1
|
Tanaka T, Maeda Y, Miura T. Effects of Tactile Sensory Stimulation Training of the Trunk and Sole on Standing Balance Ability in Older Adults: A Randomized Controlled Trial. J Funct Morphol Kinesiol 2025; 10:96. [PMID: 40137348 PMCID: PMC11943072 DOI: 10.3390/jfmk10010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Aging is associated with a decline in both motor and sensory functions that destabilizes posture, increasing the risk of falls. Dynamic standing balance is strongly linked to fall risk in older adults. Sensory information from the soles and trunk is essential for balance control. Few studies have demonstrated the efficacy of targeted sensory training on balance improvement. Objectives: To assess vibratory sensation function in the trunk and sole using a vibration device and evaluate the effects of trunk and sole tactile sensation training on dynamic standing balance performance in older adults. Methods: In this randomized controlled trial, eighteen older adults were randomly assigned to three groups: control (n = 8, mean age 66.6 ± 3.4), trunk training (n = 5, mean age 71.0 ± 1.9), and sole training (n = 5, mean age 66.4 ± 3.6). The training lasted for 10 weeks, utilizing vibratory stimulation at 128 Hz through tuning forks for 15 min during each session, conducted three times a week. The primary outcomes were vibratory sensitivity, assessed with a belt-fitted device on the trunk and a plate equipped with vibrators on the soles, and dynamic balance, evaluated through force plate testing that measured limits of stability (LoS) in multiple directions. Results: Correct response rates for trunk vibratory stimulation significantly improved in the trunk training group (p < 0.05). The rate of two-stimuli discrimination improved in both training groups. Significant advancements in balance metrics were observed in the trunk and sole training groups when compared to the control group, especially regarding anterior-posterior tilts (p < 0.05). A positive correlation was identified between two-point vibratory discrimination and LoS test performance. Conclusions: Sensory training of the trunk and sole enhances balance performance in older adults, suggesting potential benefits for fall prevention. Future studies should assess long-term effects and explore optimal training duration with larger sample sizes.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 113-8656, Japan
| | - Yusuke Maeda
- Department of Physical Therapy, School of Health Sciences at Odawara, International University of Health and Welfare, Odawara 250-8588, Japan;
| | - Takahiro Miura
- National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 277-0882, Japan;
| |
Collapse
|
2
|
Guarducci S, Jayousi S, Caputo S, Mucchi L. Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices. SENSORS (BASEL, SWITZERLAND) 2025; 25:556. [PMID: 39860927 PMCID: PMC11769560 DOI: 10.3390/s25020556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies. This paper aims to address this gap by presenting a detailed comparative analysis of selected wearable, non-continuous monitoring, and non-contact sensors used for health monitoring. To achieve this, we conducted a comprehensive evaluation of various sensors available on the market, utilizing key indicators such as sensor performance, usability, associated platforms functionality, data management, battery efficiency, and cost-effectiveness. Our findings highlight the strengths and limitations of each sensor type, thus offering valuable insights for the selection of the most appropriate technology based on specific healthcare needs. This study has the potential to serve as a valuable resource for researchers, healthcare providers, and policymakers, contributing to a deeper understanding of existing user-centered health monitoring solutions.
Collapse
Affiliation(s)
- Sara Guarducci
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (S.G.); (S.C.); (L.M.)
| | - Sara Jayousi
- PIN Foundation—Prato Campus, University of Florence, 59100 Prato, Italy
| | - Stefano Caputo
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (S.G.); (S.C.); (L.M.)
| | - Lorenzo Mucchi
- Department of Information Engineering, University of Florence, 50139 Florence, Italy; (S.G.); (S.C.); (L.M.)
| |
Collapse
|
3
|
Tyree A, Bhatia A, Hong M, Hanna J, Kasper KA, Good B, Perez D, Govalla DN, Hunt A, Sathishkumaraselvam V, Hoffman JP, Rozenblit JW, Gutruf P. Biosymbiotic haptic feedback - Sustained long term human machine interfaces. Biosens Bioelectron 2024; 261:116432. [PMID: 38861810 DOI: 10.1016/j.bios.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
Haptic technology permeates diverse fields and is receiving renewed attention for VR and AR applications. Advances in flexible electronics, facilitate the integration of haptic technologies into soft wearable systems, however, because of small footprint requirements face challenges of operational time requiring either large batteries, wired connections or frequent recharge, restricting the utility of haptic devices to short-duration tasks or low duty cycles, prohibiting continuously assisting applications. Currently many chronic applications are not investigated because of this technological gap. Here, we address wireless power and operation challenges with a biosymbiotic approach enabling continuous operation without user intervention, facilitated by wireless power transfer, eliminating the need for large batteries, and offering long-term haptic feedback without adhesive attachment to the body. These capabilities enable haptic feedback for robotic surgery training and posture correction over weeks of use with neural net computation. The demonstrations showcase that this device class expands use beyond conventional brick and strap or epidermally attached devices enabling new fields of use for imperceptible therapeutic and assistive haptic technologies supporting care and disease management.
Collapse
Affiliation(s)
- Amanda Tyree
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Aman Bhatia
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Minsik Hong
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Good
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Dania Perez
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Dema Nua Govalla
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Abigail Hunt
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | - Jerzy W Rozenblit
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA.
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Neroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Gomez-Risquet M, Cáceres-Matos R, Magni E, Luque-Moreno C. Effects of Haptic Feedback Interventions in Post-Stroke Gait and Balance Disorders: A Systematic Review and Meta-Analysis. J Pers Med 2024; 14:974. [PMID: 39338228 PMCID: PMC11433178 DOI: 10.3390/jpm14090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Haptic feedback is an established method to provide sensory information (tactile or kinesthetic) about the performance of an activity that an individual can not consciously detect. After a stroke, hemiparesis usually leads to gait and balance disorders, where haptic feedback can be a promising approach to promote recovery. The aim of the present study is to understand its potential effects on gait and balance impairments, both after interventions and in terms of immediate effects. Methods: This research was carried out using the following scientific databases: Embase, Scopus, Web of Science, and Medline/PubMed from inception to May 2024. The Checklist for Measuring quality, PEDro scale, and the Cochrane collaboration tool were used to assess the methodological quality and risk of bias of the studies. Results: Thirteen articles were chosen for qualitative analysis, with four providing data for the meta-analysis. The findings did not yield definitive evidence on the effectiveness of haptic feedback for treating balance and gait disorders following a stroke. Conclusions: Further research is necessary in order to determine the effectiveness of haptic feedback mechanisms, with larger sample sizes and more robust methodologies. Longer interventions and pre-post design in gait training with haptic feedback are necessary.
Collapse
Affiliation(s)
- Maria Gomez-Risquet
- Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- CTS-1137 "Neurological Physiotherapy, Innovative Neurorehabilitation & Neurodevelopment Disorders (NEUROPhysiUS)" Research Group, Universidad de Sevilla, 41009 Seville, Spain
| | - Rocío Cáceres-Matos
- Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
- CTS-1050 "Complex Care, Chronicity and Health Outcomes" Research Group, Universidad de Sevilla, 41009 Seville, Spain
| | - Eleonora Magni
- Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
- CTS-969 "Care Innovation and Health Determinants" Research Group, Universidad de Sevilla, 41009 Seville, Spain
| | - Carlos Luque-Moreno
- CTS-1137 "Neurological Physiotherapy, Innovative Neurorehabilitation & Neurodevelopment Disorders (NEUROPhysiUS)" Research Group, Universidad de Sevilla, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Departamento de Fisioterapia, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
5
|
Mohammed A, Li S, Liu X. Exploring the Potentials of Wearable Technologies in Managing Vestibular Hypofunction. Bioengineering (Basel) 2024; 11:641. [PMID: 39061723 PMCID: PMC11274252 DOI: 10.3390/bioengineering11070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024] Open
Abstract
The vestibular system is dedicated to gaze stabilization, postural balance, and spatial orientation; this makes vestibular function crucial for our ability to interact effectively with our environment. Vestibular hypofunction (VH) progresses over time, and it presents differently in its early and advanced stages. In the initial stages of VH, the effects of VH are mitigated using vestibular rehabilitation therapy (VRT), which can be facilitated with the aid of technology. At more advanced stages of VH, novel techniques that use wearable technologies for sensory augmentation and sensory substitution have been applied to manage VH. Despite this, the potential of assistive technologies for VH management remains underexplored over the past decades. Hence, in this review article, we present the state-of-the-art technologies for facilitating early-stage VRT and for managing advanced-stage VH. Also, challenges and strategies on how these technologies can be improved to enable long-term ambulatory and home use are presented.
Collapse
Affiliation(s)
- Ameer Mohammed
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Shutong Li
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Xiao Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
6
|
Liu X, Zhang X, Zhang B, Zhou B, He Z, Liu T. An IMU-Based Ground Reaction Force Estimation Method and Its Application in Walking Balance Assessment. IEEE Trans Neural Syst Rehabil Eng 2024; 32:223-232. [PMID: 38153831 DOI: 10.1109/tnsre.2023.3347729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Walking is one of the most common daily movements of the human body. Therefore, quantitative evaluation of human walking has been commonly used to assist doctors in grasping the disease degree and rehabilitation process of patients in the clinic. Compared with the kinematic characteristics, the ground reaction force (GRF) during walking can directly reflect the dynamic characteristics of human walking. It can further help doctors understand the degree of muscle recovery and joint coordination of patients. This paper proposes a GRF estimation method based on the elastic elements and Newton-Euler equation hybrid driving GRF estimation method. Compared with the existing research, the innovations are as follows. 1) The hardware system consists of only two inertial measurement units (IMUs) placed on shanks. The acquisition of the overall motion characteristics of human walking is realized through the simplified four-link walking model and the thigh prediction method. 2) The method was validated not only on 10 healthy subjects but also on 11 Parkinson's patients and 10 stroke patients with normalized mean absolute errors (NMAEs) of 5.95%±1.32%, 6.09%±2.00%, 5.87%±1.59%. 3) This paper proposes a dynamic balance assessment method based on the acquired motion data and the estimated GRF. It evaluates the overall balance ability and fall risk at four key time points for all subjects recruited. Because of the low-cost system, ease of use, low motion interference and environmental constraints, and high estimation accuracy, the proposed GRF estimation method and walking balance automatic assessment have broad clinical value.
Collapse
|
7
|
Li D, Hallack A, Gwilym S, Li D, Hu MT, Cantley J. Investigating gait-responsive somatosensory cueing from a wearable device to improve walking in Parkinson's disease. Biomed Eng Online 2023; 22:108. [PMID: 37974260 PMCID: PMC10652624 DOI: 10.1186/s12938-023-01167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Freezing-of-gait (FOG) and impaired walking are common features of Parkinson's disease (PD). Provision of external stimuli (cueing) can improve gait, however, many cueing methods are simplistic, increase task loading or have limited utility in a real-world setting. Closed-loop (automated) somatosensory cueing systems have the potential to deliver personalised, discrete cues at the appropriate time, without requiring user input. Further development of cue delivery methods and FOG-detection are required to achieve this. In this feasibility study, we aimed to test if FOG-initiated vibration cues applied to the lower-leg via wearable devices can improve gait in PD, and to develop real-time FOG-detection algorithms. 17 participants with Parkinson's disease and daily FOG were recruited. During 1 h study sessions, participants undertook 4 complex walking circuits, each with a different intervention: continuous rhythmic vibration cueing (CC), responsive cueing (RC; cues initiated by the research team in response to FOG), device worn with no cueing (NC), or no device (ND). Study sessions were grouped into 3 stages/blocks (A-C), separated by a gap of several weeks, enabling improvements to circuit design and the cueing device to be implemented. Video and onboard inertial measurement unit (IMU) data were analyzed for FOG events and gait metrics. RC significantly improved circuit completion times demonstrating improved overall performance across a range of walking activities. Step frequency was significantly enhanced by RC during stages B and C. During stage C, > 10 FOG events were recorded in 45% of participants without cueing (NC), which was significantly reduced by RC. A machine learning framework achieved 83% sensitivity and 80% specificity for FOG detection using IMU data. Together, these data support the feasibility of closed-loop cueing approaches coupling real-time FOG detection with responsive somatosensory lower-leg cueing to improve gait in PD.
Collapse
Affiliation(s)
- Dongli Li
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK
| | - Andre Hallack
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK
| | - Sophie Gwilym
- Oxfordshire Neurophysiotherapy, The Bosworth Clinic, Quarry Court, Bell Lane, Cassington, OX29 4DS, UK
| | - Dongcheng Li
- Department of Computer Science, University of Texas at Dallas, Richardson, TX, 75082, USA
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Division of Neurology, University of Oxford, Oxford, Oxfordshire, UK
| | - James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX2 3PT, UK.
- Division of Systems Medicine, Ninewells Hospital & Medical School, University of Dundee, James Arrott Drive, Dundee, DD1 9SY, UK.
| |
Collapse
|
8
|
Pomplun E, Thomas A, Corrigan E, Shah VA, Mrotek LA, Scheidt RA. Vibrotactile Perception for Sensorimotor Augmentation: Perceptual Discrimination of Vibrotactile Stimuli Induced by Low-Cost Eccentric Rotating Mass Motors at Different Body Locations in Young, Middle-Aged, and Older Adults. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:895036. [PMID: 36188929 PMCID: PMC9397814 DOI: 10.3389/fresc.2022.895036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Sensory augmentation technologies are being developed to convey useful supplemental sensory cues to people in comfortable, unobtrusive ways for the purpose of improving the ongoing control of volitional movement. Low-cost vibration motors are strong contenders for providing supplemental cues intended to enhance or augment closed-loop feedback control of limb movements in patients with proprioceptive deficits, but who still retain the ability to generate movement. However, it remains unclear what form such cues should take and where on the body they may be applied to enhance the perception-cognition-action cycle implicit in closed-loop feedback control. As a step toward addressing this knowledge gap, we used low-cost, wearable technology to examine the perceptual acuity of vibrotactile stimulus intensity discrimination at several candidate sites on the body in a sample of participants spanning a wide age range. We also sought to determine the extent to which the acuity of vibrotactile discrimination can improve over several days of discrimination training. Healthy adults performed a series of 2-alternative forced choice experiments that quantified capability to perceive small differences in the intensity of stimuli provided by low-cost eccentric rotating mass vibration motors fixed at various body locations. In one set of experiments, we found that the acuity of intensity discrimination was poorer in older participants than in middle-aged and younger participants, and that stimuli applied to the torso were systematically harder to discriminate than stimuli applied to the forearm, knee, or shoulders, which all had similar acuities. In another set of experiments, we found that older adults could improve intensity discrimination over the course of 3 days of practice on that task such that their final performance did not differ significantly from that of younger adults. These findings may be useful for future development of wearable technologies intended to improve the control of movements through the application of supplemental vibrotactile cues.
Collapse
Affiliation(s)
- Ella Pomplun
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ashiya Thomas
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Corrigan
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Valay A. Shah
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Leigh A. Mrotek
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert A. Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Ma CZH, Bao T, DiCesare CA, Harris I, Chambers A, Shull PB, Zheng YP, Cham R, Sienko KH. Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot-Floor Contact Angle. SENSORS (BASEL, SWITZERLAND) 2022; 22:3641. [PMID: 35632054 PMCID: PMC9144019 DOI: 10.3390/s22103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Slip-induced falls, responsible for approximately 40% of falls, can lead to severe injuries and in extreme cases, death. A large foot-floor contact angle (FFCA) during the heel-strike event has been associated with an increased risk of slip-induced falls. The goals of this feasibility study were to design and assess a method for detecting FFCA and providing cues to the user to generate a compensatory FFCA response during a future heel-strike event. The long-term goal of this research is to train gait in order to minimize the likelihood of a slip event due to a large FFCA. An inertial measurement unit (IMU) was used to estimate FFCA, and a speaker provided auditory semi-real-time feedback when the FFCA was outside of a 10-20 degree target range following a heel-strike event. In addition to training with the FFCA feedback during a 10-min treadmill training period, the healthy young participants completed pre- and post-training overground walking trials. Results showed that training with FFCA feedback increased FFCA events within the target range by 16% for "high-risk" walkers (i.e., participants that walked with more than 75% of their FFCAs outside the target range) both during feedback treadmill trials and post-training overground trials without feedback, supporting the feasibility of training FFCA using a semi-real-time FFCA feedback system.
Collapse
Affiliation(s)
- Christina Zong-Hao Ma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Tian Bao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - Christopher A. DiCesare
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - Isaac Harris
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| | - April Chambers
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.C.); (R.C.)
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter B. Shull
- Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Rakie Cham
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.C.); (R.C.)
| | - Kathleen H. Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.Z.-H.M.); (T.B.); (C.A.D.); (I.H.)
| |
Collapse
|
10
|
Alizadeh Noghani M, Shahinpoor M, Hejrati B. Design and Validation of a Smartphone-based Haptic Feedback System for Gait Training. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3094502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Shull PB, Xia H, Charlton JM, Hunt MA. Wearable Real-Time Haptic Biofeedback Foot Progression Angle Gait Modification to Assess Short-Term Retention and Cognitive Demand. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1858-1865. [PMID: 34478376 DOI: 10.1109/tnsre.2021.3110202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Foot progression angle gait (FPA) modification is an important part of rehabilitation for a variety of neuromuscular and musculoskeletal diseases. While wearable haptic biofeedback could enable FPA gait modification for more widespread use than traditional tethered, laboratory-based approaches, retention, and cognitive demand in FPA gait modification via wearable haptic biofeedback are currently unknown and may be important to real-life implementation. Thus, the purpose of this study was to assess the feasibility of wearable haptic biofeedback to assess short-term retention and cognitive demand during FPA gait modification. Ten healthy participants performed toe-in (target 10 degrees change in internal rotation) and toe-out (target 10 degrees change in external rotation) haptic gait training trials followed by short-term retention trials, and cognitive multitasking trials. Results showed that participants were able to initially respond to the wearable haptic feedback to modify their FPA to adopt the new toe-in (9.7 ± 0.8 degree change in internal rotation) and toe-out (8.9 ± 1.0 degree change in external rotation) gait patterns. Participants retained the modified gait pattern on average within 3.9 ± 3.6 deg of the final haptic gait training FPA values. Furthermore, cognitive multitasking did not influence short-term retention in that there were no differences in gait performance during retention trials with or without cognitive multitasking. These results demonstrate that wearable haptic biofeedback can be used to assess short-term retention and cognitive demand during FPA gait modification without the need for traditional, tethered systems.
Collapse
|
12
|
Chia L, Andersen JT, McKay MJ, Sullivan J, Megalaa T, Pappas E. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements. J Electromyogr Kinesiol 2021; 60:102589. [PMID: 34418582 DOI: 10.1016/j.jelekin.2021.102589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Inertial Measurement Units (IMUs) are promising alternatives to laboratory-based motion capture methods in biomechanical assessment of athletic movements. The aim of this study was to investigate the validity of an IMU system for determining knee and trunk kinematics during landing and cutting tasks for clinical and research applications in sporting populations. Twenty-seven participants performed five cutting and landing tasks while being recorded using a gold-standard optoelectronic motion capture system and an IMU system. Intra-class coefficients, Pearson's r, root-mean-square error (RMSE), bias, and Bland-Altman limits of agreements between the motion capture and IMU systems were quantified for knee and trunk sagittal- and frontal-plane range-of-motion (ROM) and peak angles. Our results indicate that IMU validity was task-, joint-, and plane-dependent. Based on good-to-excellent (ICC) correlation, reasonable accuracy (RMSE < 5°), bias within 2°, and limits of agreements within 10°, we recommend the use of this IMU system for knee sagittal-plane ROM estimations during cutting, trunk sagittal-plane peak angle estimation during the double-leg landing task, trunk sagittal-plane ROM estimation for almost all tasks, and trunk frontal-plane peak angle estimation for the right single-leg landing task. Due to poor comparisons with the optoelectronic system, we do not recommend this IMU system for knee frontal-plane kinematic estimations.
Collapse
Affiliation(s)
- Lionel Chia
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Jordan T Andersen
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marnee J McKay
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Justin Sullivan
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Tomas Megalaa
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Evangelos Pappas
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The University of Wollongong, Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
13
|
Roggio F, Ravalli S, Maugeri G, Bianco A, Palma A, Di Rosa M, Musumeci G. Technological advancements in the analysis of human motion and posture management through digital devices. World J Orthop 2021; 12:467-484. [PMID: 34354935 PMCID: PMC8316840 DOI: 10.5312/wjo.v12.i7.467] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention.
Collapse
Affiliation(s)
- Federico Roggio
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| | - Antonino Bianco
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
| | - Antonio Palma
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
- Research Center on Motor Activities, University of Catania, Catania 95123, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
14
|
Lindsey BW, Xu J, Chiasson D, Shull P, Cortes N. Feasibility of Wearable Haptic Biofeedback Training for Reducing the Knee Abduction Moment During Overground Walking. J Biomech Eng 2021; 143:044501. [PMID: 32793949 DOI: 10.1115/1.4048082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 11/08/2022]
Abstract
Gait modifications are effective in reducing the first peak knee abduction moment (PKAM), a surrogate for knee loading. Reliance on 3D motion capture currently restricts these modifications to the laboratory. Therefore, our purpose was to test the feasibility of a novel wearable biofeedback system to train (1) toe-in and trunk lean modifications and (2) combined toe-in and trunk lean modifications to reduce PKAM during overground walking outside of the laboratory. Twelve healthy participants practiced modifications in a university hallway directly after performing five normal walking trials. The wearable feedback system provided real-time haptic biofeedback during training trials to inform participants if they were within the prescribed modification range (7-12 deg greater than baseline). Participants were instructed to move to the next modification only once they felt comfortable and could perform it with minimal errors. Following training, five trials of each modification were immediately performed in the gait laboratory without feedback. All participants successfully modified their foot progression and trunk angle using the wearable system. At post-test, PKAM decreased from baseline by 62%, 55%, and 28% during combined, trunk leanand toe-in gait, respectively. The wearable feedback system was effective to modify participants' foot and trunk angle by the prescribed amount, resulting in reduced PKAM during all modifications at post-test. Participants were also able to perform a combined modification, although it took longer to report feeling comfortable doing so. This study demonstrates that a wearable feedback system is feasible to modify kinematic parameters and train gait modifications outside the laboratory.
Collapse
Affiliation(s)
- Bryndan W Lindsey
- School of Kinesiology, George Mason University, 10890 George Mason Circle, Katherine Johnson Hall 201E, MSN 4E5, Manassas, VA 20110; Sports Medicine Assessment, Research & Testing (SMART) Laboratory, 9438 Innovation Loop, Manassas, VA 20110
| | - Junkai Xu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Chiasson
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peter Shull
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nelson Cortes
- School of Kinesiology; Sports Medicine Assessment, Research & Testing (SMART) Laboratory; George Mason University, 10890 George Mason Circle, Bull Run Hall 220, MSN 4E5, Manassas, VA 20110; Department of Bioengineering, George Mason University, 4400 University Dr, Fairfax, VA 22030; Institute for BioHealth Innovation, George Mason University, 10890 George Mason Circle, Bull Run Hall 220, MSN 4E5, Manassas, VA 20110
| |
Collapse
|
15
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
16
|
Gawronska A, Pajor A, Zamyslowska-Szmytke E, Rosiak O, Jozefowicz-Korczynska M. Usefulness of Mobile Devices in the Diagnosis and Rehabilitation of Patients with Dizziness and Balance Disorders: A State of the Art Review. Clin Interv Aging 2020; 15:2397-2406. [PMID: 33376315 PMCID: PMC7764625 DOI: 10.2147/cia.s289861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The gold standard for objective body posture examination is posturography. Body movements are detected through the use of force platforms that assess static and dynamic balance (conventional posturography). In recent years, new technologies like wearable sensors (mobile posturography) have been applied during complex dynamic activities to diagnose and rehabilitate balance disorders. They are used in healthy people, especially in the aging population, for detecting falls in the older adults, in the rehabilitation of different neurological, osteoarticular, and muscular system diseases, and in vestibular disorders. Mobile devices are portable, lightweight, and less expensive than conventional posturography. The vibrotactile system can consist of an accelerometer (linear acceleration measurement), gyroscopes (angular acceleration measurement), and magnetometers (heading measurement, relative to the Earth’s magnetic field). The sensors may be mounted to the trunk (most often in the lumbar region of the spine, and the pelvis), wrists, arms, sternum, feet, or shins. Some static and dynamic clinical tests have been performed with the use of wearable sensors. Smartphones are widely used as a mobile computing platform and to evaluate the results or monitor the patient during the movement and rehabilitation. There are various mobile applications for smartphone-based balance systems. Future research should focus on validating the sensitivity and reliability of mobile device measurements compared to conventional posturography. Conclusion Smartphone based mobile devices are limited to one sensor lumbar level posturography and offer basic clinical evaluation. Single or multi sensor mobile posturography is available from different manufacturers and offers single to multi-level measurements, providing more data and in some instances even performing sophisticated clinical balance tests.
Collapse
Affiliation(s)
- Anna Gawronska
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Anna Pajor
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Ewa Zamyslowska-Szmytke
- Balance Disorders Unit, Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Oskar Rosiak
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | - Magdalena Jozefowicz-Korczynska
- Balance Disorders Unit, Department of Otolaryngology, Medical University of Lodz, The Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| |
Collapse
|
17
|
Giraldo-Pedroza A, Lee WCC, Lam WK, Coman R, Alici G. Effects of Wearable Devices with Biofeedback on Biomechanical Performance of Running-A Systematic Review. SENSORS 2020; 20:s20226637. [PMID: 33228137 PMCID: PMC7699362 DOI: 10.3390/s20226637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023]
Abstract
This present review includes a systematic search for peer-reviewed articles published between March 2009 and March 2020 that evaluated the effects of wearable devices with biofeedback on the biomechanics of running. The included articles did not focus on physiological and metabolic metrics. Articles with patients, animals, orthoses, exoskeletons and virtual reality were not included. Following the PRISMA guidelines, 417 articles were first identified, and nineteen were selected following the removal of duplicates and articles which did not meet the inclusion criteria. Most reviewed articles reported a significant reduction in positive peak acceleration, which was found to be related to tibial stress fractures in running. Some previous studies provided biofeedback aiming to increase stride frequencies. They produced some positive effects on running, as they reduced vertical load in knee and ankle joints and vertical displacement of the body and increased knee flexion. Some other parameters, including contact ground time and speed, were fed back by wearable devices for running. Such devices reduced running time and increased swing phase time. This article reviews challenges in this area and suggests future studies can evaluate the long-term effects in running biomechanics produced by wearable devices with biofeedback.
Collapse
Affiliation(s)
- Alexandra Giraldo-Pedroza
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Winson Chiu-Chun Lee
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Wing-Kai Lam
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
- Li Ning Sports Science Research Center, Beijing 101111, China
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Robyn Coman
- School of Health and Society, Faculty of Arts, Social Sciences & Humanities, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong Innovation Campus, North Wollongong, NSW 2500, Australia
| |
Collapse
|
18
|
A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation. SENSORS 2020; 20:s20226417. [PMID: 33182658 PMCID: PMC7697869 DOI: 10.3390/s20226417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 01/14/2023]
Abstract
Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment. The first data set utilized IMU sensors and a GAITRite mat in our laboratory to monitor gait in fifteen participants: 9 young adults (YA1) (5 females, 4 males, age 23.6 ± 1 years), and 6 people with Parkinson's disease (PD) (3 females, 3 males, age 72.3 ± 6.6 years). The second data set, which was accessed from a publicly-available repository, utilized IMU sensors and an optoelectronic system to monitor gait in five young adults (YA2) (2 females, 3 males, age 30.5 ± 3.5 years). In order to provide a complete representation of validity, we used multiple statistical analyses with overlapping metrics. Gait parameters such as step time and step length were calculated and the agreement between the two measurement systems for each gait parameter was assessed using Passing-Bablok (PB) regression analysis and calculation of the Intra-class Correlation Coefficient (ICC (2,1)) with 95% confidence intervals for a single measure, absolute-agreement, 2-way mixed-effects model. In addition, Bland-Altman (BA) plots were used to visually inspect the measurement agreement. The values of the PB regression slope were close to 1 and intercept close to 0 for both step time and step length measures. The results obtained using ICC (2,1) for step length showed a moderate to excellent agreement for YA (between 0.81 and 0.95) and excellent agreement for PD (between 0.93 and 0.98), while both YA and PD had an excellent agreement in step time ICCs (>0.9). Finally, examining the BA plots showed that the measurement difference was within the limits of agreement (LoA) with a 95% probability. Results from this preliminary study indicate that using the SDI-Step algorithm to process signals from wearable IMUs provides measurements that are in close agreement with widely-used laboratory-based systems and can be considered as a valid tool for measuring spatiotemporal gait parameters.
Collapse
|
19
|
Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR Mhealth Uhealth 2020; 8:e18907. [PMID: 33164904 PMCID: PMC7683248 DOI: 10.2196/18907] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the rise of mobile medicine, the development of new technologies such as smart sensing, and the popularization of personalized health concepts, the field of smart wearable devices has developed rapidly in recent years. Among them, medical wearable devices have become one of the most promising fields. These intelligent devices not only assist people in pursuing a healthier lifestyle but also provide a constant stream of health care data for disease diagnosis and treatment by actively recording physiological parameters and tracking metabolic status. Therefore, wearable medical devices have the potential to become a mainstay of the future mobile medical market. OBJECTIVE Although previous reviews have discussed consumer trends in wearable electronics and the application of wearable technology in recreational and sporting activities, data on broad clinical usefulness are lacking. We aimed to review the current application of wearable devices in health care while highlighting shortcomings for further research. In addition to daily health and safety monitoring, the focus of our work was mainly on the use of wearable devices in clinical practice. METHODS We conducted a narrative review of the use of wearable devices in health care settings by searching papers in PubMed, EMBASE, Scopus, and the Cochrane Library published since October 2015. Potentially relevant papers were then compared to determine their relevance and reviewed independently for inclusion. RESULTS A total of 82 relevant papers drawn from 960 papers on the subject of wearable devices in health care settings were qualitatively analyzed, and the information was synthesized. Our review shows that the wearable medical devices developed so far have been designed for use on all parts of the human body, including the head, limbs, and torso. These devices can be classified into 4 application areas: (1) health and safety monitoring, (2) chronic disease management, (3) disease diagnosis and treatment, and (4) rehabilitation. However, the wearable medical device industry currently faces several important limitations that prevent further use of wearable technology in medical practice, such as difficulties in achieving user-friendly solutions, security and privacy concerns, the lack of industry standards, and various technical bottlenecks. CONCLUSIONS We predict that with the development of science and technology and the popularization of personalized health concepts, wearable devices will play a greater role in the field of health care and become better integrated into people's daily lives. However, more research is needed to explore further applications of wearable devices in the medical field. We hope that this review can provide a useful reference for the development of wearable medical devices.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Xu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Cajamarca G, Herskovic V, Rossel PO. Enabling Older Adults' Health Self-Management through Self-Report and Visualization-A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4348. [PMID: 32759801 PMCID: PMC7436010 DOI: 10.3390/s20154348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Aging is associated with a progressive decline in health, resulting in increased medical care and costs. Mobile technology may facilitate health self-management, thus increasing the quality of care and reducing costs. Although the development of technology offers opportunities in monitoring the health of older adults, it is not clear whether these technologies allow older adults to manage their health data themselves. This paper presents a review of the literature on mobile health technologies for older adults, focusing on whether these technologies enable the visualization of monitored data and the self-reporting of additional information by the older adults. The systematic search considered studies published between 2009 and 2019 in five online databases. We screened 609 articles and identified 95 that met our inclusion and exclusion criteria. Smartphones and tablets are the most frequently reported technology for older adults to enter additional data to the one that is monitored automatically. The recorded information is displayed on the monitoring device and screens of external devices such as computers. Future designs of mobile health technology should allow older users to enter additional information and visualize data; this could enable them to understand their own data as well as improve their experience with technology.
Collapse
Affiliation(s)
- Gabriela Cajamarca
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Valeria Herskovic
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Pedro O. Rossel
- Department of Computer Science, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
21
|
Xia H, Charlton JM, Shull PB, Hunt MA. Portable, automated foot progression angle gait modification via a proof-of-concept haptic feedback-sensorized shoe. J Biomech 2020; 107:109789. [PMID: 32321637 DOI: 10.1016/j.jbiomech.2020.109789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/28/2022]
Abstract
Modifying the foot progression angle (FPA) is a non-pharmacological, non-surgical treatment option for knee osteoarthritis, however current widespread adoption has been limited by the requirement of laboratory-based motion capture systems. We present the first customized haptic feedback-sensorized shoe for estimating and modifying FPA during walking gait, which includes an electronic inertial and magnetometer module in the sole for estimating FPA, and two vibration motors attached to the medial and lateral shoe lining for providing vibrotactile feedback. Feasibility testing was performed by comparing FPA performance while wearing the haptic feedback-sensorized shoe with the training targets. Participants performed five walking trials with five randomly-presented FPA targets (10° toe-in, 0°, 10° toe-out, 20° toe-out, and 30° toe-out) of 2 min each on a treadmill. Overall average FPA performance error across all conditions was 0.2 ± 4.1°, and the overall mean absolute FPA performance error across all conditions was 3.1 ± 2.6°. Reducing the size of the no-feedback window resulted in less performance error during walking. This study demonstrates that a novel haptic feedback-sensorized shoe can be used to effectively train FPA modifications. The haptic feedback-sensorized shoe could potentially be used for FPA gait modification outside of specialized camera-based motion capture laboratories as a conservative treatment for knee osteoarthritis or other related clinical applications requiring FPA assessment and modification in daily life.
Collapse
Affiliation(s)
- Haisheng Xia
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jesse M Charlton
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Peter B Shull
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Michael A Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada; Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Ballardini G, Florio V, Canessa A, Carlini G, Morasso P, Casadio M. Vibrotactile Feedback for Improving Standing Balance. Front Bioeng Biotechnol 2020; 8:94. [PMID: 32154229 PMCID: PMC7046798 DOI: 10.3389/fbioe.2020.00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
Maintaining balance standing upright is an active process that complements the stabilizing properties of muscle stiffness with feedback control driven by independent sensory channels: proprioceptive, visual, and vestibular. Considering that the contribution of these channels is additive, we investigated to what extent providing an additional channel, based on vibrotactile stimulation, may improve balance control. This study focused only on healthy young participants for evaluating the effects of different encoding methods and the importance of the informational content. We built a device that provides a vibrotactile feedback using two vibration motors placed on the anterior and posterior part of the body, at the L5 level. The vibration was synchronized with an accelerometric measurement encoding a combination of the position and acceleration of the body center of mass in the anterior-posterior direction. The goal was to investigate the efficacy of the information encoded by this feedback in modifying postural patterns, comparing, in particular, two different encoding methods: vibration always on and vibration with a dead zone, i.e., silent in a region around the natural stance posture. We also studied if after the exposure, the participants modified their normal oscillation patterns, i.e., if there were after effects. Finally, we investigated if these effects depended on the informational content of the feedback, introducing trials with vibration unrelated to the actual postural oscillations (sham feedback). Twenty-four participants were asked to stand still with their eyes closed, alternating trials with and without vibrotactile feedback: nine were tested with vibration always on and sham feedback, fifteen with dead zone feedback. The results show that synchronized vibrotactile feedback reduces significantly the sway amplitude while increasing the frequency in anterior-posterior and medial-lateral directions. The two encoding methods had no different effects of reducing the amount of postural sway during exposure to vibration, however only the dead-zone feedback led to short-term after effects. The presence of sham vibration, instead, increased the sway amplitude, highlighting the importance of the encoded information.
Collapse
Affiliation(s)
- Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Valeria Florio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giorgio Carlini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Pietro Morasso
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genoa, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Muthukrishnan N, Abbas JJ, Shill HA, Krishnamurthi N. Cueing Paradigms to Improve Gait and Posture in Parkinson's Disease: A Narrative Review. SENSORS 2019; 19:s19245468. [PMID: 31835870 PMCID: PMC6960538 DOI: 10.3390/s19245468] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Progressive gait dysfunction is one of the primary motor symptoms in people with Parkinson’s disease (PD). It is generally expressed as reduced step length and gait speed and as increased variability in step time and step length. People with PD also exhibit stooped posture which disrupts gait and impedes social interaction. The gait and posture impairments are usually resistant to the pharmacological treatment, worsen as the disease progresses, increase the likelihood of falls, and result in higher rates of hospitalization and mortality. These impairments may be caused by perceptual deficiencies (poor spatial awareness and loss of temporal rhythmicity) due to the disruptions in processing intrinsic information related to movement initiation and execution which can result in misperceptions of the actual effort required to perform a desired movement and maintain a stable posture. Consequently, people with PD often depend on external cues during execution of motor tasks. Numerous studies involving open-loop cues have shown improvements in gait and freezing of gait (FoG) in people with PD. However, the benefits of cueing may be limited, since cues are provided in a consistent/rhythmic manner irrespective of how well a person follows them. This limitation can be addressed by providing feedback in real-time to the user about performance (closed-loop cueing) which may help to improve movement patterns. Some studies that used closed-loop cueing observed improvements in gait and posture in PD, but the treadmill-based setup in a laboratory would not be accessible outside of a research setting, and the skills learned may not readily and completely transfer to overground locomotion in the community. Technologies suitable for cueing outside of laboratory environments could facilitate movement practice during daily activities at home or in the community and could strongly reinforce movement patterns and improve clinical outcomes. This narrative review presents an overview of cueing paradigms that have been utilized to improve gait and posture in people with PD and recommends development of closed-loop wearable systems that can be used at home or in the community to improve gait and posture in PD.
Collapse
Affiliation(s)
- Niveditha Muthukrishnan
- Center for Adaptive Neural Systems, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA; (N.M.); (J.J.A.)
| | - James J. Abbas
- Center for Adaptive Neural Systems, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA; (N.M.); (J.J.A.)
| | - Holly A. Shill
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Narayanan Krishnamurthi
- Center for Adaptive Neural Systems, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA; (N.M.); (J.J.A.)
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: ; Tel.: +1-(602)-496-0912
| |
Collapse
|
24
|
Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. SENSORS 2019; 19:s19051021. [PMID: 30823373 PMCID: PMC6427361 DOI: 10.3390/s19051021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023]
Abstract
Rehabilitation following knee injury or surgery is critical for recovery of function and independence. However, patient non-adherence remains a significant barrier to success. Remote rehabilitation using mobile health (mHealth) technologies have potential for improving adherence to and execution of home exercise. We developed a remote rehabilitation management system combining two wireless inertial measurement units (IMUs) with an interactive mobile application and a web-based clinician portal (interACTION). However, in order to translate interACTION into the clinical setting, it was first necessary to verify the efficacy of measuring knee motion during rehabilitation exercises for physical therapy and determine if visual feedback significantly improves the participant’s ability to perform the exercises correctly. Therefore, the aim of this study was to verify the accuracy of the IMU-based knee angle measurement system during three common physical therapy exercises, quantify the effect of visual feedback on exercise performance, and understand the qualitative experience of the user interface through survey data. A convenience sample of ten healthy control participants were recruited for an IRB-approved protocol. Using the interACTION application in a controlled laboratory environment, participants performed ten repetitions of three knee rehabilitation exercises: heel slides, short arc quadriceps contractions, and sit-to-stand. The heel slide exercise was completed without feedback from the mobile application, then all exercises were performed with visual feedback. Exercises were recorded simultaneously by the IMU motion tracking sensors and a video-based motion tracking system. Validation showed moderate to good agreement between the two systems for all exercises and accuracy was within three degrees. Based on custom usability survey results, interACTION was well received. Overall, this study demonstrated the potential of interACTION to measure range of motion during rehabilitation exercises for physical therapy and visual feedback significantly improved the participant’s ability to perform the exercises correctly.
Collapse
|
25
|
Simpson L, Maharaj MM, Mobbs RJ. The role of wearables in spinal posture analysis: a systematic review. BMC Musculoskelet Disord 2019; 20:55. [PMID: 30736775 PMCID: PMC6368717 DOI: 10.1186/s12891-019-2430-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background Wearables consist of numerous technologies that are worn on the body and measure parameters such as step count, distance travelled, heart rate and sleep quantity. Recently, various wearable systems have been designed capable of detecting spinal posture and providing live biofeedback when poor posture is sustained. It is hypothesised that long-term use of these wearables may improve spinal posture. Research questions To (1) examine the capabilities of current devices assessing spine posture, (2) to identify studies implementing such devices in the clinical setting and (3) comment on the clinical practicality of integration of such devices into routine care where appropriate. Methods A comprehensive systematic review was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) across the following databases: PubMed; MEDLINE; EMBASE; Cochrane; and Scopus. Articles related to wearables systems able to measure spinal posture were selected amongst all published studies dated from 1980 onwards. Extracted data was collected as per a predetermined checklist including device types, study objectives, findings and limitations. Results A total of 37 articles were extensively reviewed and analysed in the final review. The proposed wearables most commonly used Inertial Measurement Units (IMUs) as the underlying technology. Wearables measuring spinal posture have been proposed to be used in the following settings: post-operative rehabilitation; treatment of musculoskeletal disorders; diagnosis of pathological spinal posture; monitoring of progression of Parkinson’s Disease; detection of falls; workplace occupational health and safety; comparison of interventions. Conclusions This is the first and only study to specifically review wearable devices that monitor spinal posture. Our findings suggest that currently available devices are capable of assessing spinal posture with good accuracy in the clinical setting. However, further validation regarding the long-term use of these technologies and improvements regarding practicality is required for commercialisation.
Collapse
Affiliation(s)
- Lauren Simpson
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Monish M Maharaj
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia. .,Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia. .,Prince of Wales Hospital, Randwick, NSW, Australia.
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
26
|
Karatsidis A, Richards RE, Konrath JM, van den Noort JC, Schepers HM, Bellusci G, Harlaar J, Veltink PH. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J Neuroeng Rehabil 2018; 15:78. [PMID: 30111337 PMCID: PMC6094564 DOI: 10.1186/s12984-018-0419-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background Gait retraining interventions using real-time biofeedback have been proposed to alter the loading across the knee joint in patients with knee osteoarthritis. Despite the demonstrated benefits of these conservative treatments, their clinical adoption is currently obstructed by the high complexity, spatial demands, and cost of optical motion capture systems. In this study we propose and evaluate a wearable visual feedback system for gait retraining of the foot progression angle (FPA). Methods The primary components of the system are inertial measurement units, which track the human movement without spatial limitations, and an augmented reality headset used to project the visual feedback in the visual field. The adapted gait protocol contained five different target angles ranging from 15 degrees toe-out to 5 degrees toe-in. Eleven healthy participants walked on an instrumented treadmill, and the protocol was performed using both an established laboratory visual feedback driven by optical motion capture, and the proposed wearable system. Results and conclusions The wearable system tracked FPA with an accuracy of 2.4 degrees RMS and ICC=0.94 across all target angles and subjects, when compared to an optical motion capture reference. In addition, the effectiveness of the biofeedback, reflected by the number of steps with FPA value ±2 degrees from the target, was found to be around 50% in both wearable and laboratory approaches. These findings demonstrate that retraining of the FPA using wearable inertial sensing and visual feedback is feasible with effectiveness matching closely an established laboratory method. The proposed wearable setup may reduce the complexity of gait retraining applications and facilitate their transfer to routine clinical practice.
Collapse
Affiliation(s)
- Angelos Karatsidis
- Xsens Technologies B.V, Pantheon 6, Enschede, 7521 PR, The Netherlands. .,Department of Biomedical Signals and Systems (BSS), Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - Rosie E Richards
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jason M Konrath
- Xsens Technologies B.V, Pantheon 6, Enschede, 7521 PR, The Netherlands
| | - Josien C van den Noort
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, VU University Medical Center, Amsterdam, The Netherlands.,Academic Medical Center, Musculoskeletal Imaging Quantification Center (MIQC), Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - H Martin Schepers
- Xsens Technologies B.V, Pantheon 6, Enschede, 7521 PR, The Netherlands
| | - Giovanni Bellusci
- Xsens Technologies B.V, Pantheon 6, Enschede, 7521 PR, The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, VU University Medical Center, Amsterdam, The Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Peter H Veltink
- Department of Biomedical Signals and Systems (BSS), Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
27
|
Schließmann D, Nisser M, Schuld C, Gladow T, Derlien S, Heutehaus L, Weidner N, Smolenski U, Rupp R. Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients. J Neuroeng Rehabil 2018; 15:44. [PMID: 29843763 PMCID: PMC5975685 DOI: 10.1186/s12984-018-0389-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Walking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly. METHODS In a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2-3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman's Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users' satisfaction was assessed by a customized questionnaire. RESULTS Fifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman's test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system's usability and its therapeutic effect as positive. CONCLUSIONS Mobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs. TRIAL REGISTRATION DRKS00011853 , retrospectively registered on 2017/03/23.
Collapse
Affiliation(s)
- Daniel Schließmann
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Maria Nisser
- Institute for Physiotherapy, University Hospital Jena, 07747 Jena, Germany
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Till Gladow
- Institute for Physiotherapy, University Hospital Jena, 07747 Jena, Germany
| | - Steffen Derlien
- Institute for Physiotherapy, University Hospital Jena, 07747 Jena, Germany
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Ulrich Smolenski
- Institute for Physiotherapy, University Hospital Jena, 07747 Jena, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany
| |
Collapse
|