Retrospective Cohort Study
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Apr 18, 2024; 15(4): 321-336
Published online Apr 18, 2024. doi: 10.5312/wjo.v15.i4.321
Investigation of contact behavior on a model of the dual-mobility artificial hip joint for Asians in different inner liner thicknesses
Taufiq Hidayat, Muhammad Imam Ammarullah, Rifky Ismail, Eko Saputra, M Danny Pratama Lamura, Chethan K N, Athanasius Priharyoto Bayuseno, J Jamari
Taufiq Hidayat, Department of Mechanical Engineering, Universitas Muria Kudus, Kudus 59352, Central Java, Indonesia
Taufiq Hidayat, Muhammad Imam Ammarullah, Rifky Ismail, M Danny Pratama Lamura, Athanasius Priharyoto Bayuseno, J Jamari, Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Muhammad Imam Ammarullah, M Danny Pratama Lamura, J Jamari, Undip Biomechanics Engineering & Research Centre, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Rifky Ismail, Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Eko Saputra, Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Central Java, Indonesia
Chethan K N, Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
Author contributions: Ammarullah MI and Hidayat T contributed to onceptualization; Saputra E and KN C contributed to methodology; Hidayat T contributed to software, investigation, data curation, writing—original draft preparation; Ismail R contributed to validation; Hidayat T and Lamura MDP contributed to formal analysis ; Ammarullah MI contributed to resources, funding acquisition; Ammarullah MI, Ismail R, KN C, Bayuseno AP, and Jamari J contributed to writing—review and editing; Saputra E contributed to visualization; Bayuseno AP and Jamari J contributed to supervision; Ammarullah MI and Lamura MDP contributed to project administration; All authors have read and agreed to the published version of the manuscript.
Supported by World Class Research Universitas Diponegoro, No. 118-23/UN7.6.1/PP/2021; and Penelitian Fundamental – Reguler, No. 449A-32/UN7.D2/PP/VI/2023.
Institutional review board statement: This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent statement: This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict-of-interest statement: All authors have no conflicts of interest to disclose.
Data sharing statement: The data presented in this study are available on request from the corresponding author.
STROBE statement: The authors have read the STROBE Statement – checklist of items, and the manuscript was prepared and revised according to the STROBE Statement – checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Muhammad Imam Ammarullah, Lecturer, Department of Mechanical Engineering, Universitas Diponegoro, Street Prof. Soedarto Number 13, Semarang 50275, Central Java, Indonesia. imamammarullah@gmail.com
Received: December 30, 2023
Peer-review started: December 30, 2023
First decision: January 16, 2024
Revised: January 28, 2024
Accepted: March 25, 2024
Article in press: March 25, 2024
Published online: April 18, 2024
Abstract
BACKGROUND

The four components that make up the current dual-mobility artificial hip joint design are the femoral head, the inner liner, the outer liner as a metal cover to prevent wear, and the acetabular cup. The acetabular cup and the outer liner were constructed of 316L stainless steel. At the same time, the inner liner was made of ultra-high-molecular-weight polyethylene (UHMWPE). As this new dual-mobility artificial hip joint has not been researched extensively, more tribological research is needed to predict wear. The thickness of the inner liner is a significant component to consider when calculating the contact pressure.

AIM

To make use of finite element analysis to gain a better understanding of the contact behavior in various inner liner thicknesses on a new model of a dual-mobility artificial hip joint, with the ultimate objective of determining the inner liner thickness that was most suitable for this particular type of dual-mobility artificial hip joint.

METHODS

In this study, the size of the femoral head was compared between two diameters (28 mm and 36 mm) and eight inner liner thicknesses ranging from 5 mm to 12 mm. Using the finite element method, the contact parameters, including the maximum contact pressure and contact area, have been evaluated in light of the Hertzian contact theory. The simulation was performed statically with dissipated energy and asymmetric behavior. The types of interaction were surface-to-surface contact and normal contact behavior.

RESULTS

The maximum contact pressures in the inner liner (UHMWPE) at a head diameter of 28 mm and 36 mm are between 3.7-13.5 MPa and 2.7-10.4 MPa, respectively. The maximum von Mises of the inner liner, outer liner, and acetabular cup are 2.4–11.4 MPa, 15.7–44.3 MPa, and 3.7–12.6 MPa, respectively, for 28 mm head. Then the maximum von Mises stresses of the 36 mm head are 1.9-8.9 MPa for the inner liner, 9.9-32.8 MPa for the outer liner, and 2.6-9.9 MPa for the acetabular cup. A head with a diameter of 28 mm should have an inner liner with a thickness of 12 mm. Whereas the head diameter was 36 mm, an inner liner thickness of 8 mm was suitable.

CONCLUSION

The contact pressures and von Mises stresses generated during this research can potentially be exploited in estimating the wear of dual-mobility artificial hip joints in general. Contact pressure and von Mises stress reduce with an increasing head diameter and inner liner’s thickness. Present findings would become one of the references for orthopedic surgery for choosing suitable bearing geometric parameter of hip implant.

Keywords: Contact behavior, Contact pressure, Finite element analysis, Dual-mobility, Artificial hip joint

Core Tip: The dual mobility hip system has the potential to be a great big bearing articulation if its technology is combined with highly cross-linked polyethylene. The modern artificial hip joint design has two free articulations between four parts: the femoral head, the inner liner, the outer liner as a metal cover to reduce wear, and the acetabular cup. Several studies show that prosthetic implant wear might be predicted partly by computing contact pressure distribution and contact area during everyday activities. A more reliable method of distinguishing between ideal and reality models may be incorporating activities with severe loading and boundary conditions.