sakthivel KM, Suresh Kumar R, Jagathnath Krishna KMN, Sreedharan H. Impact of Additional Chromosomal Aberrations on the Disease Progression of Chronic Myelogenous Leukemia. Front Oncol 2019; 9:88. [PMID: 30891424 PMCID: PMC6411713 DOI: 10.3389/fonc.2019.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The emergence of additional chromosomal abnormalities (ACAs) in Philadelphia chromosome/BCR-ABL1 positive chronic myeloid leukemia (CML), is considered to be a feature of disease evolution. However, their frequency of incidence, impact on prognosis and treatment response effect in CML is not conclusive. In the present study, we performed a chromosome analysis of 489 patients in different clinical stages of CML, using conventional GTG-banding, Fluorescent in situ Hybridization and Spectral Karyotyping. Among the de novo CP cases, ACAs were observed in 30 patients (10.20%) with lowest incidence, followed by IM resistant CP (16.66%) whereas in AP and BC, the occurrence of ACAs were higher, and was about 40.63 and 50.98%, respectively. The frequency of occurrence of ACAs were compared between the study groups and it was found that the incidence of ACAs was higher in BC compared to de novo and IM resistant CP cases. Likewise, it was higher in AP patients when compared between de novo and IM resistant CP cases, mirroring the fact of cytogenetic evolution with disease progression in CML. In addition, we observed 10 novel and 10 rare chromosomal aberrations among the study subjects. This study pinpoints the fact that the genome of advanced phase patients was highly unstable, and this environment of genomic instability is responsible for the high occurrence of ACAs. Treatment response analysis revealed that compared to initial phases, ACAs were associated with an adverse prognostic effect during the progressive stages of CML. This study further portrayed the cytogenetic mechanism of disease evolution in CML.
Collapse
Affiliation(s)
- Ramachandran Krishna Chandran
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| | - Narayanan Geetha
- Division of Medical Oncology, Regional Cancer Centre, Trivandrum, India
| | - Kunnathur Murugesan Sakthivel
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India.,Department of Biochemistry, PSG College of Arts and Science, Coimbatore, India
| | - Raveendran Suresh Kumar
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| | | | - Hariharan Sreedharan
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| |
Collapse
|
6
|
Özgür Yurttaş N, Eşkazan AE. Dasatinib-induced pulmonary arterial hypertension. Br J Clin Pharmacol 2018; 84:835-845. [PMID: 29334406 PMCID: PMC5903230 DOI: 10.1111/bcp.13508] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Drug-induced (group 1) pulmonary hypertension (PH) is an important subgroup of PH involving dasatinib as a likely related agent, which is a second-generation tyrosine kinase inhibitor (TKI) used in the treatment of chronic myeloid leukaemia (CML). The mechanism of dasatinib-induced pulmonary arterial hypertension (PAH) is unclear. However, the occurrence of PAH with late onset in CML patients suggests a chronic pathological mechanism with an insidious onset rather than an acute inflammatory or cardiac aetiology. Dasatinib has a broader effect than other TKIs; the major known difference between dasatinib and other TKIs is the additional inhibition of Src family kinases. Therefore, Src inhibition was thought to play a role in the development of dasatinib-induced PAH. However, recently, it was also speculated that chronic dasatinib therapy may cause pulmonary endothelial damage, attenuate hypoxic pulmonary vasoconstriction responses and increase susceptibility to PAH independently of the Src family kinase-induced mechanism. Dasatinib-induced PAH usually seems to be reversible with the cessation of the drug, and sometimes with PAH-specific treatment strategies. Transthoracic echocardiography can be recommended as a routine screening prior to dasatinib initiation, and this non-invasive procedure can be utilized in patients having signs and symptoms attributable to PAH during dasatinib treatment.
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
7
|
Klement GL, Arkun K, Valik D, Roffidal T, Hashemi A, Klement C, Carmassi P, Rietman E, Slaby O, Mazanek P, Mudry P, Kovacs G, Kiss C, Norga K, Konstantinov D, André N, Slavc I, van Den Berg H, Kolenova A, Kren L, Tuma J, Skotakova J, Sterba J. Future paradigms for precision oncology. Oncotarget 2018; 7:46813-46831. [PMID: 27223079 PMCID: PMC5216837 DOI: 10.18632/oncotarget.9488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types. This is compounded by the struggle to keep abreast the scientific advances made in all fields of science, and by the enormous challenge to organize, cross-reference, and apply molecular data for patient benefit. In order to supplement the site-specific, histology-driven diagnosis with genomic, proteomic and metabolomics information, a paradigm shift in diagnosis and treatment of patients is required. While most physicians are open and keen to use the emerging data for therapy, even those versed in molecular therapeutics are overwhelmed with the amount of available data. It is not surprising that even though The Human Genome Project was completed thirteen years ago, our patients have not benefited from the information. Physicians cannot, and should not be asked to process the gigabytes of genomic and proteomic information on their own in order to provide patients with safe therapies. The following consensus summary identifies the needed for practice changes, proposes potential solutions to the present crisis of informational overload, suggests ways of providing physicians with the tools necessary for interpreting patient specific molecular profiles, and facilitates the implementation of quantitative precision medicine. It also provides two case studies where this approach has been used.
Collapse
Affiliation(s)
- Giannoula Lakka Klement
- Department of Pediatric Hematology/Oncology, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA.,Department of Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Knarik Arkun
- Department of Pathology, Tufts Medical Center, Boston, MA, USA
| | - Dalibor Valik
- Department of Paediatric Oncology, University Hospital Brno, Brno, Czech Republic.,Regional Center for Applied Molecular Biology, RECAMO, Brno, Czech Republic
| | - Tina Roffidal
- Department of Pediatric Hematology/Oncology, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA
| | | | | | | | - Edward Rietman
- CSTS Health Care®, Toronto, Canada.,Computer Science Department, University of Massachusetts, Amherst, MA, USA
| | - Ondrej Slaby
- Department of Paediatric Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Mazanek
- Department of Paediatric Oncology, University Hospital Brno, Brno, Czech Republic.,Regional Center for Applied Molecular Biology, RECAMO, Brno, Czech Republic
| | - Peter Mudry
- Department of Paediatric Oncology, University Hospital Brno, Brno, Czech Republic.,Regional Center for Applied Molecular Biology, RECAMO, Brno, Czech Republic
| | - Gabor Kovacs
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Csongor Kiss
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Koen Norga
- Antwerp University Hospital, Edegem, Belgium
| | | | - Nicolas André
- Department of Pediatric Hematology and Oncology, AP-HM, Marseille, France.,UMR S_911 CRO2 Aix Marseille Université, Marseille, France
| | - Irene Slavc
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Henk van Den Berg
- Department of Pediatric Oncology, Emma Children Hospital Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra Kolenova
- Department of Pediatric Oncology, Comenius University, Bratislava, Slovakia
| | - Leos Kren
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Tuma
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pediatric Surgery, University Hospital Brno, Brno, Czech Republic
| | - Jarmila Skotakova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Paediatric Oncology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,ICRC St. Anna University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
8
|
SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells. Methods Mol Biol 2017. [PMID: 28092053 DOI: 10.1007/978-1-4939-6762-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.
Collapse
|
9
|
Horiguchi M, Fujioka M, Kondo T, Fujioka Y, Li X, Horiuchi K, O. Satoh A, Nepal P, Nishide S, Nanbo A, Teshima T, Ohba Y. Improved FRET Biosensor for the Measurement of BCR-ABL Activity in Chronic Myeloid Leukemia Cells. Cell Struct Funct 2017; 42:15-26. [DOI: 10.1247/csf.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mika Horiguchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Mari Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Xinxin Li
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Kosui Horiuchi
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Aya O. Satoh
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Prabha Nepal
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Shinya Nishide
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Asuka Nanbo
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
10
|
Abstract
One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
11
|
Mughal TI, Radich JP, Deininger MW, Apperley JF, Hughes TP, Harrison CJ, Gambacorti-Passerini C, Saglio G, Cortes J, Daley GQ. Chronic myeloid leukemia: reminiscences and dreams. Haematologica 2016; 101:541-58. [PMID: 27132280 PMCID: PMC5004358 DOI: 10.3324/haematol.2015.139337] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/20/2016] [Indexed: 12/26/2022] Open
Abstract
With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people's lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cytogenetic Analysis/history
- Cytogenetic Analysis/methods
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Molecular Targeted Therapy/history
- Molecular Targeted Therapy/methods
- Mutation
- Philadelphia Chromosome
- Prognosis
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Research/history
Collapse
Affiliation(s)
| | - Jerald P Radich
- Fredrick Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | - George Q Daley
- Boston Children's Hospital, Harvard Medicine, School, Boston, MA, USA
| |
Collapse
|
12
|
Stagno F, Stella S, Spitaleri A, Pennisi MS, Di Raimondo F, Vigneri P. Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes. Expert Rev Anticancer Ther 2016; 16:273-8. [DOI: 10.1586/14737140.2016.1151356] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Abstract
In this overview of my research, I have aimed to give the background as to how I came to be involved in my various areas of interest, with an emphasis on the early phases of my career, which largely determined my future directions. I had the enormous good fortune to have worked under two of the most outstanding scientists of the twentieth century, R.A. Fisher and Joshua Lederberg. From mathematics and statistics, I went to population genetics and the early use of computers for modeling and simulation. Molecular biology took me into the laboratory and eventually to somatic cell genetics and human gene mapping. One chance encounter led me into the HLA field and another led me into research on cancer, especially colorectal cancer. On the way, I became a champion of the Human Genome Project and of the need for scientists to help promote the public understanding of science.
Collapse
Affiliation(s)
- Walter Bodmer
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
14
|
Michiels JJ, Valster F, Wielenga J, Schelfout K, Raeve HD. European vs 2015-World Health Organization clinical molecular and pathological classification of myeloproliferative neoplasms. World J Hematol 2015; 4:16-53. [DOI: 10.5315/wjh.v4.i3.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/15/2014] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
The BCR/ABL fusion gene or the Ph1-chromosome in the t(9;22)(q34;q11) exerts a high tyrokinase acticity, which is the cause of chronic myeloid leukemia (CML). The 1990 Hannover Bone Marrow Classification separated CML from the myeloproliferative disorders essential thrombocythemia (ET), polycythemia vera (PV) and chronic megakaryocytic granulocytic myeloproliferation (CMGM). The 2006-2008 European Clinical Molecular and Pathological (ECMP) criteria discovered 3 variants of thrombocythemia: ET with features of PV (prodromal PV), “true” ET and ET associated with CMGM. The 2008 World Health Organization (WHO)-ECMP and 2014 WHO-CMP classifications defined three phenotypes of JAK2V617F mutated ET: normocellular ET (WHO-ET), hypercelluar ET due to increased erythropoiesis (prodromal PV) and ET with hypercellular megakaryocytic-granulocytic myeloproliferation. The JAK2V617F mutation load in heterozygous WHO-ET is low and associated with normal life expectance. The hetero/homozygous JAK2V617F mutation load in PV and myelofibrosis is related to myeloproliferative neoplasm (MPN) disease burden in terms of symptomatic splenomegaly, constitutional symptoms, bone marrow hypercellularity and myelofibrosis. JAK2 exon 12 mutated MPN presents as idiopathic eryhrocythemia and early stage PV. According to 2014 WHO-CMP criteria JAK2 wild type MPL515 mutated ET is the second distinct thrombocythemia featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow consistent with the diagnosis of “true” ET. JAK2/MPL wild type, calreticulin mutated hypercellular ET appears to be the third distinct thrombocythemia characterized by clustered larged immature dysmorphic megakaryocytes and bulky (bulbous) hyperchromatic nuclei consistent with CMGM or primary megakaryocytic granulocytic myeloproliferation.
Collapse
|
15
|
Abruzzese E, Breccia M, Latagliata R. Second-generation tyrosine kinase inhibitors in first-line treatment of chronic myeloid leukaemia (CML). BioDrugs 2014; 28:17-26. [PMID: 24043361 DOI: 10.1007/s40259-013-0056-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have contributed to marked improvements in survival in patients with chronic myeloid leukaemia (CML). This article discusses the place of the second-generation TKIs dasatinib and nilotinib in the first-line treatment of CML and is based on published literature. The new agents are more potent and effective than imatinib. Data from pivotal clinical trials indicate that response to dasatinib and nilotinib is greater and more rapid than that to imatinib, resulting in a higher probability of patients achieving an optimal response to treatment. Differences between the newer agents with respect to patient groups for whom caution is advised, drug interaction potential, haematological toxicity, pulmonary toxicity, changes in the immune system and effects on laboratory parameters are discussed. With similar levels of efficacy, the choice of second-generation agents should be guided by the characteristics of the individual patient and the most suitable dosing regimen.
Collapse
Affiliation(s)
- Elisabetta Abruzzese
- Hematology, S. Eugenio Hospital, Tor Vergata University, P. le dell'Umanesimo 10, 00144, Rome, Italy,
| | | | | |
Collapse
|
16
|
Fluorescent protein-based biosensors and their clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 113:313-48. [PMID: 23244794 DOI: 10.1016/b978-0-12-386932-6.00008-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Green fluorescent protein and its relatives have shed their light on a wide range of biological problems. To date, with a color palette consisting of fluorescent proteins with different spectra, researchers can "paint" living cells as they desire. Moreover, sophisticated biosensors engineered to contain single or multiple fluorescent proteins, including FRET-based biosensors, spatiotemporally unveil molecular mechanisms underlying physiological processes. Although such molecules have contributed considerably to basic research, their abilities to be used in applied life sciences have yet to be fully explored. Here, we review the molecular bases of fluorescent proteins and fluorescent protein-based biosensors and focus on approaches aimed at applying such proteins to the clinic.
Collapse
|
17
|
Marcé S, Zamora L, Cabezón M, Xicoy B, Boqué C, Fernández C, Grau J, Navarro JT, Fernández de Sevilla A, Ribera JM, Feliu E, Millá F. Frequency of ABL gene mutations in chronic myeloid leukemia patients resistant to imatinib and results of treatment switch to second-generation tyrosine kinase inhibitors. Med Clin (Barc) 2013; 141:95-9. [DOI: 10.1016/j.medcli.2012.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022]
|
18
|
Affiliation(s)
- Janet D Rowley
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Shah DS, Kumar R. Steroid resistance in leukemia. World J Exp Med 2013; 3:21-25. [PMID: 24520542 PMCID: PMC3905587 DOI: 10.5493/wjem.v3.i2.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/02/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
There are several types of leukemia which are characterized by the abnormal growth of cells from the myeloid or lymphoid lineage. Because of their lympholytic actions, glucocorticoids (GCs) are included in many therapeutic regimens for the treatment of various forms of leukemia. Although a significant number of acute lymphoblastic leukemia patients respond well to GC treatment during initial phases; prolonged treatments sometimes results in steroid-resistance. The exact mechanism of this resistance has yet not been completely elucidated, but a correlation between functional GC receptor expression levels and steroid-resistance in patients has been found. In recent years, several other mechanisms of action have been reported that could play an important role in the development of such drug resistances in leukemia. Therefore, a better understanding of how leukemic patients develop drug resistance should result in drugs designed appropriately to treat these patients.
Collapse
|
20
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
21
|
Chandra HS, Heistekamp NC, Hungerford A, Morrissette JJ, Nowell PC, Rowley JD, Testa JR. Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome. Cancer Genet 2011; 204:171-9. [PMID: 21536234 PMCID: PMC3092778 DOI: 10.1016/j.cancergen.2011.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
This report summarizes highlights of the Philadelphia Chromosome Symposium: Past, Present and Future, held September 28, 2010, to commemorate the 50th anniversary of the discovery of the Philadelphia chromosome. The symposium sessions included presentations by investigators who made seminal contributions concerning the discovery and molecular characterization of the Ph chromosome and others who developed a highly successful therapy based on the specific molecular alteration observed in chronic myeloid leukemia. Additional presentations highlighted future opportunities for the design of molecularly targeted therapies for various types of cancer. Also included here are reminiscences connected with the discovery of the Ph chromosome by David Hungerford and Peter Nowell, the discovery that the abnormality arises from a chromosomal translocation, by Janet Rowley, and the cloning of the 9;22 translocation breakpoints by Nora Heisterkamp, John Groffen, and colleagues.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cloning, Molecular
- Cytogenetics/history
- Cytogenetics/methods
- Cytogenetics/trends
- History, 20th Century
- History, 21st Century
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Translocation, Genetic
Collapse
Affiliation(s)
| | - Nora C. Heistekamp
- Division of Hematology-Oncology, Childrens Hospital of Los Angeles, Los Angeles CA 90027 USA
| | | | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 USA
| | - Peter C. Nowell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 USA
| | - Janet D. Rowley
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Joseph R. Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| |
Collapse
|
22
|
De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Férec C, De Braekeleer M. ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 2011; 86:361-71. [PMID: 21435002 DOI: 10.1111/j.1600-0609.2011.01586.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosomal rearrangements involving the ABL1 gene, leading to a BCR-ABL1 fusion gene, have been mainly associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (ALL). At present, six other genes have been shown to fuse to ABL1. The kinase domain of ABL1 is retained in all chimeric proteins that are also composed of the N-terminal part of the partner protein that often includes a coiled-coil or a helix-loop-helix domain. These latter domains allow oligomerization of the protein that is required for tyrosine kinase activation, cytoskeletal localization, and neoplastic transformation. Fusion genes that have a break in intron 1 or 2 (BCR-ABL1, ETV6-ABL1, ZMIZ1-ABL1, EML1-ABL1, and NUP214-ABL1) have transforming activity, although NUP214-ABL1 requires amplification to be efficient. The NUP214-ABL1 gene is the second most prevalent fusion gene involving ABL1 in malignant hemopathies, with a frequency of 5% in T-cell ALL. Both fusion genes (SFPQ-ABL1 and RCSD1-ABL1) characterized by a break in intron 4 of ABL1 are associated with B-cell ALL, as the chimeric proteins lacked the SH2 domain of ABL1. Screening for ABL1 chimeric genes could be performed in patients with ALL, more particularly in those with T-cell ALL because ABL1 modulates T-cell development and plays a role in cytoskeletal remodeling processes in T cells.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Université de Brest, Faculté de Médecine et des Sciences de la Santé, Brest Institut National de la Santé et de la Recherche Médicale (INSERM), Brest CHRU Brest, Hôpital Morvan, Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S, Tobiume M, Asaka M, Ohba Y. A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clin Cancer Res 2010; 16:3964-75. [PMID: 20670950 DOI: 10.1158/1078-0432.ccr-10-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop a novel diagnostic method for the assessment of drug efficacy in chronic myeloid leukemia (CML) patients individually, we generated a biosensor that enables the evaluation of BCR-ABL kinase activity in living cells using the principle of fluorescence resonance energy transfer (FRET). EXPERIMENTAL DESIGN To develop FRET-based biosensors, we used CrkL, the most characteristic substrate of BCR-ABL, and designed a protein in which CrkL is sandwiched between Venus, a variant of YFP, and enhanced cyan fluorescent protein, so that CrkL intramolecular binding of the SH2 domain to phosphorylated tyrosine (Y207) increases FRET efficiency. After evaluation of the properties of this biosensor by comparison with established methods including Western blotting and flow cytometry, BCR-ABL activity and its response to drugs were examined in CML patient cells. RESULTS After optimization, we obtained a biosensor that possesses higher sensitivity than that of established techniques with respect to measuring BCR-ABL activity and its suppression by imatinib. Thanks to its high sensitivity, this biosensor accurately gauges BCR-ABL activity in relatively small cell numbers and can also detect <1% minor drug-resistant populations within heterogeneous ones. We also noticed that this method enabled us to predict future onset of drug resistance as well as to monitor the disease status during imatinib therapy, using patient cells. CONCLUSION In consideration of its quick and practical nature, this method is potentially a promising tool for the prediction of both current and future therapeutic responses in individual CML patients, which will be surely beneficial for both patients and clinicians.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/therapeutic use
- Benzamides
- Biosensing Techniques/methods
- Blotting, Western
- Cell Separation
- Drug Resistance, Neoplasm/drug effects
- Flow Cytometry
- Fluorescence Resonance Energy Transfer/methods
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Luminescent Agents
- Nuclear Proteins/metabolism
- Phosphorylation
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Tatsuaki Mizutani
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University Graduate School of Medicine, Kira-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Engler JR, Zannettino ACW, Bailey CG, Rasko JEJ, Hughes TP, White DL. OCT-1 function varies with cell lineage but is not influenced by BCR-ABL. Haematologica 2010; 96:213-20. [PMID: 20971815 DOI: 10.3324/haematol.2010.033290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Despite the excellent responses to imatinib therapy observed in patients with chronic phase chronic myeloid leukemia, approximately 25% of patients display primary resistance or suboptimal response. The OCT-1 activity in mononuclear cells reflects the efficiency of active influx of imatinib. OCT-1 activity in mononuclear cells is highly variable between patients and significantly correlates with a patient's molecular response to imatinib treatment and overall survival. The present study examined whether cell lineage and BCR-ABL expression influenced OCT-1 activity. DESIGN AND METHODS The OCT-1 activity and OCT-1 mRNA expression was assessed in pure populations of neutrophils, monocytes and lymphocytes recovered from chronic myeloid leukemia patients at diagnosis, in cytogenetic remission and normal individuals. The role of BCR-ABL on OCT-1 activity and differentiation was examined in a cell line model of ectopic BCR-ABL expression. RESULTS The OCT-1 activity and OCT-1 mRNA expression was highest in the neutrophil population and lowest in lymphocytes (P<0.05). This was observed for patients at diagnosis, in cytogenetic remission and normal individuals. Interestingly, neutrophil OCT-1 activity was not significantly different between patients at diagnosis, in remission and normal donors. This was also observed for monocytes and lymphocytes. Furthermore, OCT-1 activity in mononuclear cells was significantly correlated with the OCT-1 activity in neutrophils (P=0.001). In a cell line model in which BCR-ABL was ectopically expressed, we found no evidence that BCR-ABL directly affected OCT-1 expression and function. However, BCR-ABL stimulated granulocyte differentiation which, in turn, led to significantly increased OCT-1 activity (P=0.024). CONCLUSIONS These studies suggest that the predictive OCT-1 activity in patient mononuclear cells is strongly related to cell lineage, particularly the presence of neutrophils in the peripheral blood. Furthermore, BCR-ABL expression is unlikely to directly influence OCT-1 activity but may have an indirect role by enhancing granulocyte differentiation.
Collapse
Affiliation(s)
- Jane R Engler
- Department of Haematology, SA Pathology (RAH Campus), Frome Road, Adelaide. Australia
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Tyrosine kinase inhibitor (TKI) therapy has significantly changed the treatment paradigm for patients with chronic myeloid leukemia (CML). The first-generation inhibitor, imatinib, has demonstrated remarkable efficacy in most chronic-phase patients. Disease progression remains a significant risk for the first 2 to 3 years of TKI therapy, but the risk falls significantly thereafter. Early recognition of each individual's risk of progression may facilitate a customized approach to TKI therapy. Using such an approach, drug selection and treatment intensity would be adjusted on the basis of each patient's disease profile. Currently available prognostic indicators have limited value in the setting of the potent kinase inhibition afforded by TKIs. Furthermore, these indicators provide little guidance regarding optimal drug choice and dose intensity. In the future, assays that directly assess the efficacy of the protein-drug interaction, taking into account factors intrinsic to the patient and the amount of drug freely available in the plasma, are likely to be of greater value.
Collapse
|
26
|
Chronic Myeloid Leukemia CD34+ cells have reduced uptake of imatinib due to low OCT-1 Activity. Leukemia 2010; 24:765-70. [DOI: 10.1038/leu.2010.16] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Chen Y, Peng C, Li D, Li S. Molecular and cellular bases of chronic myeloid leukemia. Protein Cell 2010; 1:124-32. [PMID: 21203982 DOI: 10.1007/s13238-010-0016-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/07/2009] [Indexed: 12/21/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCRABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.
Collapse
MESH Headings
- 5-Lipoxygenase-Activating Proteins/metabolism
- Animals
- Benzamides
- Disease Models, Animal
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- PTEN Phosphohydrolase/metabolism
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Point Mutation
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
28
|
Tefferi A, Levine RL, Kantarjian H. Oncogenic Signals as Treatment Targets in Classic Myeloproliferative Neoplasms. Biol Blood Marrow Transplant 2009; 15:114-9. [DOI: 10.1016/j.bbmt.2008.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 2008; 13:215-37. [PMID: 19175693 PMCID: PMC3823350 DOI: 10.1111/j.1582-4934.2008.00559.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
White D, Saunders V, Grigg A, Arthur C, Filshie R, Leahy MF, Lynch K, To LB, Hughes T. Measurement of in vivo BCR-ABL kinase inhibition to monitor imatinib-induced target blockade and predict response in chronic myeloid leukemia. J Clin Oncol 2007; 25:4445-51. [PMID: 17906206 DOI: 10.1200/jco.2006.09.9499] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Intrinsic sensitivity to imatinib, based on measurement of inhibitory concentration 50% for imatinib, is variable in untreated patients with chronic myeloid leukemia (CML). This suggests that patient-tailored dosing may be more rational than a fixed dose for all. Dose optimization potentially could be based on accurate measurement of the level of BCR-ABL kinase inhibition achieved in vivo. PATIENTS AND METHODS In vivo kinase inhibition was measured by calculating the reduction in protein (p)--Crkl level in mononuclear blood cells taken from 49 CML patients at weekly intervals after imatinib therapy was commenced. RESULTS Greater than 50% inhibition (> 50% reduction in p-Crkl from baseline) was achieved by 21% of patients by days 7 to 14 (and maintained in all patients on days 21 to 28) and an additional 24% of patients achieved more than 50% inhibition by days 21 to 28. Thus, overall 45% of patients achieved more than 50% inhibition. All of these patients achieved major molecular responses by 24 months compared with 56% of the patients who failed to achieve 50% kinase inhibition (P < .001). Patients with less than 50% kinase inhibition were also more likely to have suboptimal responses. CONCLUSION In vivo BCR-ABL kinase inhibition can be assessed in the first month of imatinib therapy and may provide a valuable guide to optimization of dosage. The extent of BCR-ABL kinase inhibition is an excellent predictor of cytogenetic and molecular response. These observations suggest that dose adjustment based on in vivo measurements of drug-induced target inhibition could be applied in settings beyond imatinib and may be a more effective approach than using one dose for all patients in targeted anticancer therapy.
Collapse
Affiliation(s)
- Deborah White
- Division of Hematology, Institute of Medical and Veterinary Science, Adelaide, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In 1951, William Dameshek described the concept of 'myeloproliferative disorders (MPDs)' by grouping together chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and erythroleukemia; he reasoned that a self-perpetuating trilineage myeloproliferation underlined their pathogenesis. Pre-Dameshek luminaries who laid the foundation for this unifying concept include Bennett, Virchow, Heuck, Vaquez, Osler, Di Guglielmo and Epstein. In 1960, Nowell and Hungerford discovered the Philadelphia (Ph) chromosome in CML. In 1967, Fialkow and colleagues used X-linked polymorphisms to establish CML as a clonal stem cell disease. Also in 1967, the PV Study Group was summoned by Louis Wasserman to study the natural history of PV and conduct large-scale clinical trials. In 1972, Janet Rowley deciphered the Ph chromosome as a reciprocal translocation between chromosomes 9 and 22, thus paving the way for its subsequent characterization as an oncogenic BCR-ABL mutation. In 1996, Brian Druker discovered imatinib-a small molecule ABL inhibitor with exceptional therapeutic activity in CML. In 2005, a gain-of-function JAK2 mutation (JAK2V617F) was described in BCR-ABL-negative MPDs, raising the prospect of a CML-like treatment strategy in PV, ET and PMF. The current review considers these and other landmark events in the history of MPDs.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Abstract
Chronic myeloid leukaemia (CML) was the first neoplastic disease for which knowledge of the genotype led to a rationally designed therapy. As a result of its well known pathophysiology, straightforward diagnosis, well established prognostic factors, and treatment for the cause of disease, CML has been studied to an extent that far exceeds that expected from its frequency, and serves as a model disease for other cancers. Imatinib, an inhibitor of BCR-ABL tyrosine kinase, has revolutionised treatment of this disease, and is now recommended as standard treatment for chronic-phase CML. Interferon alfa is an acceptable alternative treatment in the early chronic phase for patients who do not tolerate imatinib. If imatinib treatment fails, allogeneic stem-cell transplantation, a dose increase of imatinib, or new drugs are recommended. Up to 87% of patients achieve complete cytogenetic remission, therefore we provide guidance for monitoring disease status. Many trials of new drugs and combination therapies that include imatinib are underway.
Collapse
Affiliation(s)
- Rüdiger Hehlmann
- III Medizinische Universitätsklinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
33
|
Patel H, Marley SB, Gordon MY. Detection in primary chronic myeloid leukaemia cells of p210BCR-ABL1 in complexes with adaptor proteins CBL, CRKL, and GRB2. Genes Chromosomes Cancer 2006; 45:1121-9. [PMID: 16955467 DOI: 10.1002/gcc.20377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic myeloid leukemia (CML) arises as a consequence of the expression of a chimeric fusion protein, p210BCR-ABL1, which is localized to the cytoplasm and has constitutive protein tyrosine kinase activity. Extensive publications report that p210BCR-ABL1 complexed with multiple cytoplasmic proteins can modulate several cell signaling pathways. However, while altered signaling states can be demonstrated in primary CML material, most of the reported analytical work on complexed proteins has been done in cell lines expressing p210BCR-ABL1. This has been necessary because primary hemopoietic cell lysates contain a degradative activity which rapidly and permanently destroys p210BCR-ABL1, precluding accurate p210BCR-ABL1 quantification by Western blotting or investigation of coimmunoprecipitating proteins in primary cells. This degradative activity has proven intractable to inhibition by conventional protease inhibitors. We show here that the degradative activity in primary cells is associated with cell lysosomes and is most likely to be an acid-dependent hydrolase. By lysing primary hemopoietic cells at high pH, we have demonstrated substantial inhibition of the p210BCR-ABL1-degradative activity and now report, to the best of our knowledge, the first published demonstration by coimmunoprecipitation of the association between p210BCR-ABL1 and cytoplasmic effector proteins in primary CML material.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Caspases/metabolism
- Cell Line, Tumor
- Chloroquine/pharmacology
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein/metabolism
- Humans
- Hydrogen-Ion Concentration
- Immunoprecipitation/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/metabolism
- Lysosomes/enzymology
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-cbl/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hetal Patel
- Department of Haematology, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
34
|
White DL, Saunders VA, Dang P, Engler J, Zannettino ACW, Cambareri AC, Quinn SR, Manley PW, Hughes TP. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006; 108:697-704. [PMID: 16597591 DOI: 10.1182/blood-2005-11-4687] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic sensitivity of newly diagnosed chronic myeloid leukemia (CML) patients to imatinib (IC50(imatinib)) correlates with molecular response. IC50(imatinib) is defined as the in vitro concentration of drug required to reduce phosphorylation of the adaptor protein Crkl by 50%. We now show that interpatient variability in IC50(imatinib) is mainly due to differences in the efficiency of imatinib intracellular uptake and retention (IUR). In 25 untreated CML patients, the IC50(imatinib) strongly correlated (R (2) = -0.484, P = .014 at 2 muM imatinib) with the IUR of [(14)C]imatinib. The addition of prazosin, a potent inhibitor of OCT-1 cellular transporter, reduced the IUR and eliminated interpatient variability. IC50 values for the more potent BCR-ABL inhibitor nilotinib (AMN107) did not correlate with IC50(imatinib) (R(2) =-0.0561, P > .05). There was also no correlation between IC50(nilotinib) and the IUR for [(14)C]nilotinib (R (2) = 0.457, P > .05). Prazosin had no effect on nilotinib IUR, suggesting that influx of nilotinib is not mediated by OCT-1. In conclusion, whereas OCT-1-mediated influx may be a key determinant of molecular response to imatinib, it is unlikely to impact on cellular uptake and patient response to nilotinib. Determining interpatient and interdrug differences in cellular uptake and retention could allow individual optimization of kinase inhibitor therapy.
Collapse
Affiliation(s)
- Deborah L White
- Division of Hematology, Institute of Medical and Veterinary Science (IMVS) & Hanson Institute, Adelaide, South Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB, Hughes T. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 2005; 106:2520-6. [PMID: 15956284 DOI: 10.1182/blood-2005-03-1103] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractMost patients with de novo chronic myeloid leukemia (CML) achieve good responses to imatinib, but the rate and degree of molecular response is variable. We assessed the inhibitory concentration 50% for imatinib (IC50imatinib) in 62 patients with de novo chronic-phase CML as a predictor of molecular response. IC50imatinib was determined in pretherapy blood samples by measuring the in vitro imatinib-induced reduction of the phosphorylated form of the adaptor protein Crkl (CT10 regulator of kinase like). There was marked variability between patients, with IC50imatinib ranging from 0.375 to 1.8 μM (median, 0.6 μM). Patients with low IC50imatinib (IC50 ≤ 0.6 μM; n = 36) had a 36% probability of achieving 2-log reduction in BCR-ABL (breakpoint cluster region-abelson) by 3 months compared with 8% in patients with high IC50imatinib (n = 26) (P = .01). The IC50imatinib was also predictive of molecular response at 12 months, with 47% of patients in the low IC50imatinib group achieving 3-log reduction and 23% in the high IC50imatinib group (P = .03). The predictive power of IC50imatinib was particularly strong in patients with low Sokal scores. These data provide strong evidence that intrinsic sensitivity to imatinib is variable in previously untreated patients with CML, and the actual level of BCR-ABL kinase inhibition achieved is critical to imatinib response. The IC50imatinib potentially provides a new prognostic indicator for molecular response in patients treated with imatinib. (Blood. 2005; 106:2520-2526)
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Benzamides
- Blotting, Western
- Cell Proliferation
- Chromosomes, Human, Pair 9/genetics
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Genes, abl
- Humans
- Imatinib Mesylate
- In Vitro Techniques
- Inhibitory Concentration 50
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Nuclear Proteins/metabolism
- Oncogene Proteins/chemistry
- Phosphorylation
- Piperazines/pharmacology
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Pyrimidines/pharmacology
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Deborah White
- Division of Haematology, Institute of Medical and Veterinary Science (IMVS) and Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
37
|
Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 2003; 17:1211-62. [PMID: 12835715 DOI: 10.1038/sj.leu.2402912] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chronological history of the important discoveries leading to our present understanding of the essential clinical, biological, biochemical, and molecular features of chronic myelogenous leukemia (CML) are first reviewed, focusing in particular on abnormalities that are responsible for the massive myeloid expansion. CML is an excellent target for the development of selective treatment because of its highly consistent genetic abnormality and qualitatively different fusion gene product, p210(bcr-abl). It is likely that the multiple signaling pathways dysregulated by p210(bcr-abl) are sufficient to explain all the initial manifestations of the chronic phase of the disease, although understanding of the circuitry is still very incomplete. Evidence is presented that the signaling pathways that are constitutively activated in CML stem cells and primitive progenitors cooperate with cytokines to increase the proportion of stem cells that are activated and thereby increase recruitment into the committed progenitor cell pool, and that this increased activation is probably the primary cause of the massive myeloid expansion in CML. The cooperative interactions between Bcr-Abl and cytokine-activated pathways interfere with the synergistic interactions between multiple cytokines that are normally required for the activation of stem cells, while at the same time causing numerous subtle biochemical and functional abnormalities in the later progenitors and precursor cells. The committed CML progenitors have discordant maturation and reduced proliferative capacity compared to normal committed progenitors, and like them, are destined to die after a limited number of divisions. Thus, the primary goal of any curative strategy must be to eliminate all Philadelphia positive (Ph+) primitive cells that are capable of symmetric division and thereby able to expand the Ph+ stem cell pool and recreate the disease. Several highly potent and moderately selective inhibitors of Bcr-Abl kinase have recently been discovered that are capable of killing the majority of actively proliferating early CML progenitors with minimal effects on normal progenitors. However, like their normal counterparts, most of the CML primitive stem cells are quiescent at any given time and are relatively invulnerable to the Bcr-Abl kinase inhibitors as well as other drugs. We propose that survival of dormant Ph+ stem cells may be the most important reason for the inability to cure the disease during initial treatment, while resistance to the inhibitors and other drugs becomes increasingly important later. An outline of a possible curative strategy is presented that attempts to take advantage of the subtle differences in the proliferative behavior of normal and Ph+ stem cells and the newly discovered selective inhibitors of Bcr-Abl. Leukemia (2003) 17, 1211-1262. doi:10.1038/sj.leu.2402912
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Signal Transduction
- Treatment Outcome
Collapse
Affiliation(s)
- B Clarkson
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Nora Heisterkamp
- Division of Hematology/Oncology, Ms#54, Section of Molecular Carcinogenesis, Childrens Hospital Los Angeles Research Institute, 4650 Sunset Boulevard, Los Angeles, California, CA 90027, USA.
| | | |
Collapse
|
39
|
Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene 2002; 21:8652-67. [PMID: 12476311 DOI: 10.1038/sj.onc.1206094] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Philadelphia chromosome (Ph), a minute chromosome that derives from the balanced translocation between chromosomes 9 and 22, was first described in 1960 and was for a long time the only genetic lesion consistently associated with human cancer. This chromosomal translocation results in the fusion between the 5' part of BCR gene, normally located on chromosome 22, and the 3' part of the ABL gene on chromosome 9 giving origin to a BCR/ABL fusion gene which is transcribed and then translated into a hybrid protein. Three main variants of the BCR/ABL gene have been described, that, depending on the length of the sequence of the BCR gene included, encode for the p190(BCR/ABL), P210(BCR/ABL), and P230(BCR/ABL) proteins. These three main variants are associated with distinct clinical types of human leukemias. Herein we review the data on the correlations between the type of BCR/ABL gene and the corresponding leukemic clinical features. Lastly, drawing on experimental data, we provide insight into the different transforming power of the three hybrid BCR/ABL proteins.
Collapse
Affiliation(s)
- Fabrizio Pane
- CEINGE Biotechnologie Avanzate, and Dipartimento di Biochimica e Biotecnologie Mediche, Facoltà di Medicina, Università di Napoli Federico II, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Bandyopadhyay R, McQuillan C, Page SL, Choo KH, Shaffer LG. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes. Chromosome Res 2001; 9:223-33. [PMID: 11330397 DOI: 10.1023/a:1016648404388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The centromeres and the short arms of the five pairs of acrocentric chromosomes in humans are composed of tandemly ordered repetitive DNA. Previous studies have suggested that the exchanges between acrocentric chromosomes have resulted in concerted evolution of different DNA sequences in their short arms. The acrocentric chromosomes are clinically relevant since they are involved in Robertsonian translocation formation and non-disjunction resulting in aneuploidy. Here we have identified seven new satellite III repetitive DNA subfamilies, determined their nucleotide sequences and established their chromosomal distributions on the short arms of the acrocentric chromosomes. Knowledge of these related sequences may help to elucidate the molecular basis of Robertsonian translocation formation.
Collapse
Affiliation(s)
- R Bandyopadhyay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Laurent E, Talpaz M, Wetzler M, Kurzrock R. Cytoplasmic and nuclear localization of the 130 and 160 kDa Bcr proteins. Leukemia 2000; 14:1892-7. [PMID: 11069024 DOI: 10.1038/sj.leu.2401923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formation of the Bcr-Abl chimeric protein is the molecular hallmark of Philadelphia-positive leukemia. Normal Bcr is a complex protein which has been found in the cytoplasm, has serine kinase activity, and has been implicated in cellular signal transduction. However, we have recently demonstrated that Bcr can also associate with condensed chromatin. Since two major Bcr proteins have been characterized (p160Bcr and p130Bcr), we sought to determine if different forms of Bcr localized to the nucleus vs the cytoplasm. Metabolic labeling and Western blotting experiments were performed using nuclear and cytoplasmic extracts of three human Philadelphia-negative leukemia/lymphoma cell lines (KG-1, HL-60, and Jurkat). Both methodologies showed that p160Bcr and p130Bcr localized to the cytoplasm, but the p130 form predominated in the nucleus. These results suggest that Bcr serves both nuclear and cytoplasmic functions, and that different forms of Bcr may be preferentially involved in these distinct activities.
Collapse
Affiliation(s)
- E Laurent
- Department of Bioimmunotherapy, University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- R Chopra
- Christie Hospital and Paterson Institute for Cancer Research, Manchester, UK
| | | | | |
Collapse
|
43
|
Wang SY, Cruts M, Del-Favero J, Zhang Y, Tissir F, Potier MC, Patterson D, Nizetic D, Bosch A, Chen H, Bennett L, Estivill X, Kessling A, Antonarakis SE, van Broeckhoven C. A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. Genome Res 1999; 9:1059-73. [PMID: 10568746 PMCID: PMC310823 DOI: 10.1101/gr.9.11.1059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The short arm of human chromosome 21 (21p) contains many different types of repetitive sequences and is highly homologous to the short arms of other acrocentric chromosomes. Owing to its repetitive nature and the lack of chromosome 21p-specific molecular markers, most physical maps of chromosome 21 exclude this region. We constructed a physical map of chromosome 21p using sequence tagged site (STS) content mapping of yeast artificial chromosomes (YACs). To this end, 39 STSs located on the short arm or near the centromere of chromosome 21 were constructed, including four polymorphic simple tandem repeats (STRs) and two expressed sequence tags (ESTs). Thirty YACs were selected from the St. Louis YAC library, the chromosome 21-enriched ICRF YAC library, and the CEPH YAC and megaYAC libraries. These were assembled in a YAC contig map ranging from the centromere to the rDNA gene cluster at 21p12. The total size of the region covered by YACs is estimated between 2.9 and 5 Mb. The integrity of the YAC contig was confirmed by restriction enzyme fingerprinting and fluorescence in situ hybridization (FISH). One gap with an estimated size of 400 kb remained near the telomeric end of the contig. This YAC contig map of the short arm of human chromosome 21 constitutes a basic framework for further structural and functional studies of chromosome 21p.
Collapse
Affiliation(s)
- S Y Wang
- Flanders Interuniversity Institute for Biotechnology (VIB), Born-Bunge Foundation (BBS), Department of Biochemistry, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Santamaría I, Velasco G, Pendás AM, Paz A, López-Otín C. Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. J Biol Chem 1999; 274:13800-9. [PMID: 10318784 DOI: 10.1074/jbc.274.20.13800] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding a new cysteine proteinase belonging to the papain family and called cathepsin F has been cloned from a human prostate cDNA library. This cDNA encodes a polypeptide of 484 amino acids, with the same domain organization as other cysteine proteinases, including a hydrophobic signal sequence, a prodomain, and a catalytic region. However, this propeptide domain is unusually long and distinguishes cathepsin F from other proteinases of the papain family. Cathepsin F also shows all structural motifs characteristic of these proteinases, including the essential cysteine residue of the active site. Consistent with these structural features, cathepsin F produced in Escherichia coli as a fusion protein with glutathione S-transferase degrades the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin, a substrate commonly used for functional characterization of cysteine proteinases. Furthermore, this proteolytic activity is blocked by trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane, an inhibitor of cysteine proteinases. The gene encoding cathepsin F maps to chromosome 11q13, close to that encoding cathepsin W. Cathepsin F is widely expressed in human tissues, suggesting a role in normal protein catabolism. Northern blot analysis also revealed a significant level of expression in some cancer cell lines opening the possibility that this enzyme could be involved in degradative processes occurring during tumor progression.
Collapse
Affiliation(s)
- I Santamaría
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | | | |
Collapse
|
45
|
Van Hul W, Wuyts W, Hendrickx J, Speleman F, Wauters J, De Boulle K, Van Roy N, Bossuyt P, Willems PJ. Identification of a third EXT-like gene (EXTL3) belonging to the EXT gene family. Genomics 1998; 47:230-7. [PMID: 9479495 DOI: 10.1006/geno.1997.5101] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two homologous genes, EXT1 and EXT2, responsible for the development of benign multiple cartilagenous bone tumors (exostoses) on the long bones, have been identified in the past 2 years. Several arguments have been provided to support the hypothesis that these genes have tumor suppressor activity and that loss of function of these genes may contribute to the development of bone tumors. The recent identification of two EXT-like genes, EXTL1 and EXTL2, homologous to the EXT genes and to each other, revealed the existence of a larger family of genes. We now report the identification of a homologous EST (EST01365), not derived from the known EXT and EXTL genes, indicating the existence of one additional member of this gene family. We characterized this third EXT-like gene, EXTL3, and compared it with the other four members of the EXT-EXTL family. In view of its putative tumor suppressor function, the EXTL3 gene can be considered a candidate gene for the breast cancer locus on chromosome 8p12-p22.
Collapse
Affiliation(s)
- W Van Hul
- Department of Medical Genetics, University of Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Elefanty AG, Robb L, Begley CG. Factors involved in leukaemogenesis and haemopoiesis. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:589-614. [PMID: 9421618 DOI: 10.1016/s0950-3536(97)80028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes the chromosomal abnormalities in T-cell acute lymphoblastic leukaemia (ALL) which result in the over-expression of the gene SCL, which encodes a helix-loop-helix transcription factor. Also described are how gene targeting studies have revealed a key role for SCL in normal haemopoiesis. Next, the BCR-ABL fusion protein, seen in chronic myeloid leukaemia (CML) and in some patients with ALL, is discussed. Finally, the involvement of members of the core-binding factor (CBF) gene family in leukaemogenesis are described. Members of this gene family are involved in the generation of fusion proteins as a result of t(8;21) and inv(16), the most common translocations associated with acute myeloid leukaemia (AML). They provide a useful model of the way in which aberrant transcriptional function, brought about through genetic alterations, can modify haemopoietic development.
Collapse
Affiliation(s)
- A G Elefanty
- Division of Cancer and Haematology, Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
47
|
Nesbit MA, Hodges MD, Campbell L, de Meulemeester TM, Alders M, Rodrigues NR, Talbot K, Theodosiou AM, Mannens MA, Nakamura Y, Little PF, Davies KE. Genomic organization and chromosomal localization of a member of the MAP kinase phosphatase gene family to human chromosome 11p15.5 and a pseudogene to 10q11.2. Genomics 1997; 42:284-94. [PMID: 9192849 DOI: 10.1006/geno.1997.4737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitogen-activated protein kinase phosphatases (MKPs) play a central role in a variety of signaling pathways. We recently described a novel murine MKP, M3/6, which is uniquely specific for c-Jun N-terminal kinase/stress-activated protein kinase and p38 kinase. Here we report the localization of the human orthologue of this gene, HB5, to within 150 kb of H19 on human chromosome 11p15.5. The gene consists of six exons. Two of the introns in HB5 are not found in other genes of this family, suggesting an evolutionary split between MKPs displaying specificity toward different MAP kinases. An intronless pseudogene is present on chromosome 10q11.2. Although 11p15.5 is an imprinted region, HB5 is almost entirely unmethylated on both alleles in lymphocytes. Chromosome 11p15 has been implicated in the development of a number of tumor types, including lung, a tissue known to express this gene. Loss of heterozygosity was found in one of eight informative lung tumors studied.
Collapse
Affiliation(s)
- M A Nesbit
- Genetics Laboratory, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brink AA, Oudejans JJ, Jiwa M, Walboomers JM, Meijer CJ, van den Brule AJ. Multiprimed cDNA synthesis followed by PCR is the most suitable method for Epstein-Barr virus transcript analysis in small lymphoma biopsies. Mol Cell Probes 1997; 11:39-47. [PMID: 9076713 DOI: 10.1006/mcpr.1996.0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the reverse transcriptase-polymerase chain reaction (RT-PCR) for the reliable detection of multiple Epstein-Barr virus (EBV) transcripts was optimized and subsequently evaluated on lymphoma specimens. Since often only small lymphoma biopsies are available for analysis of EBV transcripts, several RT-protocols to generate cDNA from multiple targets were applied. These were multi-primer, oligo-dT primed and random hexamer primed cDNA synthesis. Multi-primer cDNA synthesis appeared to be the most suitable method for subsequent PCR analysis of EBV targets; simultaneous priming with up to 10 specific antisense primers (for EBNA1 and 2, LMP1 and 2, BARF0, BHRF1, BZLF1, C promoter activity and the RNA control genes U1A and c-abl) followed by PCR showed no loss of sensitivity compared to single-specific antisense priming. Transcripts were specifically detected in up to one EBV-positive JY cell in a background of 50,000 EBV-negative BJAB cells, with the exception of BZLF1 and QK spliced EBNA1 transcripts which could only be detected in 1000 and 10,000 EBV-positive cells, respectively. The analytical sensitivities of all the primers used in PCR, including BZLF1 and QK EBNA1 primers, were 1-10 copies of cloned RT-PCR products. The multi-primed RT-PCR was evaluated on lymphomas (n = 13). In cases with proper RNA quality, EBV expression patterns found were identical to those found in previous studies using single-primed RT-PCR assays. In conclusion, this study shows that multi-primed RT-PCR analysis can be used efficiently for EBV transcript analysis in small lymphoma biopsies, thereby facilitating studies concerning the role of EBV in lymphomagenesis.
Collapse
Affiliation(s)
- A A Brink
- Department of Pathology, Vrije Universiteit Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Van den Enden A, Verschraegen-Spae MR, Van Roy N, Decaluwe W, De Praeter C, Speleman F. Mosaic tetrasomy 15q25-->qter in a newborn infant with multiple anomalies. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 63:482-5. [PMID: 8737657 DOI: 10.1002/(sici)1096-8628(19960614)63:3<482::aid-ajmg13>3.0.co;2-i] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe a premature boy with metopic craniosynostosis, facial anomalies, atrial-septal defect, hydronephrosis and flexion contractures of lower limbs, and mosaic tetrasomy 15q25-->qter. The extra chromosome material was present in the form of an acentric marker. A number of clinical manifestations observed in this child were also found in 3 previously reported patients who were trisomic for the same part of chromosome 15 and in 2 patients who were tetrasomic for a larger segment of 15q.
Collapse
Affiliation(s)
- A Van den Enden
- Department of Medical Genetics, University Hospital, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Moiseeva EP, Belkin AM, Spurr NK, Koteliansky VE, Critchley DR. A novel dystrophin/utrophin-associated protein is an enzymatically inactive member of the phosphoglucomutase superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:103-13. [PMID: 8631316 DOI: 10.1111/j.1432-1033.1996.00103.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A 60-kDa protein localised in adherens-type cellular junctions, and previously called aciculin, has been found to interact with the cytoskeletal proteins dystrophin and utrophin [Belkin, A. M. & Burridge, K. (1995) J. Biol. Chem. 270, 6328-6337]. In this study, we report the complete sequence of this protein, and show that it is a novel member of the phosphoglucomutase (PGM) family of proteins. The PGM-related protein (PGM-RP), which contains 506 amino acids (55.6 kDa), is smaller than PGM1 (566 amino acids, 61 kDa). The active site consensus sequences of prokaryotic and eukaryotic mutases are not conserved in PGM-RP, a finding consistent with the lack of enzymatic activity of PGM-RP in vitro, and the absence of a phosphorylated intermediate in vivo. The organisation of the PGM-RP gene is essentially identical to that of PGM1. We propose that the PGM-RP gene, which we have mapped to human chromosome 9qcen-q13, evolved from the PGM1 gene, and encodes a protein with a structural rather than an enzymatic role. PGM-RP is expressed predominantly in muscle with the highest levels in smooth muscle. The significance of the interaction between dystrophin/utrophin and an increasing number of cytoplasmic proteins including PGM-RP remains to be explored.
Collapse
Affiliation(s)
- E P Moiseeva
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | |
Collapse
|