Published online Dec 18, 2018. doi: 10.5312/wjo.v9.i12.292
Peer-review started: August 22, 2018
First decision: October 4, 2018
Revised: October 16, 2018
Accepted: November 15, 2018
Article in press: November 15, 2018
Published online: December 18, 2018
Processing time: 118 Days and 14.8 Hours
To examine humeral retroversion in infants who sustained brachial plexus birth palsy (BPBI) and suffered from an internal rotation contracture. Additionally, the role of the infraspinatus (IS) and subscapularis (SSc) muscles in the genesis of this bony deformation is explored.
Bilateral magnetic resonance imaging (MRI) scans of 35 infants (age range: 2-7 mo old) with BPBI were retrospectively analyzed. Retroversion was measured according to two proximal axes and one distal axis (transepicondylar axis). The proximal axes were: (1) the perpendicular line to the borders of the articular surface (humeral centerline); and (2) the longest diameter through the humeral head. Muscle cross-sectional areas of the IS and SSc muscles were measured on the MRI-slides representing the largest muscle belly. The difference in retroversion was correlated with the ratio of muscle-sizes and passive external rotation measurements.
Retroversion on the involved side was significantly decreased, 1.0° vs 27.6° (1) and 8.5° vs 27.2° (2), (P < 0.01), as compared to the uninvolved side. The size of the SSc and IS muscles on the involved side was significantly decreased, 2.26 cm² vs 2.79 cm² and 1.53 cm² vs 2.19 cm², respectively (P < 0.05). Furthermore, the muscle ratio (SSc/IS) at the involved side was significantly smaller compared to the uninvolved side (P = 0.007).
Even in our youngest patient population, humeral retroversion has a high likelihood of being decreased. Altered humeral retroversion warrants attention as a structural change in any child being evaluated for the treatment of an internal rotation contracture.
Core tip: This study examines humeral retroversion in infants who sustained neonatal brachial plexus palsy and suffered from an internal rotation contracture. The existing common treatment options all strive for better function of the upper extremity through an improved position of the hand in space. Therefore, a thorough understanding of the development of the pathogenesis of this injury is important. We found a significant reduction of humeral retroversion in our study group (mean difference, 26.8). When treatment becomes warranted and contralateral humeral version measurements greatly differ, a humeral derotational osteotomy may offer the best improvement regarding the hand position.