Published online Mar 18, 2017. doi: 10.5312/wjo.v8.i3.256
Peer-review started: July 29, 2016
First decision: September 2, 2016
Revised: November 10, 2016
Accepted: December 27, 2016
Article in press: December 28, 2016
Published online: March 18, 2017
Processing time: 234 Days and 18.6 Hours
To describe, using gait analysis, the development of spinal motion in the growing child.
Thirty-six healthy children aged from 3 to 16 years old were included in this study for a gait analysis (9 m-walk). Various kinematic parameters were recorded and analyzed such as thoracic angle (TA), lumbar angle (LA) and sagittal vertical axis (SVA). The kinetic parameters were the net reaction moments (N.m/kg) at the thoracolumbar and lumbosacral junctions.
TA and LA curves were not statistically correlated to the age (respectively, P = 0.32 and P = 0.41). SVA increased significantly with age (P < 0.001). Moments in sagittal plane at the lumbosacral junction were statistically correlated to the age (P = 0.003), underlining the fact that sagittal mechanical constraints at the lumbosacral junction increase with age. Moments in transversal plane at the thoracolumbar and lumbosacral junctions were statistically correlated to the age (P = 0.0002 and P = 0.0006), revealing that transversal mechanical constraints decrease with age.
The kinetic analysis showed that during growth, a decrease of torsional constraint occurs while an increase of sagittal constraint is observed. These changes in spine biomechanics are related to the crucial role of the trunk for bipedalism acquisition, allowing stabilization despite lower limbs immaturity. With the acquisition of mature gait, the spine will mainly undergo constraints in the sagittal plane.
Core tip: Many postural changes occur during childhood, including the adaptation of the spine to maintain an erect posture. The aim was to describe, using gait analysis, the development of spinal motion during growth. Various kinematic parameters were recorded in 36 healthy children. Thoracic kyphosis and lumbar lordosis were not found to increase during childhood whereas sagittal vertical axis increased with age. The kinetic analysis showed a decrease of torsional constraint while sagittal constraint increased. These changes in spine biomechanics are related to the crucial role of the trunk for bipedalism acquisition, allowing stabilization despite lower limbs immaturity.