Copyright
©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Three-dimensional printing in paediatric orthopaedic surgery
Sven Goetstouwers, Dagmar Kempink, Denise Eygendaal, Department of Orthopaedic Surgery and Sports Medicine, Erasmus Medical Centre/Sophia Children's Hospital, Rotterdam 3015GD, South-Holland, Netherlands
Bertram The, Denise Eygendaal, Christiaan JA van Bergen, Department of Orthopaedic Surgery, Amphia Hospital, Breda 4818CK, North-Brabant, Netherlands
Bart van Oirschot, 3D Lab, Amphia Hospital, Breda 4818CK, North-Brabant, Netherlands
Author contributions: All authors contributed to the writing of the manuscript and approved the final version.
Conflict-of-interest statement: All authors have nothing to disclose.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Christiaan JA van Bergen, MD, PhD, Surgeon, Department of Orthopaedic Surgery, Amphia Hospital, Molengracht 21, Breda 4818CK, North-Brabant, Netherlands. cvanbergen@amphia.nl
Received: March 18, 2021
Peer-review started: March 18, 2021
First decision: July 18, 2021
Revised: July 29, 2021
Accepted: December 21, 2021
Article in press: December 21, 2021
Published online: January 18, 2022
Processing time: 304 Days and 23.8 Hours
Peer-review started: March 18, 2021
First decision: July 18, 2021
Revised: July 29, 2021
Accepted: December 21, 2021
Article in press: December 21, 2021
Published online: January 18, 2022
Processing time: 304 Days and 23.8 Hours
Core Tip
Core Tip: Three-dimensional (3D) printing for intraoperative use in paediatric orthopaedic surgery is a relatively novel field. Research has shown that 3D anatomic models can be used for patient-specific instrumentation and patient-specific templates, that possibly allow the orthopedic surgeon to perform complex surgery more accurately. Based on the latest scientific evidence, this editorial provides an overview of the overall role of 3D printing in intraoperative applications of upper and lower limb surgery in paediatric orthopaedics.