Copyright
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Jun 18, 2023; 14(6): 387-398
Published online Jun 18, 2023. doi: 10.5312/wjo.v14.i6.387
Published online Jun 18, 2023. doi: 10.5312/wjo.v14.i6.387
Automated patellar height assessment on high-resolution radiographs with a novel deep learning-based approach
Kamil Kwolek, Marcin Tyrakowski, Department of Spine Disorders and Orthopaedics, Centre of Postgraduate Medical Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock 05-400, Poland
Dariusz Grzelecki, Dariusz Marczak, Jacek Kowalczewski, Department of Orthopaedics and Rheumoorthopedics, Centre of Postgraduate Medical Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock 05-400, Poland
Konrad Kwolek, Department of Orthopaedics and Traumatology, University Hospital, Krakow 30-663, Poland
Author contributions: Kwolek Ka, Grzelecki D, Tyrakowski M designed research; Kwolek Ka, Kwolek Ko performed research; Kwolek Ka, Kwolek Ko elaborated analytic tools, Kwolek Ka, Tyrakowski M, Kowalczewski J, Marczak D analyzed data; Kwolek Ka, Dariusz G, Kwolek Ko, Tyrakowski M wrote the paper.
Institutional review board statement: This study protocol was reviewed and approved by the Bioethics Committee of the authors’ institution (No.133/PB/2020).
Institutional animal care and use committee statement: No animals were used in the study.
Conflict-of-interest statement: The authors have no conflict of interest concerning the materials or methods used in this study or the findings specified in this article.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Kamil Kwolek, MD, Academic Research, Doctor, Surgeon, Department of Spine Disorders and Orthopaedics, Centre of Postgraduate Medical Education, Gruca Orthopaedic and Trauma Teaching Hospital, Konarskiego 13, Otwock 05-400, Poland. kwolekamil@gmail.com
Received: February 15, 2023
Peer-review started: February 15, 2023
First decision: March 24, 2023
Revised: April 6, 2023
Accepted: May 6, 2023
Article in press: May 6, 2023
Published online: June 18, 2023
Processing time: 123 Days and 15 Hours
Peer-review started: February 15, 2023
First decision: March 24, 2023
Revised: April 6, 2023
Accepted: May 6, 2023
Article in press: May 6, 2023
Published online: June 18, 2023
Processing time: 123 Days and 15 Hours
Core Tip
Core Tip: This study presents an accurate method for automatic assessment of patellar height on high-resolution lateral knee radiographs. First, You Only Look Once neural network is used to detect patellar and proximal tibial region. Next, U-Net neural network is utilized to segment bones of the detected region. Then, the Caton-Deschamps and Blackburne-Peel indexes are calculated upon patellar end-points and joint line fitted to proximal tibia joint surface. Experimental results show that our approach has the potential to be used as a pre- and postoperative assessment tool.