Minireviews
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Mar 18, 2021; 12(3): 102-118
Published online Mar 18, 2021. doi: 10.5312/wjo.v12.i3.102
Slacklining: An explanatory multi-dimensional model considering classical mechanics, biopsychosocial health and time
Charles Philip Gabel, Bernard Guy, Hamid Reza Mokhtarinia, Markus Melloh
Charles Philip Gabel, Department of Physiotherapy, Access Physiotherapy, Coolum Beach 4573, Australia
Bernard Guy, Ecole des Mines de Saint-Etienne, Industrial and Natural Processes Division, Saint Etienne 4200, Loire, France
Hamid Reza Mokhtarinia, Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran 12345, Iran
Markus Melloh, School of Health Professions, Institute of Health Sciences, Zurich University of Applied Sciences, Winterthur 8400, Switzerland
Author contributions: Gabel CP proposed the concept and outline; Melloh M provided critical input for the manuscript content with specific relevance to physiology, biopsychosocial health, clinical guidelines and current medical models, references and editing of the manuscript; Mokhtarinia HR provided critical input for the manuscript content with specific relevance to therapeutic and rehabilitation aspects, physiology, references and editing of the manuscript; Guy B provided specific vital input regarding the aspects of relativity, quantum physics and time as well as referencing and editing of the manuscript; all authors contributed to writing the manuscript.
Conflict-of-interest statement: All authors have no stated conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Charles Philip Gabel, BPhty, MSc, PhD, Physiotherapist, Research Scientist, Department of Physiotherapy, Access Physiotherapy, 12 Grandview Dve, Coolum Beach 4573, Australia. cp.gabel@bigpond.com
Received: December 4, 2020
Peer-review started: December 4, 2020
First decision: December 27, 2020
Revised: January 13, 2021
Accepted: March 2, 2021
Article in press: March 2, 2021
Published online: March 18, 2021
Processing time: 98 Days and 9.5 Hours
Core Tip

Core Tip: Slacklining’s is achieved through optimizing energy expenditure and dynamic stability, but limited explanatory models exist. These ‘knowledge-gaps’ are overcome through a new explanatory multi-dimensional model that considers entities from: self-learned movement patterns; classical mechanical forces governed by Newton’s physical laws; biopsychosocial health; and time’s multi-faceted perspectives as a quantified unit with spatial and cortical experience. Consequently, evidence-based situational uses will ensure a multi-tiered context for slacklining’s applications in movement, balance and stability. Further research must consider diverse constructed and mechanical applications in varied environments, with automation levels, artificial-intelligence, and machine-learning related to movement phenotypes and applications.