Peer-review started: April 24, 2016
First decision: June 6, 2016
Revised: October 17, 2016
Accepted: November 16, 2016
Article in press: November 17, 2016
Published online: January 18, 2017
Processing time: 262 Days and 9.5 Hours
To determine whether tissue identified at the joint line was actually remnant “meniscal” scar tissue or not.
Nine patients undergoing revision knee surgery following informed consent had meniscal scar tissue sent to the histology department for analyses. All revisions were performed where joint line had been raised or lowered at earlier surgery. Although preoperative radiographic evaluations suggested that the joint line had been altered, intraoperatively there was scar tissue at the level of the recreated joint line. This scar tissue has traditionally been described as meniscal scar, and to identify the origins of this tissue, samples were sent for histological analyses. The tissue samples were stored in formalin, and embedded and sectioned before undergoing histochemical staining. All samples underwent macroscopic and microscopic examination by a histopathologist who was blind to the study aims. The specific features that were examined included tissue organisation, surface and central composition, cellular distribution including histiocytes, nuclear ratio and vasculature. Atypical and malignant features, inflammation and degeneration were specifically looked for. A statistical review of the study was performed by a biomedical statistician.
The histological findings for the nine patients showing the macroscopic and microscopic findings, and the conclusion are outlined in a Table. The histological analyses were reviewed to determine whether the tissue samples were likely to be meniscal scar tissue. The response was yes (2, 22%), no (6, 67%) and maybe (1, 11%) based on the conclusions. The results were “yes” when on macroscopy, firm cream tissue was identified. In these two “yes” samples, microscopic analyses showed organised fibrous tissue with focal degenerative areas with laminated pattern associated with histiocytes peripherally but no inflammation. The “no” samples were assessed macroscopically and microscopically and were deemed to have appearances representing fibrous synovial tissue and features in keeping with degenerate scar tissue or connective tissue. One sample was indeterminate and microscopically contained fibro-collagenous tissue with synovial hyperplasia. It also contained some degenerate hyalinised tissue that may represent cartilage, but the appearances were not specific.
Based on our pilot study, we recommend reliance on a number of markers to identify the joint line as outlined above, and to exercise caution in using the “meniscal” scar.
Core tip: Our findings suggests that the structure identified as the “meniscal” scar may actually represent scar tissue that forms in the available space of the recreated joint line rather than actually represent the level of the native joint line where the meniscus once attached.