Published online Mar 18, 2015. doi: 10.5312/wjo.v6.i2.252
Peer-review started: May 29, 2014
First decision: August 18, 2014
Revised: December 1, 2014
Accepted: December 16, 2014
Article in press: December 17, 2014
Published online: March 18, 2015
Processing time: 295 Days and 9.9 Hours
Anterior cruciate ligament (ACL) rupture is one of the commonest knee sport injuries. The annual incidence of the ACL injury is between 100000-200000 in the United States. Worldwide around 400000 ACL reconstructions are performed in a year. The goal of ACL reconstruction is to restore the normal knee anatomy and kinesiology. The tibial and femoral tunnel placements are of primordial importance in achieving this outcome. Other factors that influence successful reconstruction are types of grafts, surgical techniques and rehabilitation programmes. A comprehensive understanding of ACL anatomy has led to the development of newer techniques supplemented by more robust biological and mechanical concepts. In this review we are mainly focussing on the evolution of tunnel placement in ACL reconstruction, focusing on three main categories, i.e., anatomical, biological and clinical outcomes. The importance of tunnel placement in the success of ACL reconstruction is well researched. Definite clinical and functional data is lacking to establish the superiority of the single or double bundle reconstruction technique. While there is a trend towards the use of anteromedial portals for femoral tunnel placement, their clinical superiority over trans-tibial tunnels is yet to be established.
Core tip: We are mainly focussing on the evolution of tunnel placement in anterior cruciate ligament (ACL) reconstruction especially on three main categories, i.e., anatomical, biological and clinical outcomes. The importance of tunnel placement in the success of ACL reconstruction is well researched and still ongoing. Due to the nature of the intervention it is difficult to attain definite clinical and functional data to establish the superiority of the single or double bundle reconstruction technique.