1
|
Al Kadi M, Yamashita M, Shimojima M, Yoshikawa T, Ebihara H, Okuzaki D, Kurosu T. Cytokine storm and vascular leakage in severe dengue: insights from single-cell RNA profiling. Life Sci Alliance 2025; 8:e202403008. [PMID: 40127923 PMCID: PMC11933670 DOI: 10.26508/lsa.202403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Severe dengue is characterized by vascular leakage triggered by a hyperinflammatory response, though the underlying mechanisms remain unclear. Our previous mouse model study highlighted the importance of small intestine in severe disease and identified key cytokines (IL-17A, TNF-α, and IL-6) involved. Here, we used a Fixed RNA Profiling assay to characterize key cytokine- and effector-producing cells, along with their receptor expression. Type 3 innate lymphoid cells (ILC3), Th17 cells, and γδ T cells emerged as pathologically relevant IL-17A/F-producing cells. These cells expressed IL-1β and IL-23 receptors, underscoring the significance of these signaling pathways. IL-1β was produced by M2-like macrophages, dendritic cells, and neutrophils, whereas M1-like macrophages, which differentiated post-infection, produced IL-23, TNF-α, and IL-6, acting as initiators and amplifiers of the cytokine storm. Newly differentiated neutrophils produced IL-1β and effector molecule matrix metalloprotease-8, suggesting a dual role in exacerbating the cytokine storm and directly mediating vascular leakage. Identified macrophages and neutrophils exhibited atypical characteristics. These findings provide new pathological insights into severe dengue and broader mechanism underlying cytokine storm-related diseases.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Maika Yamashita
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Plug A, Barenbrug L, Moerings BG, de Jong EM, van der Molen RG. Understanding the role of immune-mediated inflammatory disease related cytokines interleukin 17 and 23 in pregnancy: A systematic review. J Transl Autoimmun 2025; 10:100279. [PMID: 40035074 PMCID: PMC11874717 DOI: 10.1016/j.jtauto.2025.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Background Pregnancy requires a careful immune balance between tolerance for the semi-allogenic fetus and protection against pathogens. Women with immune-mediated inflammatory diseases (IMIDs), where the interleukin (IL)-23/IL-17 axis plays an important role, often experience changes in disease severity during pregnancy. These changes and the association between disease flares and pregnancy complications, suggests a role for IL-17 and IL-23 in pregnancy. Methods We systemically searched PubMed, EMBASE, and Web of Science (March 2024), to assess the role of IL-17 and IL-23 in pregnancy-related in vitro assays, animal or human studies. Results Eighty articles (8 in vitro, 11 animal and 61 human studies) were included. Seventy-one studies reported on IL-17 and 16 studies on IL-23. In vitro trophoblast proliferation, migration and invasion was increased in the presence of IL-17, but impaired with IL-23. IL-17 levels were increased in animal models for pregnancy complications. In humans, IL-17 levels seemed to be increased in pregnant women versus non-pregnant women. Additionally, elevated IL-17 levels were associated with pregnancy complications. Although similar trends were found for IL-23, data were limited. Conclusions We identified a large, but heterogenic, body of evidence for a significant role of IL-17 in all stages of pregnancy: while an excessive increase seemed to be associated with complications. The limited number of studies prevents firm conclusions on the role of IL-23. Future research is needed to find biomarkers for patients with IMIDs to predict the effect of possible disease flares on pregnancy, and the effect of therapeutic inhibition of IL-17 or IL-23.
Collapse
Affiliation(s)
- Aniek Plug
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Liana Barenbrug
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Bart G.J. Moerings
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Elke M.G. de Jong
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| |
Collapse
|
3
|
Franzoni G, Signorelli F, Donniacuo A, Schiavo L, Napoletano M, De Matteis G, Grandoni F, Zinellu S, Bove V, Dei Giudici S, De Carlo E, Galiero G, Napolitano F, Martucciello A. Exploring potential cytokine profiles as diagnostic biomarkers for brucellosis in Mediterranean Buffaloes. Front Vet Sci 2025; 12:1583858. [PMID: 40406273 PMCID: PMC12097277 DOI: 10.3389/fvets.2025.1583858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Brucellosis is a zoonotic disease, with an important economic impact on the livestock industry and public health worldwide. Both Brucella abortus and Brucella melitensis can infect Mediterranean Buffalo (Bubalus bubalis), leading to infertility and abortion. In ruminants, the standard diagnostic approach involves two serological tests, the Rose Bengal Test and the Complement Fixation Test, applied in parallel, though their specificity requires improvement. Cytokines play a crucial role in coordinating immune responses through complex networks and can serve as biomarkers for various diseases. This study explored the potential use of cytokines as immunological biomarkers for Brucella infection in Mediterranean Buffalo. For this purpose, we included 18 healthy and 20 Brucella-infected buffaloes in our analysis. Heparinized blood samples were stimulated with the Brucella antigen, with PBS as nil control and PWM as lymphocyte viability control. After 16-24 h, plasma levels of IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-17, IL-36Ra, MIP-1α, MIP-1β, MCP-1, CXCL8, IP-10, IFN-γ, TNF, and VEGF-A were measured using multiplex ELISA. Our results showed that infected animals released significantly higher levels of IFN-γ, IP-10, MCP-1 in response to Brucella antigen compared to healthy controls. Conversely, healthy animals released instead higher levels of IL-1α, IL-1β, IL-6 and IL-10 following antigen stimulation compared to infected animals. Finally, sequential canonical discriminant analyses were performed to generate predictive cytokine profiles for each group. The findings indicated that a combination of five cytokines (IFN-γ, IP-10, IL-1α, IL-1β, IL-6) can effectively distinguished infected from healthy buffaloes. Overall, this study suggests that incorporating these key immune cytokines could improve the diagnostic accuracy of brucellosis in Mediterranean Buffalo.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Federica Signorelli
- Council for Agricultural Research and Economics (CREA)- Research Centre for Animal Production and Aquaculture, Monterotondo (RM), Italy
| | - Anna Donniacuo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Lorena Schiavo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Michele Napoletano
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics (CREA)- Research Centre for Animal Production and Aquaculture, Monterotondo (RM), Italy
| | - Francesco Grandoni
- Council for Agricultural Research and Economics (CREA)- Research Centre for Animal Production and Aquaculture, Monterotondo (RM), Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Vincenzo Bove
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Giorgio Galiero
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Francesco Napolitano
- Council for Agricultural Research and Economics (CREA)- Research Centre for Animal Production and Aquaculture, Monterotondo (RM), Italy
| | - Alessandra Martucciello
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
4
|
Du W, Siwan E, Twigg SM, Min D. Alterations in Immune Cell Profiles in the Liver in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2025; 26:4027. [PMID: 40362271 PMCID: PMC12071842 DOI: 10.3390/ijms26094027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The aim of this study was to systematically review literature on immune responses in liver tissue pathology in diabetes, focusing on immune cell populations and related cytokines. A systematic search of relevant English full-text articles up to June 2024 from online databases, covering animal and human studies, was conducted using the PRISMA workflow. Thirteen studies met criteria. Immune cells in the liver, including monocytes/macrophages, neutrophils, and iNKT and T cells, were implicated in liver inflammation and fibrosis in diabetes. Pro-inflammatory cytokines, including interferon-ɣ, tumor necrosis factor-α, interleukin (IL)-15, IL-18, and IL-1β were upregulated in the liver, potentially contributing to liver inflammation and fibrosis progression. In contrast, the anti-inflammatory cytokine IL-4 was downregulated, possibly attributing to chronic inflammation in diabetes. Pathological immune responses via the TLR4/MyD88/NF-κB pathway and the IL-17/IL-23 axis were also linked to liver fibrosis in diabetes. In conclusion, this review highlights the putative pivotal role of immune cells in diabetes-related liver fibrosis progression through their regulation of cytokines and signaling pathways. Further research on diabetes and dysmetabolic liver pathology is needed to clarify immune cell localization in the liver and their interactions with resident cells promoting fibrosis. Targeting immune mechanisms may provide therapeutic strategies for managing liver fibrosis in diabetes.
Collapse
Affiliation(s)
- Wanying Du
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (W.D.); (E.S.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
5
|
Sidharthan S, D G, Kheur S, Mohapatra S. Assessment of the role of Th17 cell and related biomarkers in periodontitis: A systematic review. Arch Oral Biol 2025; 175:106272. [PMID: 40359716 DOI: 10.1016/j.archoralbio.2025.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE This study aimed to investigate the evidence for presence of Th17 cells and their biomarkers, and to assess their impact on the immune-inflammatory response in periodontitis. MATERIALS AND METHODS An electronic search was performed in MEDLINE (PubMed), SCOPUS, EBSCOhost, and Google Scholar databases from their earliest records to April 2023. Additionally, the reference lists of included articles and grey literature were hand-searched. Study selection and quality assessment of the included articles was performed using the Newcastle-Ottawa scale. RESULTS This systematic review included case-control, cross-sectional, and cohort studies published in English, specifically those evaluating the presence and influence of Th17 or its related biomarkers in the progression of periodontal disease. Of the 26,797 articles screened, 47 studies met the eligibility criteria and were included. The studies varied in design, molecular methods, and sample types. CONCLUSION This systematic review confirms the presence of Th17 cells and related biomarkers in periodontal tissues, highlighting their role in the immune-inflammatory response and pathogenesis of periodontitis. The review underscores the need for more comprehensive research to overcome current limitations and effectively translate these findings into clinical practice.
Collapse
Affiliation(s)
- Sangamithra Sidharthan
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India.
| | - Gopalakrishnan D
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Subhashree Mohapatra
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| |
Collapse
|
6
|
Helmin-Basa A, Kubiszewska I, Trojanek JB, Wiese-Szadkowska M, Janowska M, Kułaga Z, Pawłowska J, Michałkiewicz J. Correlation of the Expression Profile of Peripheral Leukocyte and Liver Tissue Immune Markers With Serum Liver Injury Indices in Children With Biliary Atresia. Mediators Inflamm 2025; 2025:9889239. [PMID: 40270513 PMCID: PMC12017958 DOI: 10.1155/mi/9889239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
The aim of the study was to find associations between the levels of liver injury serum markers and the selected liver, peripheral leukocytes, and plasma immune characteristics in biliary atresia (BA) children. Twenty-five newly diagnosed BA children aged 4-30 weeks and 12 age-matched controls were included (for leukocytes characteristics) and 19 BA children and 11 controls (for liver studies). The frequencies of T helper 1 (Th1), Th2, Th17, Th17.1 cells as well as numbers of regulatory T (Treg), B cell subsets, and matrix metalloproteinase -2 and -9 (MMP-2 and MMP-9) expressing leukocytes in the whole blood were evaluated by flow cytometry. Plasma concentrations of tissue inhibitors of metalloproteinase (TIMP)-1, -2, MMP-9, interleukin-17A (IL-17A) and IL-6 were assessed by enzyme-linked immunosorbent assay (ELISA). The leukocyte and liver expression of the retinoic acid receptor-related orphan nuclear receptor gamma (RORγT), fork-head winged helix transcription factor P3 (FoxP3), transforming growth factor beta (TGF-β), interleukin-17A (IL-17A), IL-6, IL-1β, IL-21, interleukin 1 receptor antagonist (IL-1Ra), MMP-2, MMP-9, MMP-12 (liver only), TIMP-1, TIMP-2, T-box transcription factor expressed in T cells, also called TBX21 (T-bet), GATA-binding protein 3 (GATA3), and C-type lectin (CD161) mRNA were determined by real time RT-PCR (reverse-transcription polymerase chain reaction). The BA patients were characterized by increased frequencies of peripheral "suppressor" glycoprotein-A repetitions predominant protein (GARP)+latency-associated peptide (LAP)+Treg and activated Treg cells as well as MMP-2 and MMP-9 bearing lymphocytes, elevated plasma TIMP-1 levels, increased leukocyte expression of MMP-9, TIMP-1, TIMP-2, IL-6, and TGF-β, and decreased leukocyte expression of IL-21 and T-bet, increased liver expression of FoxP3, TIMP-1, and decreased liver expression of IL-1β and MMP-2. The following correlations were found between serum markers of liver injury and leukocyte and liver immune characteristics: (a) hemoglobin (Hb) levels correlated negatively with frequency of peripheral "suppressor" GARP+LAP+ Tregs; (b) aspartate aminotransferase (AST) levels correlated positively with frequency of the peripheral Th17.1 subset and expression of leukocyte FoxP3, (c) gamma glutamyltransferase (GGT) levels correlated positively with the peripheral memory B cells frequencies, the leukocyte IL-6 and TIMP-1 gene expression, (d) alanine aminotransferase (ALT) serum levels correlated positively with the naïve B cell frequency and liver TIMP-2 expression, (e) total bilirubin (Bil) levels correlated positively with the leukocyte MMP-9, the plasma IL-6 levels, and the liver TIMP-2 gene expression, (f) direct Bil levels positively correlated with the liver IL-6 and TIMP-2 expression, (g) international normalized ratio of prothrombin time (PT/INR) concentrations correlated positively with the peripheral Th17.1 subset frequency and the leukocyte MMP-9 but negatively with the liver FoxP3 expression. There were numerous strong positive correlations between the BA liver genes known to be involved in upregulation of IL-17 axis and MMPs/TIMPs expression. No prevailing leukocyte or liver single markers were uniquely associated with serum liver injury indices. BA immune profile is very complex with no single characteristics that would distinguish it from other liver inflammatory diseases.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Izabela Kubiszewska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Joanna B. Trojanek
- Department of Microbiology and Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Maria Janowska
- Department of Pediatric Surgery and Organ Transplantation, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zbigniew Kułaga
- Department of Public Health, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Jacek Michałkiewicz
- Department of Microbiology and Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
7
|
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025; 13:870. [PMID: 40284705 PMCID: PMC12029620 DOI: 10.3390/microorganisms13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Numerous innate immune mechanisms have been shown to be activated during viral infections, including pattern recognition receptors (PRRs) functioning outside and inside the cell along with other sensors promoting the production of interferon and other cytokines. Innate cells, including NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, and even neutrophils, have been shown to respond to viral infections. Several innate humoral responses to viral infections have also been identified. Adaptive immunity includes common cell-mediated immunity (CMI) and humoral responses. Th1, Th2, and Tfh CD4+ T cell responses have been shown to help activate cytotoxic T lymphocytes (CTLs) and to help promote the class switching of antiviral antibodies. Enteroviruses were shown to induce innate immune responses and the tropism of the virus that was mediated through viral attachment proteins (VAPs) and cellular receptors was directly related to the risk of severe disease in a primary infection. Adaptive immune responses include cellular and humoral immunity, and its delay in primary infections underscores the importance of vaccination in ameliorating or preventing severe viral pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Coffman
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| |
Collapse
|
8
|
Zadeh FJ, Fateh A, Saffari H, Khodadadi M, Eslami Samarin M, Nikoubakht N, Dadgar F, Goodarzi V. The vaso-occlusive pain crisis in sickle cell patients: A focus on pathogenesis. Curr Res Transl Med 2025; 73:103512. [PMID: 40220659 DOI: 10.1016/j.retram.2025.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Vaso-occlusive pain crisis (VOC) is recognized as a prominent complication of sickle cell disease, accompanied by debilitating pain and serious consequences for patients, making it the primary cause of visits to hospital emergency departments. In the etiology of VOC, the intricate interaction of endothelial cells, hypoxia, inflammation, and the coagulation system is pivotal. Hemoglobin S polymerization under hypoxic conditions leads to the formation of rigid and adhesive red blood cells that interact with vascular endothelial cells and other blood cells, causing occlusion and subsequent inflammation. Hemolysis of red blood cells results in anemia and heightened inflammation, whereas oxidative stress and involvement of the coagulation system further complicate matters. In this review, we strive to examine the pathophysiology of VOC from these mentioned aspects by consolidating findings from various studies, as a comprehensive understanding of the causes of VOC is essential for the development of targeted therapeutic interventions and the prevention and management of pain, ultimately improving the quality of life for patients.
Collapse
Affiliation(s)
| | - Azadeh Fateh
- Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Saffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadamin Eslami Samarin
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Universal Scientific Education and Research Network(USERN),Tehran,Iran
| | - Nasim Nikoubakht
- Department of Anesthesiology, Hazrat-e Rasool General Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dadgar
- Department of Internal Medicine, Lorestan University of Medical Science, Khorramabad, Iran; Student Research Committe, Lorestan University of Medical Science, Khorramabad, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
9
|
Yuan VG, Xia A, Santa Maria PL. Chronic suppurative otitis media: disrupted host-microbial interactions and immune dysregulation. Front Immunol 2025; 16:1547206. [PMID: 40114926 PMCID: PMC11923626 DOI: 10.3389/fimmu.2025.1547206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Recent research has uncovered new mechanisms that disrupt the balance between the host and microbes in the middle ear, potentially leading to dysbiosis and chronic suppurative otitis media (CSOM). Dysbiotic microbial communities, including core pathogens such as persister cells, are recognized for displaying cooperative virulence. These microbial communities not only evade the host's immune defenses but also promote inflammation that leads to tissue damage. This leads to uncontrolled disorder and pathogen proliferation, potentially causing hearing loss and systemic complications. In this discussion, we examine emerging paradigms in the study of CSOM that could provide insights into other polymicrobial inflammatory diseases. Additionally, we underscore critical knowledge gaps essential for developing a comprehensive understanding of how microbes interact with both the innate and adaptive immune systems to trigger and maintain CSOM.
Collapse
Affiliation(s)
- Vincent G. Yuan
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Peter L. Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| |
Collapse
|
10
|
Baker ZR, Zhang Y, Zhang H, Franklin HC, Serpa PBS, Southard T, Li L, Hsu BB. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol 2025:10.1038/s41587-025-02570-7. [PMID: 39966654 DOI: 10.1038/s41587-025-02570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Collapse
Affiliation(s)
- Zachary R Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Haiyan Zhang
- Metabolism Core, Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Hollyn C Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Priscila B S Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Bryan B Hsu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Ramirez GA, Cardamone C, Lettieri S, Fredi M, Mormile I. Clinical and Pathophysiological Tangles Between Allergy and Autoimmunity: Deconstructing an Old Dichotomic Paradigm. Clin Rev Allergy Immunol 2025; 68:13. [PMID: 39932658 PMCID: PMC11814061 DOI: 10.1007/s12016-024-09020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 02/14/2025]
Abstract
Allergic and autoimmune disorders are characterised by dysregulation of the immune responses to otherwise inert environmental substances and autoantigens, leading to inflammation and tissue damage. Their incidence has constantly increased in the last decades, and their co-occurrence defies current standards in patient care. For years, allergy and autoimmunity have been considered opposite conditions, with IgE and Th2 lymphocytes cascade driving canonical allergic manifestations and Th1/Th17-related pathways accounting for autoimmunity. Conversely, growing evidence suggests that these conditions not only share some common inciting triggers but also are subtended by overlapping pathogenic pathways. Permissive genetic backgrounds, along with epithelial barrier damage and changes in the microbiome, are now appreciated as common risk factors for both allergy and autoimmunity. Eosinophils and mast cells, along with autoreactive IgE, are emerging players in triggering and sustaining autoimmunity, while pharmacological modulation of B cells and Th17 responses has provided novel clues to the pathophysiology of allergy. By combining clinical and therapeutic evidence with data from mechanistic studies, this review provides a state-of-the-art update on the complex interplay between allergy and autoimmunity, deconstructing old dichotomic paradigms and offering potential clues for future research.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Cardamone
- Immunorheumatology Unit, University Hospital "San Giovanni Di Dio E Ruggi d'Aragona", Largo Città d'Ippocrate, Via San Leonardo 1, 84131, Salerno, Italy.
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Sara Lettieri
- Pulmonology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Mormile
- Division of Internal Medicine and Clinical Immunology, Department of Internal Medicine and Clinical Complexity, AOU Federico II, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
12
|
El-Sheshtawy AM, Werida RH, Bahgat MH, El-Etreby S, El-Bassiouny NA. Pharmacogenomic insights: IL-23R and ATG-10 polymorphisms in Sorafenib response for hepatocellular carcinoma. Clin Exp Med 2025; 25:51. [PMID: 39921803 PMCID: PMC11807022 DOI: 10.1007/s10238-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Sorafenib is the first FDA-approved systemic therapy for advanced HCC. This study investigates the influence of IL-23R (rs7517847) and ATG-10 (rs10514231) genetic polymorphisms on Sorafenib response, survival outcomes, average tolerable dose, and adverse events. This prospective open-label cohort study included 100 HCC patients, assessing IL-23R and ATG-10 genotypes via real-time polymerase chain reaction (RT-PCR). Patient's responses were evaluated using modified RECIST criteria. Statistical analyses evaluated the association of genetic variants with response, progression-free survival (PFS), overall survival (OS), average tolerable Sorafenib dose, and adverse events. IL-23R TT carriers had the highest Sorafenib response rate (80%) compared to GT (13.3%) and GG (6.7%) (P = 0.021), while ATG-10 TT carriers had a 13.9-fold increased response likelihood (P = 0.001). The T allele in ATG-10 significantly predicted longer PFS (P = 0.025) and OS (P = 0.011), suggesting a potential prognostic role. IL-23R GG carriers received significantly higher Sorafenib doses than TT (P = 0.0174) and GT (P = 0.0227), whereas ATG-10 had no effect on dosage. However, its CT genotype was significantly associated with a higher risk of Hand-Foot Syndrome (P = 0.012), and independent of dose (P = 0.0018). IL-23R and ATG-10 polymorphisms influence Sorafenib response, survival, and tolerability in HCC patients. Genetic screening may improve personalized treatment strategies by optimizing Sorafenib efficacy and minimizing toxicity.This trial was registered on clinicaltrials.gov with registration number NCT06030895, registered on "September 11th, 2023," retrospectively.
Collapse
Affiliation(s)
- Asmaa M El-Sheshtawy
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Rehab H Werida
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Monir Hussein Bahgat
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Shahira El-Etreby
- Department of Hepatology and Gastroenterology, Mansoura Specialized Medical Hospital, Mansoura, Egypt
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
13
|
Faraji F, Ramirez SI, Clubb LM, Sato K, Burghi V, Hoang TS, Officer A, Anguiano Quiroz PY, Galloway WMG, Mikulski Z, Medetgul-Ernar K, Marangoni P, Jones KB, Cao Y, Molinolo AA, Kim K, Sakaguchi K, Califano JA, Smith Q, Goren A, Klein OD, Tamayo P, Gutkind JS. YAP-driven malignant reprogramming of oral epithelial stem cells at single cell resolution. Nat Commun 2025; 16:498. [PMID: 39779672 PMCID: PMC11711616 DOI: 10.1038/s41467-024-55660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution. Tumor initiating cells displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal invasive gene programs. YAP-mediated tumor initiating cell programs included activation of oncogenic transcriptional networks and mTOR signaling, and recruitment of myeloid cells to the invasive front contributing to tumor infiltration. Tumor initiating cell transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, 92037, USA.
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
| | - Sydney I Ramirez
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego Health, La Jolla, CA, 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Lauren M Clubb
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Kuniaki Sato
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Valeria Burghi
- Department of Pharmacology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas S Hoang
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Adam Officer
- University of California San Diego, Bioinformatics and Systems Biology Graduate Program, La Jolla, CA, 92093, USA
| | - Paola Y Anguiano Quiroz
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - William M G Galloway
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Kate Medetgul-Ernar
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Pauline Marangoni
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyle B Jones
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yuwei Cao
- University of California San Diego, Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | - Alfredo A Molinolo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, 92037, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Alon Goren
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, 90048, USA
| | - Pablo Tamayo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, 92037, USA
| | - J Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
- Department of Pharmacology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Tashiro H, Kuwahara Y, Kurihara Y, Takahashi K. Molecular mechanisms and clinical impact of biologic therapies in severe asthma. Respir Investig 2025; 63:50-60. [PMID: 39642687 DOI: 10.1016/j.resinv.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe asthma is a critical condition for patients with asthma, characterized by frequent exacerbations, decreased pulmonary function, and unstable symptoms related to asthma. Consequently, the administration of systemic corticosteroids, which cause secondary damage because of their adverse effects, is considered. Recently, several types of molecular-targeted biological therapies have become available for patients with severe asthma, and they have a capacity to improve the pathophysiology of severe asthma. However, several clinical reports indicate that the effects differ depending on the biological targets of asthma in individual patients. In this review, the molecular mechanisms and clinical impact of biologic therapies in severe asthma are described. In addition, molecules targeted by possible future biologics are also addressed. Better understanding of the mechanistic basis for the role of biologics in severe asthma could lead to new therapeutic options for these patients.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Saga Prefecture, 849-8501, Japan.
| |
Collapse
|
15
|
Ghoflchi S, Mansoori A, Islampanah M, Yousefabadi SA, Poudineh M, Derakhshan-Nezhad E, Zardast A, Azmon M, Rezae FA, Ferns G, Esmaily H, Ghayour-Mobarhan M. Blood indices of inflammation and their association with hypertension in smokers: analysis using data mining approaches. J Hum Hypertens 2025; 39:29-37. [PMID: 39472721 DOI: 10.1038/s41371-024-00975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Although there have been reports on the association between smoking and increased level of inflammatory markers in hypertensive this has not been assessed prospectively in a large, modern cohort using data mining approaches. We conducted a cross-sectional analysis of the Mashad trial which was a prospective. 2085 smokers aged 35 to 65 years was studied. Inflammatory indices measured included: Hemoglobin-Platelet Ratio (HPR), Uric acid-high Density Lipoprotein (HDL) Ratio (UHR), Neutrophil-Lymphocyte Ratio (NLR), Systemic Immune Inflammation (SII) index, WBC, Platelet-Lymphocyte Ratio (PLR), and RBC Distribution Width (RDW). The association between these parameters and smoking in hypertensive individuals was examined. Over the course of the 6-year monitoring period, 585 peoples had HTN of whom the majority was female (59%). As per the LR analysis, there was a significant association between hypertension and age, WBC, SII, PLR in female smokers, as well as age and PLR in male smokers. (p-value < 0.05). PLR (OR = 0.993, CI 95% (0.987, 0.999)) and age (1.080 (1.058, 1.102)) for male and WBC (1.340 (1.139, 1.577)) and age (1.091 (1.070, 1.113)) for female exhibits the most appropriate estimate. Using the DT model for male individuals, those with, age ≥ 64 years, and SII < 336 had the correlated with hypertension prevalence (76%). For females, those with age ≥ 62 years, WBC ≥ 6.1, and SII < 445.634 had the highest risk of HTN. Age and SII for smoker males and age and WBC for smoker females showed the strongest correlation with hypertension. Age and WBC were the most significant indicators for predicting HTN.
Collapse
Affiliation(s)
- Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Arab Yousefabadi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student of Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elahe Derakhshan-Nezhad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Zardast
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Asgharian Rezae
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Habibollah Esmaily
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Lizana-Vasquez GD, Ramasubramanian S, Davarzani A, Cappabianca D, Saha K, Karumbaiah L, Torres-Lugo M. In Vitro Assessment of Thermo-Responsive Scaffold as a 3D Synthetic Matrix for CAR-T Potency Testing Against Glioblastoma Spheroids. J Biomed Mater Res A 2025; 113:e37823. [PMID: 39460647 DOI: 10.1002/jbm.a.37823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated exceptional efficacy against hematological malignancies, but notably less against solid tumors. To overcome this limitation, it is critical to investigate antitumor CAR-T cell potency in synthetic 3D microenvironments that can simulate the physical barriers presented by solid tumors. The overall goal of this study was the preliminary assessment of a synthetic thermo-responsive material as a substrate for in vitro co-cultures of anti-disialoganglioside (GD2) CAR-T cells and patient-derived glioblastoma (GBM) spheroids. Independent co-culture experiments demonstrated that the encapsulation process did not adversely affect the cell cycle progression of glioma stem cells (GSCs) or CAR-T cells. GSC spheroids grew over time within the terpolymer scaffold, when seeded in the same ratio as the suspension control. Co-cultures of CAR-T cells in suspension with hydrogel-encapsulated GSC spheroids demonstrated that CAR-T cells could migrate through the hydrogel and target the encapsulated GSC spheroids. CAR-T cells killed approximately 80% of encapsulated GSCs, while maintaining effective CD4:CD8 T cell ratios and secreting inflammatory cytokines after interacting with GD2-expressing GSCs. Importantly, the scaffolds also facilitated cell harvesting for downstream cellular analysis. This study demonstrated that a synthetic 3D terpolymer hydrogel can serve as an artificial scaffold to investigate cellular immunotherapeutic potency against solid tumors.
Collapse
Affiliation(s)
- Gaby D Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico, USA
| | - Shanmathi Ramasubramanian
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
| | - Amin Davarzani
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
- Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Science, University of Georgia, Athens, Georgia, USA
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico, USA
| |
Collapse
|
17
|
Franzoni G, Signorelli F, Mazzone P, Donniacuo A, De Matteis G, Grandoni F, Schiavo L, Zinellu S, Dei Giudici S, Bezos J, De Carlo E, Galiero G, Napolitano F, Martucciello A. Cytokines as potential biomarkers for the diagnosis of Mycobacterium bovis infection in Mediterranean buffaloes ( Bubalus bubalis). Front Vet Sci 2024; 11:1512571. [PMID: 39776597 PMCID: PMC11703857 DOI: 10.3389/fvets.2024.1512571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Mycobacterium bovis (M. bovis) is the primary agent of bovine tuberculosis (TB) in Mediterranean buffalo, which has a negative economic impact on buffalo herds. Improving TB diagnostic performance in this species represents a key step to eradicate efficiently this disease. We have recently shown the utility of the IFN-γ assay in the diagnosis of M. bovis infection in Mediterranean buffaloes (Bubalus bubalis), but other cytokines might be useful immunological biomarkers of this infection. We therefore investigated the utility of key immune cytokines as diagnostic biomarkers of M. bovis infection in this species. Thirty-six Italian Mediterranean buffaloes were used in this study: healthy animals (N = 11), infected (IFN-γ test positive, no post-mortem lesions, no M. bovis detection; N = 14), and affected (IFN-γ test positive, visible post-mortem lesions; N = 11). Heparin blood samples were stimulated with bovine purified protein derivative (PPD-B), alongside controls, and 18-24 h later plasma were collected. Levels of 14 key cytokines were measured: IFN-γ, IL-17, IL-4, IL-10, TNF, IL-1α, IL-1β, IL-6, IP-10, MIP-1α, MIP-1β, MCP-1, IL-36Ra, and VEGF-A. We observed that both infected and affected animals released higher levels of IFN-γ, IL-17, IL-10, TNF, IL-1α, IL-6, MIP-1β, in response to PPD-B compared to healthy subjects. Mycobacterium bovis infected animals released also higher levels of IL-1β and IP-10 in response to PPD-B compared to healthy subjects, whereas only tendencies were detected in affected animals. Affected animals only released MIP-1α in response to PPD-B compared to healthy subjects and in this group higher values of PPD-B specific TNF was also observed. Finally, canonical discriminant analysis (CDA) was used to generate predictive cytokine profiles by groups. Our data suggest that IL-10, TNF, IL-1α, IL-6, MIP-1β could be useful biomarkers of TB in Mediterranean Buffalo and can improve the TB diagnostic performance in this specie.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Federica Signorelli
- CREA-Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), Monterotondo (RM), Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Anna Donniacuo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Giovanna De Matteis
- CREA-Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), Monterotondo (RM), Italy
| | - Francesco Grandoni
- CREA-Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), Monterotondo (RM), Italy
| | - Lorena Schiavo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Giorgio Galiero
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Francesco Napolitano
- CREA-Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Zootecnia e Acquacoltura (Research Centre for Animal Production and Aquaculture), Monterotondo (RM), Italy
| | - Alessandra Martucciello
- National Reference Centre for Hygiene and Technologies of Mediterranean Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
18
|
Lima JDS, Leite VC, Silva J, Ferrarez MA, Bahia GD, Rezende LVN, Guedes MCM, Macedo GC, Silva ND, Tavares GD, Reis ACC, Follis GO, Lempk VV, Fernandes MF, Scio E, Pinto NDCC. Stachys byzantina K. Koch in the Treatment of Skin Inflammation: A Comprehensive Evaluation of Its Therapeutic Properties. ACS OMEGA 2024; 9:49899-49912. [PMID: 39713701 PMCID: PMC11656372 DOI: 10.1021/acsomega.4c08830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Stachys byzantina is a plant widely cultivated for food and medicinal purposes. Stachys species have been reported as anti-inflammatory, antibacterial, anxiolytic, and antinephritic agents. This study aimed to evaluate the anti-inflammatory potential of the ethanolic extract (EE) from the aerial parts of S. byzantina and its most promising fraction in models of acute and chronic inflammation, including a psoriasis-like mouse model. The EE was fractionated into hexane (HF), dichloromethane (DF), ethyl acetate (AF), and hydroalcoholic (HD) fractions. Screening for anti-inflammatory activity based on nitric oxide inhibition (IC50 μg/mL: HF 24.29 ± 5.87, EE 176.45 ± 18.65), hydroxyl radical scavenging (HF 3.89 ± 0.61, EE 6.38 ± 2.25), β-carotene/linoleic acid assay (HF 10.13 ± 3.81, EE 25.64 ± 2.12), and ORAC identified HF as the most active fraction. Topical application of HF effectively reduced croton oil- and phenol-induced ear edema in mice, with no statistical difference to the reference drugs. A formulation containing HF showed significant activity in the imiquimod-induced psoriasis model, reducing pro-inflammatory cytokines and nitric oxide production in macrophages, with no cytotoxicity to skin cells. Phytochemical analysis of HF revealed the presence of terpenes, steroids (491.68 ± 4.75 mg/g), phenols (34.30 ± 4.96 mg/g), flavonoids (151.77 ± 6.66 mg/g), and α-tocopherol, which was identified and quantified by HPLC-UV analysis (10.56 ± 0.97 mg/g of HF). These findings highlight the therapeutic potential of S. byzantina for skin inflammation, particularly contact dermatitis and psoriasis, encouraging further studies, including in human volunteers.
Collapse
Affiliation(s)
- José
Alisson da Silva Lima
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Victor Campana Leite
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Jéssica
Pereira Silva
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Marcelle Andrade Ferrarez
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Guilherme Dessupoio Bahia
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Luan Vianelo Netto Rezende
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Maria Clara Machado
Resende Guedes
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Gilson Costa Macedo
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Natália
Prado da Silva
- Laboratory
of Nanostructured Systems Development, Department of Pharmaceutical
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Guilherme Diniz Tavares
- Laboratory
of Nanostructured Systems Development, Department of Pharmaceutical
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Ana Carolina Cruz Reis
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Giovanna Oliveira Follis
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Vanessa Viana Lempk
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Maria Fernanda Fernandes
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Elita Scio
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Nícolas de Castro Campos Pinto
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| |
Collapse
|
19
|
Mohammadi I, Adibparsa M, Yashooa RK, Sehat MS, Sadeghi M. Effect of continuous positive airway pressure therapy on blood levels of IL-6, IL-10, IL-18, IL-1β, IL-4, and IL-17 in obstructive sleep apnoea adults: A systematic review, meta-analysis and trial sequential analysis. Int Orthod 2024; 22:100917. [PMID: 39213713 DOI: 10.1016/j.ortho.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Obstructive sleep apnoea (OSA) is a long-term disorder characterized by frequent blockages in the upper respiratory tract during sleep, often leading to abrupt awakenings, with or without a decrease in oxygen levels. The systematic review and meta-analysis aimed to assess the effect of continuous positive airway pressure therapy (CPAP) on blood interleukin (IL) levels of IL-6, IL-10, IL-18, IL-1β, IL-4, and IL-17 in OSA adults. MATERIALS AND METHODS The published databases from PubMed, Scopus, Web of Science, and Cochrane Library were searched from 2003 to 2024, without any restrictions. The Review Manager software 5.3 was employed to compute effect sizes, which were presented as the standardized mean difference (SMD) along with a 95% confidence interval (CI). RESULTS In total, 320 records were identified through database searching; ultimately, 42 articles were included in the qualitative synthesis and then the meta-analysis. The CPAP therapy significantly reduces IL-6 levels, as indicated SMD=0.64 [95% CI: 0.35, 0.93] and P<0.0001. CPAP therapy significantly reduced IL-18 and IL-1β levels in adults with OSA, but there is no significant difference in IL-10, IL-4, or IL-17 levels. Age, blood sample, body mass index, ethnicity, and treatment duration for IL-6 and apnoea-hypopnea index with IL-10 levels were effective factors in the pooled results. Experimentally, there was an interaction between IL-18 and IL-1β. CONCLUSIONS CPAP therapy has a positive impact on inflammatory markers in OSA adults; remarkably, it reduces IL-6 and IL-1β levels. Nevertheless, more evidence (such as the role of ethnicity) and understanding of interactions are needed.
Collapse
Affiliation(s)
- Iman Mohammadi
- Oral and Maxillofacial Surgery Department, School of Dentistry, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Mehrdad Adibparsa
- Department of Plastic Surgery, School of Medicine, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Raya Kh Yashooa
- Department of Medical Microbiology, College of Science, Knowledge University, Kirkuk Road, 44001 Erbil, Kurdistan Region, Iraq
| | - Mohammad Soroush Sehat
- Oral and Maxillofacial Surgery Department, School of Dentistry, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, 67144-15185 Kermanshah, Iran.
| |
Collapse
|
20
|
Biagioli M, Di Giorgio C, Massa C, Marchianò S, Bellini R, Bordoni M, Urbani G, Roselli R, Lachi G, Morretta E, Piaz FD, Charlier B, Fiorillo B, Catalanotti B, Cari L, Nocentini G, Ricci P, Distrutti E, Festa C, Sepe V, Zampella A, Monti MC, Fiorucci S. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORγt inverse agonism. Biomed Pharmacother 2024; 181:117731. [PMID: 39657506 DOI: 10.1016/j.biopha.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
The interplay between the dysbiotic microbiota and bile acids is a critical determinant for development of a dysregulated immune system in inflammatory bowel disease (IBD). Here we have investigated the fecal bile acid metabolome, gut microbiota composition, and immune responses in IBD patients and murine models of colitis and found that IBD associates with an elevated excretion of primary bile acids while secondary, allo- and oxo- bile acids were reduced. These changes correlated with the disease severity, mucosal expression of pro-inflammatory cytokines and chemokines, and reduced inflow of anti-inflammatory macrophages and Treg in the gut. Analysis of bile acids metabolome in the feces allowed the identification of five bile acids: 3-oxo-DCA, 3-oxo-LCA, allo-LCA, iso-allo-LCA and 3-oxo-UDCA, whose excretion was selectively decreased in IBD patients and diseased mice. By transactivation assay and docking calculations all five bile acids were shown to act as GPBAR1 agonists and RORγt inverse agonists, skewing Th17/Treg ratio and macrophage polarization toward an M2 phenotype. In a murine model of colitis, administration of 3-oxo-DCA suffices to reverse colitis development and intestinal dysbiosis in a GPBAR1-dependent manner. In vivo administration of 3-oxo-DCA to colitic mice also reverses disease severity and RORγt activation induced by a RORγt agonist and IL-23, a Th17 inducing cytokine. These results demonstrated that intestinal excretion of 3-oxoDCA, a dual GPBAR1 agonist and RORγt inverse agonist, is reduced in IBD and in models of colitis and its restitution protects against colitis development, highlighting a potential role for this agent in IBD management.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Bar Pharmaceuticals s.r.l., Via Gramsci 88/A, Reggio Emilia 42124, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ginevra Lachi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Bruno Charlier
- University hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
21
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
22
|
Carcopino C, Erdogan E, Henrich M, Kobold S. Armoring chimeric antigen receptor (CAR) T cells as micropharmacies for cancer therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100739. [PMID: 39711794 PMCID: PMC11659983 DOI: 10.1016/j.iotech.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has emerged as a powerful weapon in the fight against cancer. However, its efficacy is often hindered by challenges such as limited tumor penetration, antigen escape, and immune suppression within the tumor microenvironment. This review explores the potential of armored CAR-T cells, or 'micropharmacies', in overcoming these obstacles and enhancing the therapeutic outcomes of adoptive T-cell (ATC) therapy. We delve into the engineering strategies behind these advanced therapies and the mechanisms through which they improve CAR-T-cell efficacy. Additionally, we discuss the latest advancements and research findings in the field, providing a comprehensive understanding of the role of armored CAR-T cells in cancer treatment. Ultimately, this review highlights the promising future of integrating micropharmacies into ATC therapy, paving the way for more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- C. Carcopino
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
| | - E. Erdogan
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
| | - M. Henrich
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
| | - S. Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Heidelberg, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
23
|
Kennedy KV, Costello A, Lerman MA, Burnham JM, Corcoran A, Piccione J, Grier A, Sullivan K, Whitehorn-Brown T, Alexander CJ, Finn LS, Wilkins BJ, Muir AB. Granulomatous hyperinflammatory state induced by dupilumab treatment for eosinophilic esophagitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100314. [PMID: 39253107 PMCID: PMC11382170 DOI: 10.1016/j.jacig.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 09/11/2024]
Abstract
We present the first case of a dupilumab-induced hyperinflammatory state in the setting of underlying eosinophilic esophagitis characterized by multisystem granulomatous inflammation. Although clinical trial data and subsequent real-world experience support dupilumab as a highly effective therapy for eosinophilic esophagitis, close monitoring for development of adverse symptoms following initiation remains paramount.
Collapse
Affiliation(s)
- Kanak V Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Anna Costello
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Melissa A Lerman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jon M Burnham
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Aoife Corcoran
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Joseph Piccione
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Alexandra Grier
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kathleen Sullivan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Terri Whitehorn-Brown
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caitlin J Alexander
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Laura S Finn
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
24
|
Faraji F, Ramirez SI, Clubb L, Sato K, Burghi V, Hoang TS, Officer A, Anguiano Quiroz PY, Galloway WM, Mikulski Z, Medetgul-Ernar K, Marangoni P, Jones KB, Molinolo AA, Kim K, Sakaguchi K, Califano JA, Smith Q, Goren A, Klein OD, Tamayo P, Gutkind JS. YAP-Driven Oral Epithelial Stem Cell Malignant Reprogramming at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550427. [PMID: 37546810 PMCID: PMC10402053 DOI: 10.1101/2023.07.24.550427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells (TIC) at single cell resolution. TIC displayed a distinct stem-like state, defined by aberrant proliferative, hypoxic, squamous differentiation, and partial epithelial to mesenchymal (pEMT) invasive gene programs. YAP-mediated TIC programs included the activation of oncogenic transcriptional networks and mTOR signaling, and the recruitment of myeloid cells to the invasive front contributing to tumor infiltration. TIC transcriptional programs are conserved in human head and neck cancer and associated with poor patient survival. These findings illuminate processes underlying cancer initiation at single cell resolution, and identify candidate targets for early cancer detection and prevention.
Collapse
|
25
|
Su QY, Gao HY, Duan YR, Luo J, Wang WZ, Qiao XC, Zhang SX. The immunologic role of IL-23 in psoriatic arthritis: a potential therapeutic target. Expert Opin Biol Ther 2024; 24:1119-1132. [PMID: 39230202 DOI: 10.1080/14712598.2024.2401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a debilitating chronic condition characterized by inflammation of the joints, bones, enthesis, and skin. The pivotal role of interleukin-23 (IL-23) in the pathogenesis of PsA has become increasingly evident. This proinflammatory cytokine is markedly elevated in patients with PsA, suggesting its potential as a therapeutic target. Consequently, IL-23 inhibitors have emerged as promising first-line biologic treatments for PsA. AREAS COVERED This review delves into the immunopathogenic mechanisms of IL-23 at the cellular and molecular levels in PsA. Furthermore, it provides the recent efficacy and safety profiles of IL-23 inhibitors. We conducted a literature search in PubMed for the following terms: 'IL-23 and psoriatic arthritis,' 'Ustekinumab,' 'Guselkumab,' 'Risankizumab,' and 'Tildrakizumab.' In addition, we retrieved clinical trials involving IL-23 inhibitors registered in ClinicalTrials.gov, EudraCT, and ICTRP. EXPERT OPINION Despite the promising outcomes observed with IL-23 inhibitors, several challenges persist. The long-term effects of these agents require further investigation through prospective studies, and their limited accessibility worldwide necessitates urgent attention. Additionally, ongoing research is warranted to explore other potential drug targets within the IL-23/IL-23 R axis. The development of reliable biomarkers could greatly enhance early detection, tailored management strategies, and personalized treatment approaches for patients with PsA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Heng-Yan Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Yue-Ru Duan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wei-Ze Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xi-Chao Qiao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi medical university, Taiyuan, China
| |
Collapse
|
26
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
27
|
Rane SS, Shellard E, Adamson A, Eyre S, Warren RB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol 2024; 33:e15180. [PMID: 39306854 DOI: 10.1111/exd.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Psoriasis is an incurable immune-mediated skin disease, affecting around 1%-3% of the population. Various lines of evidence implicate IL23 as being pivotal in disease. Genetic variants within the IL23 receptor (IL23R) increase the risk of developing psoriasis, and biologic therapies specifically targeting IL23 demonstrated high efficacy in treating disease. IL23 acts via the IL23R, signalling through the STAT3 pathway, mediating the cascade of events that ultimately results in the clinical presentation of psoriasis. Given the essential role of IL23R in disease, it is important to understand the impact of genetic variants on receptor function with respect to downstream gene regulation. Here we developed model systems in CD4+ (Jurkat) and CD8+ (MyLa) T cells to express either the wild type risk or mutant (R381Q) protective form of IL23R. After confirmation that the model system expressed the genes/proteins and had a differential effect on the phosphorylation of STAT3, we used RNAseq to explore differential gene regulation, in particular for genes implicated with risk to psoriasis, at a single time point for both cell types, and in a time course experiment for Jurkat CD4+ T cells. These experiments discovered differentially regulated genes in the cells expressing wild type and mutant IL23R, including HLA-B, SOCS1, RUNX3, CCR5, CXCR3, CCR9, KLF3, CD28, IRF, SOCS6, TNFAIP and ICAM5, that have been implicated in both the IL23 pathway and psoriasis. These genes have the potential to define a IL23/psoriasis pathway in disease, advancing our understanding of the biology behind the disease.
Collapse
Affiliation(s)
- Shraddha S Rane
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elan Shellard
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Steve Eyre
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard B Warren
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| |
Collapse
|
28
|
Hinz A, Lewandowska-Łańcucka J, Werner E, Cierniak A, Stalińska K, Dyduch G, Szuwarzyński M, Bzowska M. The elasticity of silicone-stabilized liposomes has no impact on their in vivo behavior. J Nanobiotechnology 2024; 22:467. [PMID: 39103899 DOI: 10.1186/s12951-024-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The elastomechanical properties of nanocarriers have recently been discussed as important for the efficient delivery of various therapeutics. Some data indicate that optimal nanocarriers' elasticity can modulate in vivo nanocarrier stability, interaction with phagocytes, and uptake by target cells. Here, we presented a study to extensively analyze the in vivo behavior of LIP-SS liposomes that were modified by forming the silicone network within the lipid bilayers to improve their elastomechanical properties. We verified liposome pharmacokinetic profiles and biodistribution, including retention in tumors on a mouse model of breast cancer, while biocompatibility was analyzed on healthy mice. RESULTS We showed that fluorescently labeled LIP-SS and control LIP-CAT liposomes had similar pharmacokinetic profiles, biodistribution, and retention in tumors, indicating that modified elasticity did not improve nanocarrier in vivo performance. Interestingly, biocompatibility studies revealed no changes in blood morphology, liver, spleen, and kidney function but indicated prolonged activation of immune response manifesting in increased concentration of proinflammatory cytokines in sera of animals exposed to all tested liposomes. CONCLUSION Incorporating the silicone layer into the liposome structure did not change nanocarriers' characteristics in vivo. Further modification of the LIP-SS surface, including decoration with hydrophilic stealth polymers, should be performed to improve their pharmacokinetics and retention in tumors significantly. Activation of the immune response by LIP-SS and LIP-CAT, resulting in elevated inflammatory cytokine production, requires detailed studies to elucidate its mechanism.
Collapse
Affiliation(s)
- Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Lewandowska-Łańcucka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30- 387, Poland
| | - Ewa Werner
- Animal Facility, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Agnieszka Cierniak
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzińskiego 1, Kraków, 30-705, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Kraków, 33-332, Poland
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Al. Mickiewicza 30, Krakow, 30-059, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
29
|
Cruciani C, Gatto M, Iaccarino L, Doria A, Zen M. Monoclonal antibodies targeting interleukins for systemic lupus erythematosus: updates in early clinical drug development. Expert Opin Investig Drugs 2024; 33:801-814. [PMID: 38958085 DOI: 10.1080/13543784.2024.2376566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The advent of biological therapies has already revolutionized treatment strategies and disease course of several rheumatologic conditions, and monoclonal antibodies (mAbs) targeting cytokines and interleukins represent a considerable portion of this family of drugs. In systemic lupus erythematosus (SLE) dysregulation of different cytokine and interleukin-related pathways have been linked to disease development and perpetration, offering palatable therapeutic targets addressable via such mAbs. AREAS COVERED In this review, we provide an overview of the different biological therapies under development targeting cytokines and interleukins, with a focus on mAbs, while providing the rationale behind their choice as therapeutic targets and analyzing the scientific evidence linking them to SLE pathogenesis. EXPERT OPINION An unprecedented number of clinical trials on biological drugs targeting different immunological pathways are ongoing in SLE. Their success might allow us to tackle present challenges of SLE management, including the overuse of glucocorticoids in daily clinical practice, as well as SLE heterogenicity in treatment response among different individuals, hopefully paving the way toward precision medicine.
Collapse
Affiliation(s)
- Claudio Cruciani
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Clinical and Biological Sciences, University of Turin and Turin Mauriziano Hospital, Turin, Italy
| | - Luca Iaccarino
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Margherita Zen
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| |
Collapse
|
30
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
31
|
Relvas M, Mendes-Frias A, Gonçalves M, Salazar F, López-Jarana P, Silvestre R, Viana da Costa A. Salivary IL-1β, IL-6, and IL-10 Are Key Biomarkers of Periodontitis Severity. Int J Mol Sci 2024; 25:8401. [PMID: 39125970 PMCID: PMC11312971 DOI: 10.3390/ijms25158401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To explore severity and progression biomarkers, we examined the clinical relevance of multiple cytokines and mediators involved in the inflammatory response in periodontitis. A cohort of 68 patients was enrolled in the study and periodontal status assessed by the current classification of periodontal diseases. Immune mediators present in saliva, of both patients and healthy controls, were quantified using a Legendplex-13 panel. Clinic parameters were significantly higher in PD patients compared with HC, with a strong significant association with the disease severity (stage) (p < 0.001), but not with progression (grade). The panel of immune mediators evidenced elevated levels of pro-inflammatory cytokines IL-6 and IL-1β as disease established (p < 0.01). IL-1β/IL-1RA ratio was increased in PD patients, being associated with disease stage. An anti-inflammatory response was spotted by higher IL-10. Lower levels of IL-23 and IP-10 were associated with disease severity. No significant statistical differences were found by grade classification. Moreover, salivary IL-1β and IL-6 exhibited significant positive correlations with several clinical measurements (PI, BOP, PPD, CAL), while IP-10 showed a statistical negative correlation with BOP, PPD, and CAL. These insights highlight the complexity of the periodontitis inflammatory network and the potential of cytokines as biomarkers for refined diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Relvas
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Gonçalves
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Filomena Salazar
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Paula López-Jarana
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Alexandra Viana da Costa
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
32
|
Kaur P, Prabhahar A, Pal D, Nada R, Kohli HS, Kumar V, Ramachandran R. IL-23/IL-17 in a Paradoxical Association with Primary Membranous Nephropathy. Inflammation 2024; 47:1536-1544. [PMID: 38393549 DOI: 10.1007/s10753-024-01992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Primary membranous nephropathy (PMN), an autoimmune disease, is the most common cause of nephrotic syndrome in middle-aged non-diabetic adults. PMN pathophysiology includes Th1/Th2 paradigm. The IL-23/IL-17 pathway is implicated in autoimmune kidney disorders, but no study has examined its relationship with PMN. In several unrelated studies, PMN patients reported to have paradoxical IL-17 levels. This manuscript describes the best possible association of IL-23/IL-17 axis with PMN. Biopsy-proven PMN patients and age, gender-matched healthy controls were enrolled. Serum-PLA2R (Euroimmune, Germany), IL-23 and IL-17 (R&D; USA), was measured using ELISA along with biochemical parameters. Appropriate statistical tools were used for analysis. One hundred eighty-nine PMN patients (mean age 41.70 ± 12.53 years) and 100 controls (mean age 43.92 ± 10.93 years) were identified. One hundred forty were PLA2R-related. PMN patients had median proteinuria, serum albumin, and creatinine of 6.12 (3.875, 9.23) g/day, 2.32 (1.96, 2.9) g/dl, and 0.89 (0.7, 1.1) mg/dl, respectively. IL-17, but not IL-23, was significantly increased in PMN patients compared to controls (IL-17, median: 12.07 pg/ml (9.75, 24.56) vs median: 9.75 pg/ml (8.23, 17.03) p = 0.0002); (IL23, median: 6.04 pg/ml (4.22, 10.82) vs median: 5.46 pg/ml (3.34, 9.96) p = 0.142). IL-17 and IL-23 correlated significantly (p 0.05) in PMN patients, and similar trend was seen when grouped into PLA2R-related and -unrelated groups. The levels of IL-23 (p = 0.057) and IL-17 (p = 0.004) were high in MN patients that did not respond to the treatment. The current finding may indicate or suggest the involvement of IL-23/IL-17 PMN pathogenesis. A comprehensive investigation is needed to evaluate IL-23/IL-17 axis with renal infiltrating immune cells, and external stimuli.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arun Prabhahar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deeksha Pal
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
33
|
Dhaher SA, Mohammed JQ. Etanercept versus Methotrexate in the Treatment of Psoriasis and Associated Metabolic Syndrome: 12-Month Open-Label Comparative Study. Dermatology 2024; 240:687-693. [PMID: 39074456 DOI: 10.1159/000540589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory systemic disease accompanied by systemic damage that leads to the development of multiple comorbidities including metabolic syndrome. Conventional systemic therapies for psoriasis are associated with toxicity and have a greater burden on the patients. The study aimed to assess the effectiveness of etanercept (ETN) monotherapy in comparison with methotrexate (MTX) monotherapy. METHODS In this prospective interventional comparative open-label study, 117 patients with psoriasis were randomized to 2 groups; 1 group of 42 patients; 32 (67.2%) males and 10 (23.8%) females treated with MTX, and the second group of 75 patients; 54 (72%) males and 21 (28%) females treated with ETN. Full laboratory investigations, body mass index (BMI), measurement of skin disease severity which was performed using Psoriasis Area Severity Index (PASI), and the reduction of 75% of the skin lesions (PASI 75) were calculated for all participants. RESULTS In the MTX group, there were no significant differences in BMI, or blood pressure after 12 weeks of the study. There is a reduction in the values of FBS, TSC, LDL, TRIG, ESR, CRP, and PASI, but this reduction was statistically not significant. Ten (23.8%) patients achieved PASI 75. In the ETN group, except for BMI, systolic and diastolic blood pressure, all other metabolic syndrome components, inflammatory markers, and PASI were decreased; the reduction was statistically significant. Sixty (80%) patients achieved PASI 75. CONCLUSION Etanercept monotherapy showed greater efficacy than MTX monotherapy in the treatment of moderate to severe plaque-type psoriasis as it achieved greater reductions in PASI score and greater achievement of PASI 75 after 12 weeks. Etanercept monotherapy showed greater efficacy than MTX monotherapy in the improvement of all components of the associated metabolic syndrome except for BMI, which was increased in etanercept-treated patients.
Collapse
Affiliation(s)
- Samer A Dhaher
- Department of Dermatology, Basrah Medical College, Basrah, Iraq
| | - Jinan Q Mohammed
- Department of Dermatology, Basrah Teaching Hospital, Basrah, Iraq
| |
Collapse
|
34
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
35
|
Mamun-Or-Rashid, Roknuzzaman ASM, Sarker R, Nayem J, Bhuiyan MA, Islam MR, Al Mahmud Z. Altered serum interleukin-17A and interleukin-23A levels may be associated with the pathophysiology and development of generalized anxiety disorder. Sci Rep 2024; 14:15097. [PMID: 38956309 PMCID: PMC11219773 DOI: 10.1038/s41598-024-66131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
In recent times, the pathogenesis of generalized anxiety disorder (GAD) and the influence of pro- and anti-inflammatory cytokines on it have garnered considerable interest. Cytokine research, especially Th-17 cytokine research on GAD patients, is limited. Here, we aim to assess the role of interleukin-17A (IL-17A) and interleukin-23A (IL-23A) in the pathophysiology and development of GAD. This investigation included 50 GAD patients and 38 age-sex-matched healthy controls (HCs). A psychiatrist diagnosed patients with GAD and assessed symptom severity using the DSM-5 and the GAD-7 scales. The serum concentrations of IL-17A and IL-23A were determined using commercially available ELISA kits. GAD patients exhibited elevated levels of IL-17A (77.14 ± 58.30 pg/ml) and IL-23A (644.90 ± 296.70 pg/ml) compared to HCs (43.50 ± 25.54 pg/ml and 334.40 ± 176.0 pg/ml). We observed a positive correlation between disease severity and cytokine changes (IL-23A: r = 0.359, p = 0.039; IL-17A: r = 0.397, p = 0.032). These findings indicate that IL-17A and IL-23A may be associated with the pathophysiology of GAD. ROC analysis revealed moderately higher AUC values (IL-23A: 0.824 and IL-17A: 0.710), demonstrating their potential to discriminate between patients and HCs. Also, the sensitivity values of both cytokines were relatively higher (IL-23A: 80.49% and IL-17A: 77.27%). According to the present findings, there may be an association between peripheral serum levels of IL-17A and IL-23A and the pathophysiology and development of GAD. These altered serum IL-17A and IL-23A levels may play a role in directing the early risk of developing GAD. We recommend further research to ascertain their exact role in the pathophysiology and their performance as risk assessment markers of GAD.
Collapse
Affiliation(s)
- Mamun-Or-Rashid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Roknuzzaman
- Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Jannatul Nayem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Md Rabiul Islam
- School of Pharmacy, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Progati Sarani, Merul Badda, Dhaka, 1212, Bangladesh.
| | - Zobaer Al Mahmud
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
36
|
Aboul Naser AF, El-Feky AM, Hamed MA. Mitigating Effect of Lepidium sativum Seeds Oil on Ovarian Oxidative Stress, DNA Abnormality and Hormonal Disturbances Induced by Acrylamide in Rats. Chem Biodivers 2024; 21:e202400062. [PMID: 38743868 DOI: 10.1002/cbdv.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Acrylamide (ACR), an industrial compound, causes both male and female reproductive toxicity. Lepidium sativum seeds (L. sativum) (Garden cress) are known for their health benefits as antioxidant, antiasthmatic, anticoagulant, anti-inflammatory, and analgesic agents. Therefore, this study aimed to investigate the phytochemistry and nutritional value of L. sativum seeds oil for attenuating the ovarian damage induced by acrylamide in rats. The phytochemical investigation of the seeds revealed the presence of vitamins, potassium, iron, sugar and amino acids. Twenty eight compounds from the unsaponifiable fraction and twenty three compounds from the saponifiable fraction were identified. Three sterols and two triterpenes were isolated and identified as β-sitosterol (1), ▵5-avenasterol (2), friedelanol (3), stigmasta-4, 22-dien-3-one (4), and ursolic acid (5). Treatment of acrylamide-induced rats with L. sativum seeds oil ameliorated prolactin (PRL), progesterone (P4), estradiol (E2), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF- α) with variable degrees. The histopathological findings of ovaries supported these results. In conclusion, compounds (3-5) were isolated for the first time from L. sativum seeds oil. The seeds oil attenuated the ovarian damage and could potentially be a new supplemental agent against female infertility.
Collapse
Affiliation(s)
- Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Amal M El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
37
|
Smith B, Smith H, Machini M. Novel Pharmaceuticals and Therapeutics for Tumor Necrosis Factor-Alpha-Resistant Crohn's Disease: A Narrative Review. Cureus 2024; 16:e65357. [PMID: 39184689 PMCID: PMC11344558 DOI: 10.7759/cureus.65357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a medical condition that causes persistent, relapsing inflammation of the gastrointestinal tract. It is an umbrella term encompassing two different conditions: ulcerative colitis (UC) and Crohn's disease (CD). The standard treatment for patients with moderate to severe CD is tumor necrosis factor-α (TNF-α) inhibitors; however, a subset of CD patients face challenges in regard to this disease's treatment. Certain populations of patients with CD may exhibit resistance or develop tolerance to TNF-α inhibitor therapy over time. The recurrent gastrointestinal inflammation associated with CD can severely impact the quality of life and lead to complications for those suffering from this condition. The symptomatic flare-ups these subpopulations continue to experience underscores why such a need for alternative therapies is desperately needed. These alternative therapies not only offer potential benefits for those with TNF-α resistance, but CD may also serve as a superior therapy option for those trying to avoid the adverse effects of CD treatments available today. This review aims to explore and investigate the novel drugs and therapies that are being investigated for the treatment of TNF-α resistant CD, such as upadacitinib, risankizumab, vedolizumab, synbiotics, fecal microbiota transplantation (FMT), and stem cell therapy. Upadacitinib is a Janus kinase inhibitor, Risankizumab is a monoclonal antibody targeting interleukin-23, and Vedolizumab is an integrin receptor antagonist. The latest advancements in CD management have shown encouraging results. Some of these novel drugs and therapies not only offer a potential solution for CD patients exhibiting resistance to TNF-α inhibitors but may also provide a superior alternative for individuals prone to opportunistic infections.
Collapse
Affiliation(s)
- Blake Smith
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Haylie Smith
- Medical School, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Matthew Machini
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
38
|
Bui A, Orcales F, Kranyak A, Chung BY, Haran K, Smith P, Johnson C, Liao W. The Role of Genetics on Psoriasis Susceptibility, Comorbidities, and Treatment Response. Dermatol Clin 2024; 42:439-469. [PMID: 38796275 DOI: 10.1016/j.det.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
This review highlights advances made in psoriasis genetics, including findings from genome-wide association studies, exome-sequencing studies, and copy number variant studies. The impact of genetic variants on various comorbidities and therapeutic responses is discussed.
Collapse
Affiliation(s)
- Audrey Bui
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA; Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Faye Orcales
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Allison Kranyak
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Bo-Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si Gyeonggi-do, 14068, Republic of Korea
| | - Kathryn Haran
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Payton Smith
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Chandler Johnson
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, Box 0808, N431, San Francisco, CA 95115, USA.
| |
Collapse
|
39
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
40
|
Rizk MM, Bolton L, Cathomas F, He H, Russo SJ, Guttman-Yassky E, Mann JJ, Murrough J. Immune-Targeted Therapies for Depression: Current Evidence for Antidepressant Effects of Monoclonal Antibodies. J Clin Psychiatry 2024; 85:23nr15243. [PMID: 38959503 PMCID: PMC11892342 DOI: 10.4088/jcp.23nr15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Importance: Increasing evidence suggests a potential role of immune-modulatory drugs for treatment-resistant depression. This scoping review explores the emerging evidence regarding the antidepressant effects of monoclonal antibodies (mAbs), a relatively newer class of immune therapeutics with favorable safety profile. Observations: PubMed was searched up to November 2023 for English publications addressing the antidepressant effects of mAbs, including meta-analyses, randomized controlled trials, open-label, single-arm studies, and case series. Several mAbs have shown potential antidepressant effects, but most studies in primary inflammatory disorders included patients with mild depression. Only infliximab and sirukumab were directly examined in individuals with primary depression. mAbs that do not require laboratory monitoring, such as ixekizumab and dupilumab, could hold potential promise if future studies establish their safety profile regarding suicide risk. Conclusions and Relevance: The use of several mAbs for the treatment of primary inflammatory disorders has been associated with improvement of comorbid depressive symptoms. Given their unique mechanisms of action, mAbs may offer a new hope for depressed patients who do not respond to currently available antidepressants. Further research addressing individuals with more severe depressive symptoms is essential. Direct examination of antidepressant effects of mAbs in people with primary depressive disorders is also crucial to refine their clinical use in the treatment of depression.
Collapse
Affiliation(s)
- Mina M Rizk
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York
- Corresponding Author: Mina M. Rizk, MD, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box #1230, New York, NY 10029
| | - Lindsay Bolton
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen He
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| | - James Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
41
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
42
|
Duan Y, Sun W, Li Y, Shi Z, Li L, Zhang Y, Huang K, Zhang Z, Qi C, Zhang Y. Spirohypertones A and B as potent antipsoriatics: Tumor necrosis factor- α inhibitors with unprecedented chemical architectures. Acta Pharm Sin B 2024; 14:2646-2656. [PMID: 38828134 PMCID: PMC11143743 DOI: 10.1016/j.apsb.2024.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a promising target for inflammatory and autoimmune diseases. Spirohypertones A (1) and B (2), two unprecedented polycyclic polyprenylated acylphloroglucinols with highly rearranged skeletons, were isolated from Hypericum patulum. The structures of 1 and 2 were confirmed through comprehensive spectroscopic analysis, single-crystal X-ray diffraction and electronic circular dichroism calculations. Importantly, 2 showed remarkable TNF-α inhibitory activity, which could protect L929 cells from death induced by co-incubation with TNF-α and actinomycin D. It also demonstrated the ability to suppress the inflammatory response in HaCaT cells stimulated with TNF-α. Notably, in an imiquimod-induced psoriasis murine model, 2 restrained symptoms of epidermal hyperplasia associated with psoriasis, presenting anti-inflammatory and antiproliferative effects. This discovery positions 2 as a potent TNF-α inhibitor, providing a promising lead compound for developing an antipsoriatic agent.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanqin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
43
|
Rouzbahani AK, Hosseini SZ, Bandehpour M, Kazemi B, Tavasoli A, Mamaghani AJ, Kheirandish F. Heterologous Expression of Human IFNγ and Anti-IL17 Antibody in Leishmania tarentolae Promastigote. Acta Parasitol 2024; 69:1107-1114. [PMID: 38536611 DOI: 10.1007/s11686-024-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Leishmania is an intracellular flagellate protozoan parasite that causes a wide range of clinical diseases in humans. The basis of immunological resistance against leishmaniasis depends on Thl reactions and is within the time period of cytokine function. METHODS In this study, human anti-IL17 antibody and IFNγ-producing promastigote were produced to be used in leishmanization. A sequence of light and heavy chains' gene of anti-IL17 antibody and human IFNγ (hIFNγ) was obtained from the NCBI database and synthesized in the ECORV reaction site in the plasmid pGH, which it's called pGH-hIFNγ-antiIL17. The synthesized part using the restriction enzyme ECORV was extracted from the plasmid and after purification by electroporation was transferred to Iranian lizard Leishmania (I.L.L). Evaluation of structural presence in the I.L.L genome at the level of DNA and mRNA was assessed. The expressions of hIFNγ and anti-IL17 were evaluated and confirmed using ELISA and western blot analysis. The hIFNγ secreted from the culture medium was collected at high concentrations of 124.36 ± 6.47 pg/mL. RESULTS Targeted gene replacement into the I.L.L genome was successfully performed for the first time using the pGH-hIFNγ-antiIL17 plasmid in an identical replacement process. Stabilized recombinant DNA contains a target gene that has no toxicity to the parasite. CONCLUSIONS The effective achievement of producing a recombinant gene was done for the first time by replacing the I.L.L-CPC gene with plasmid pGH-hIFNγ-antiIL17 by targeted gene replacement. This cab can regulate the production of hIFNγ and anti-IL17. This makes it a viable choice for eliminating leishmania.
Collapse
Affiliation(s)
- Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh-Zeinab Hosseini
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Tavasoli
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
44
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
45
|
Kim JH, Gunathilake M, Lee J, Choi IJ, Kim YI, Kim J. Dietary mercury intake, the IL23R rs10889677 polymorphism, and the risk of gastric cancer in a Korean population: a hospital-based case-control study. Epidemiol Health 2024; 46:e2024051. [PMID: 38810984 PMCID: PMC11573488 DOI: 10.4178/epih.e2024051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Mercury can stimulate immune responses through T helper 17 (Th17). The gene IL23R is a key factor in Th17 function, which may also contribute to digestive tract diseases. The aim of this study was to identify the associations between dietary mercury and gastric cancer (GC) and to investigate whether the IL23R rs10889677 polymorphism modifies those associations. METHODS This case-control study included 377 patients with GC and 756 healthy controls. Dietary mercury intake (total mercury and methylmercury) was assessed using a dietary heavy metal database incorporated into the food frequency questionnaire. IL23R genetic polymorphism rs10889677 (A>C) was genotyped. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression models with adjustments for potential confounders. RESULTS A higher dietary methylmercury intake was associated with an elevated risk of GC (OR for the highest vs. lowest tertile [T3 vs. T1], 2.02; 95% CI, 1.41 to 2.91; p for trend <0.001). The IL23R rs10889677 reduced the risk of GC in individuals who carried at least 1 minor allele (OR, 0.62; 95% CI, 0.46 to 0.83; p=0.001; AC/CC vs. AA). Individuals with a C allele exhibited a lower susceptibility to GC through methylmercury intake than those with the AA genotype (OR for the T3 of methylmercury and AA carriers, 2.93; 95% CI, 1.77 to 4.87; and OR for the T3 of methylmercury and AC/CC genotype, 1.30; 95% CI, 0.76 to 2.21; p-interaction=0.013). CONCLUSIONS Our findings suggest that a genetic polymorphism, rs10889677 in IL23R, plays a role in modifying the association between dietary methylmercury intake and the risk of GC.
Collapse
Affiliation(s)
- Ji Hyun Kim
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Madhawa Gunathilake
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jeonghee Lee
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Young-Il Kim
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Jeongseon Kim
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| |
Collapse
|
46
|
Xia X, Zhu L, Xu M, Lei Z, Yu H, Li G, Wang X, Jia H, Yin Z, Huang F, Gao Y. ANKRD22 promotes resolution of psoriasiform skin inflammation by antagonizing NIK-mediated IL-23 production. Mol Ther 2024; 32:1561-1577. [PMID: 38454607 PMCID: PMC11081937 DOI: 10.1016/j.ymthe.2024.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.
Collapse
Affiliation(s)
- Xichun Xia
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Leqing Zhu
- Guangzhou Laboratory, Bioland, Guangzhou 510005, China
| | - Miaomiao Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Yunfei Gao
- Department of Oncology, Research Center of Cancer Diagnosis and Therapy, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Sisnett DJ, Zutautas KB, Miller JE, Lingegowda H, Ahn SH, McCallion A, Bougie O, Lessey BA, Tayade C. The Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1428-1441. [PMID: 38466035 DOI: 10.4049/jimmunol.2400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Endometriosis is a chronic inflammatory disease in which endometrial-like tissue grows ectopically, resulting in pelvic pain and infertility. IL-23 is a key contributor in the development and differentiation of TH17 cells, driving TH17 cells toward a pathogenic profile. In a variety of inflammatory and autoimmune disorders, TH17 cells secrete proinflammatory cytokines, including IL-17, contributing to disease pathophysiology. Our studies and others have implicated IL-17 and TH17 cell dysregulation in endometriosis, which is associated with disease severity. In this article, we address whether IL-23-driven TH17 cells contribute to cardinal features of lesion proliferation, vascularization, and inflammation in endometriosis using patient samples, representative cell lines, and our established mouse model of endometriosis. The results indicated dysregulated expression of key genes in the IL-23/TH17 axis in patient ectopic and eutopic endometrial samples and increased IL-23 protein in patient plasma compared with controls. In vitro studies using primary human TH cells determined that rIL-23 mixture treatment increased pathogenic TH17 cell frequency. Similarly, rIL-23 treatment of cell lines (12Z cells, EECCs, HUVECs, and hESCs) representative of the endometriotic lesion microenvironment increased cytokines and growth factors, which play a role in lesion establishment and maintenance. In a syngeneic mouse model of endometriosis, rIL-23 treatment altered numbers of myeloid and T cell subsets in peritoneal fluid and increased giant cells within the lesion. Lesions from rIL-23-treated mice did not reveal significant alterations in proliferation/vascularization, although trends of increased proliferation and vascularization were observed. Collectively, these findings provide insights into the impact of the IL-23/TH17 axis on local immune dysfunction and broadly on endometriosis pathophysiology.
Collapse
Affiliation(s)
- Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katherine B Zutautas
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Alison McCallion
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Olga Bougie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynaecology, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Bruce A Lessey
- School of Medicine, Wake Forest University, Winston-Salem, NC
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
48
|
Wang M, He X. Mendelian randomization analysis reveals causal associations of inflammatory bowel disease with Spondylarthritis. Gene 2024; 902:148170. [PMID: 38237812 DOI: 10.1016/j.gene.2024.148170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is strongly associated with Spondylarthritis (SpA), but the causal relationship remains unclear. This study explores the causal associations between IBD (Crohn's disease [CD] and ulcerative colitis [UC]) and several common subtypes of SpA (Ankylosing Spondylitis [AS], Psoriatic Arthritis [PsA], and Reactive Arthritis [ReA]), using bidirectional two-sample Mendelian randomization (TSMR). METHODS The causal effects of genetically predicted IBD on AS, PsA, and ReA were firstly investigated in this forward study. The causal effects from AS, PsA, and ReA on IBD were analyzed in the reverse MR. Inverse variance weighted, weighted median, and MR-Egger were applied in the MR analyses. The pleiotropic effects, heterogeneity, and leave-one-out sensitivity analysis were also evaluated. RESULTS The forward MR analysis demonstrated that IBD increased risk for AS (OR:1.278; P = 1.273 × 10-5), PsA (OR:1.192; P = 1.690 × 10-5), and ReA (OR:1.106; P = 1.524 × 10-3). Among them, CD increased risk of AS (OR:1.196; P = 3.424 × 10-4), PsA (OR:1.101; P = 1.537 × 10-3), ReA (OR:1.079; P = 6.321 × 10-3) whereas UC increased risk of AS (OR:1.166; P = 2.727 × 10-2), PsA (OR:1.110; P = 1.944 × 10-2), and ReA (OR:1.091; P = 1.768 × 10-2). The reverse-direction MR disclosed no notable association; neither was any evidence of pleiotropy detected. CONCLUSION Our study verifies a causal effect of IBD to AS, PsA as well as ReA, but not vice versa. This might bring new insights for the management of IBD and SpA in clinical practice.
Collapse
Affiliation(s)
- Min Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaojin He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Rheumatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
49
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
50
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|