Copyright
©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Nov 18, 2017; 8(11): 829-835
Published online Nov 18, 2017. doi: 10.5312/wjo.v8.i11.829
Published online Nov 18, 2017. doi: 10.5312/wjo.v8.i11.829
Biomechanical assessment of new surgical method instead of kyphoplasty to improve the mechanical behavior of the vertebra: Micro finite element study
Seyed Aref Hosseini Faradonbeh, Nima Jamshidi, Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
Author contributions: Hosseini Faradonbeh SA and Jamshidi N substantially contributed to the conception and design of the study, acquisition, analysis and interpretation of data; all authors drafted the article and made critical revisions related to the intellectual content of the manuscript, and approved the final version of the article to be published.
Institutional review board statement: The study was approved by the head of animal care center at Department of Biomedical Engineering at the University of Isfahan.
Institutional animal care and use committee statement: The fresh ovine vertebrae were harvested from the dead sheep Carcasses without meaning any harm or pain to the living animals; approved by the University of Isfahan’s Animal Care Committee at the time of adoption.
Conflict-of-interest statement: To the best of our knowledge no conflict of interest exists.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Nima Jamshidi, Assistant Professor, Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Azadi Square, Hezar jarib Street, Isfahan 81746-73441, Iran. njamshidi@eng.ui.ac.ir
Telephone: +98-313-7935613 Fax: +98-313-6276652
Received: March 7, 2017
Peer-review started: March 10, 2017
First decision: June 30, 2017
Revised: July 5, 2017
Accepted: September 12, 2017
Article in press: September 13, 2017
Published online: November 18, 2017
Processing time: 255 Days and 0.4 Hours
Peer-review started: March 10, 2017
First decision: June 30, 2017
Revised: July 5, 2017
Accepted: September 12, 2017
Article in press: September 13, 2017
Published online: November 18, 2017
Processing time: 255 Days and 0.4 Hours
Core Tip
Core tip: By embedding the hexagonal porous structure with two variable parameters including spacing diameter and thickness, as a substitute for the bone cement mass in the vertebral kyphoplasty, lower levels of maximum Von Mises stress could be achieved, thereby indicating the reduction of stress concentration in the interface area between the bone cement mass and the cancellous bone, as well as the reduction of post treatments. Furthermore, setting porous structures with different geometries inside vertebrae could provide the possibility of bone regeneration, the transfer of growth factors and recreation of mechanical properties.