Peer-review started: May 25, 2015
First decision: August 16, 2015
Revised: October 2, 2015
Accepted: November 17, 2015
Article in press: November 25, 2015
Published online: January 18, 2016
Processing time: 236 Days and 8.7 Hours
Negative-pressure wound therapy (NPWT) has been a successful modality of wound management which is in widespread use in several surgical fields. The main mechanisms of action thought to play a role in enhancing wound healing and preventing surgical site infection are macrodeformation and microdeformation of the wound bed, fluid removal, and stabilization of the wound environment. Due to the devastating consequences of infection in the setting of joint arthroplasty, there has been some interest in the use of NPWT following total hip arthroplasty and total knee arthroplasty. However, there is still a scarcity of data reporting on the use of NPWT within this field and most studies are limited by small sample sizes, high variability of clinical settings and end-points. There is little evidence to support the use of NPWT as an adjunctive treatment for surgical wound drainage, and for this reason surgical intervention should not be delayed when indicated. The prophylactic use of NPWT after arthroplasty in patients that are at high risk for postoperative wound drainage appears to have the strongest clinical evidence. Several clinical trials including single-use NPWT devices for this purpose are currently in progress and this may soon be incorporated in clinical guidelines as a mean to prevent periprosthetic joint infections.
Core tip: The application of negative pressure wound therapy (NPWT) in arthroplasty has generated much interest. Its proposed mechanisms of action include macrodeformation and microdeformation of the wound bed, fluid removal, and stabilization of the wound environment. There is little evidence to support the use of NPWT as an adjunctive treatment for surgical wound drainage. However, there appears to be strong clinical evidence for the prophylactic use of NPWT after arthroplasty in patients that are at high risk for postoperative wound drainage. Several clinical trials involving single-use NPWT devices for this purpose are currently in progress.