Published online Sep 18, 2015. doi: 10.5312/wjo.v6.i8.641
Peer-review started: February 6, 2015
First decision: June 3, 2015
Revised: June 17, 2015
Accepted: July 29, 2015
Article in press: August 3, 2015
Published online: September 18, 2015
Processing time: 225 Days and 18.4 Hours
AIM: To quantify the wrist cartilage cross-sectional area in humans from a 3D magnetic resonance imaging (MRI) dataset and to assess the corresponding reproducibility.
METHODS: The study was conducted in 14 healthy volunteers (6 females and 8 males) between 30 and 58 years old and devoid of articular pain. Subjects were asked to lie down in the supine position with the right hand positioned above the pelvic region on top of a home-built rigid platform attached to the scanner bed. The wrist was wrapped with a flexible surface coil. MRI investigations were performed at 3T (Verio-Siemens) using volume interpolated breath hold examination (VIBE) and dual echo steady state (DESS) MRI sequences. Cartilage cross sectional area (CSA) was measured on a slice of interest selected from a 3D dataset of the entire carpus and metacarpal-phalangeal areas on the basis of anatomical criteria using conventional image processing radiology software. Cartilage cross-sectional areas between opposite bones in the carpal region were manually selected and quantified using a thresholding method.
RESULTS: Cartilage CSA measurements performed on a selected predefined slice were 292.4 ± 39 mm2 using the VIBE sequence and slightly lower, 270.4 ± 50.6 mm2, with the DESS sequence. The inter (14.1%) and intra (2.4%) subject variability was similar for both MRI methods. The coefficients of variation computed for the repeated measurements were also comparable for the VIBE (2.4%) and the DESS (4.8%) sequences. The carpus length averaged over the group was 37.5 ± 2.8 mm with a 7.45% between-subjects coefficient of variation. Of note, wrist cartilage CSA measured with either the VIBE or the DESS sequences was linearly related to the carpal bone length. The variability between subjects was significantly reduced to 8.4% when the CSA was normalized with respect to the carpal bone length.
CONCLUSION: The ratio between wrist cartilage CSA and carpal bone length is a highly reproducible standardized measurement which normalizes the natural diversity between individuals.
Core tip: Wrist cartilage cross-sectional area has been quantified in wrists of healthy subjects using 3T magnetic resonance imaging. Based on a semi-automatic segmentation method, the reproducibility of the measurements is high as compared to previous studies. A standardized quantitative index has been proposed. This standardized index can be used for future follow-up studies. The measurements performed in a small group of subjects should be further confirmed in a larger group.