Peer-review started: February 7, 2017
First decision: December 18, 2017
Revised: December 21, 2017
Accepted: February 4, 2018
Article in press: February 5, 2018
Published online: March 18, 2018
Processing time: 95 Days and 15.1 Hours
Complex knee injuries pose a difficult problem across the literature in terms of diagnostic classification while the treatment remains controversial. In particular, there is conflict regarding: (1) Their classification (as benign knee dislocations with intact neurovascular status and knee dislocations with arterial injury are not well classified); (2) their postoperative rehabilitation (as knee dislocations with arterial injury require a period of knee immobilization, whereas “benign” knee dislocations can be treated with aggressive postoperative rehabilitation); (3) the timing of the operation; (4) the graft type; and (5) the lack of long term follow-up. In our study we have tried to address all these issues, because we present a homogenous sample, with a long-term follow-up, using LARS artificial ligament to reconstruct PCL and all patients had the operations in the acute phase. Therefore, we feel that the results presented here are reliable since our study, although retrospective has a clear and robust methodology.
In medicine and in any other research processes, the researcher first he observes a phenomenon, secondly he tries to explain it with a theory, and lastly, he has to reproduce it, to confirm the theory. Taking this into account, we have observed that early reconstruction of these injuries provide better outcomes, because the injured soft tissues, have a better healing potential in the acute phase. There is also always a fear for knee arthrofibrosis, when operating early these injuries; we have therefore, allowed (in all our cases) the inflammation to settle down with the help of intensive physiotherapy after the injury. The artificial ligament also provides the scaffold, necessary for the tissue healing in the appropriate position. Furthermore, it allows early rehabilitation because primary stability is achieved during the operation and no need for further protection is needed during the early postoperative period. The satisfactory outcome after this study’s long-term follow-up is supporting the theory of early intervention following our treatment protocol.
The main objective of our study was to present a standard treatment protocol to manage complex knee injuries, taking into account parameters which have not been clearly elaborated in previous studies, such as postoperative rehabilitation, timing of the operation, follow-up etc. The various parameters of the protocol have been well defined and we suggest this protocol, since we have found very promising outcomes for our patient sample.
In this retrospective study, we have used a range of clinical outcome measures and radiological parameters. Clinical measures included three knee-specific measures; the Knee Outcome Survey for Activities of Daily Living (KOS-ADLS), the Lysholm scale, the Knee Osteoarthritis Outcome Survey (KOOS) as well as a generic health measure, the SF-12 Health Survey, all of which present as the most commonly used self-reported outcomes in similar type of studies. In addition, for detecting any anteroposterior (AP) instability we have used the Telos devise. We have also used plain radiographs to detect any possible remaining instability and post-traumatic arthritis. However, we believe that the main advantages of our methodology is (1) Our homogenous sample selection (not including patients with vascular injury or major fracture around the knee); (2) the fact that the sample were all treated with the same standardized protocol; and (3) that postoperative rehabilitation was also intensive with no serious precautions regarding sophisticated and expensive braces.
Authors study we have found satisfactory clinical outcomes after a long period of time. The functional scores, which have been used in our study yielded very good results. The remaining instability was minimal in most cases and the rate of posttraumatic arthritis was not detectable in most of our cases, given the long follow-up. In future, we may have to include an MRI to detect any occult meniscal or cartilage injuries.
The new findings of this study support the theory of early intervention following complex knee injuries (without concomitant serious vascular or bony injuries) as clinical, functional and radiological outcomes have all been satisfactory during our long follow-up. We propose to treat early these injuries, providing that the patient has achieved a good range of motion preoperatively. We also suggest augmenting PCL remnants with LARS artificial ligament, which has been proven adequate in the long-term follow-up. In summary, the proposed treatment protocol is efficient in complex knee injuries, providing there is no concomitant serious vascular or bony injuries. The new hypothesis proposed by this study is the reconstruction of complex knee injuries in the acute phase. The cornerstone of our approach is to start early intensive physiotherapy, to operate as soon as the inflammation settles down and to repair all tissues in one stage. We augment the PCL with LARS artificial ligament and we also augment the repair of collateral ligaments. Based on these findings, we feel that all these injuries should be treated in the acute phase. The new methods are the use of LARS artificial ligament, only for PCL reconstruction and the repair of all the injuries in one stage. With this approach the patients may return earlier to their previous functional level. We feel that this is a major achievement because these injuries may be disabling when they are not treated appropriately.
The experience learnt from this study was to proceed for proper classification of complex knee injuries. We cannot classify them all in the same category since the prognosis and the treatment protocol is different in injuries complicated with vascular or serious bony injuries. The direction of the future research should be oriented towards the better classification of these injuries and to determine the use of the various available grafts. The methods for future research, is either biomechanical or clinical. The problem with clinical studies, is the rarity of the injury, therefore multicenter studies are required.