Published online Oct 18, 2013. doi: 10.5312/wjo.v4.i4.207
Revised: May 21, 2013
Accepted: June 19, 2013
Published online: October 18, 2013
Processing time: 294 Days and 16.8 Hours
Osteoporosis is a common bone disease characterized by reduced bone and increased risk of fracture. In postmenopausal women, osteoporosis results from bone loss attributable to estrogen deficiency. Osteoclast differentiation and activation is mediated by receptor activator of nuclear factor-κB ligand (RANKL), its receptor receptor activator of nuclear factor-κB (RANK), and a decoy receptor for RANKL, osteoprotegerin (OPG). The OPG/RANKL/RANK system plays a pivotal role in osteoclast biology. Currently, a fully human anti-RANKL monoclonal antibody named denosumab is being clinically used for the treatment of osteoporosis and cancer-related bone disorders. This review describes recent advances in RANKL-related research, a story from bench to bedside. First, the discovery of the key factors, OPG/RANKL/RANK, revealed the molecular mechanism of osteoclastogenesis. Second, we established three animal models: (1) a novel and rapid bone loss model by administration of glutathione-S transferase-RANKL fusion protein to mice; (2) a novel mouse model of hypercalcemia with anorexia by overexpression of soluble RANKL using an adenovirus vector; and (3) a novel mouse model of osteopetrosis by administration of a denosumab-like anti-mouse RANKL neutralizing monoclonal antibody. Lastly, anti-human RANKL monoclonal antibody has been successfully applied to the treatment of osteoporosis and cancer-related bone disorders in many countries. This is a real example of applying basic science to clinical practice.
Core tip: This review describes a success story from discovery of osteoprotegerin/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK) to clinical application of a fully human anti-RANKL monoclonal antibody to the treatment of osteoporosis and cancer-related bone disorders. RANKL is a key molecule for osteoclast differentiation and activation. Inhibition of RANKL activity with anti-RANKL antibody reduces osteoclastogenesis, resulting in inhibition of bone resorption. Three animal disease models of osteoporosis, hypercalcemia, and osteopetrosis by treating normal mice with soluble RANKL (sRANKL), adenovirus expressing sRANKL, and anti-mouse RANKL neutralizing antibody, respectively, can be established in 2-14 d and the establishment of these animal models could help accelerate research on bone metabolism.