1
|
Hidalgo Perea S, Uppstrom TJ, Lin KM, Klinger CE, Bromage TG, Shea KG, Green DW, Rodeo SA. An ultrastructure analysis of the developing human anterior cruciate ligament tibial enthesis. J Orthop Res 2025; 43:264-272. [PMID: 39447005 DOI: 10.1002/jor.25999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
This study aimed to investigate the ultrastructural anatomy of the developing ACL tibial enthesis. We hypothesized that enthesis architecture would progressively mature and remodel, eventually resembling that of the adult by the early postnatal stage. Five fresh-frozen human pediatric cadaveric knees aged 1-36 months underwent anatomical dissection to harvest the ACL insertion and underlying tibial chondroepiphysis. The samples were prepared for scanning electron microscopy (SEM) to examine the ultrastructural anatomy of the enthesis and underwent histological staining for circular polarized light (CPL) and light microscopy imaging. SEM analysis of the 1- and 8-month-old samples revealed a shallow interdigitation between the dense fibrous (ligamentous) tissue and unmineralized chondrogenic tissues, with a minimal transition zone. By 11-month, a more complex transition zone was present. By age 19- and 36-month-old, a progressively more complex and defined fibrocartilage zone was observed. CPL analysis revealed distinct collagen fiber continuity, alignment, and organization changes over time. By 19 and 36 months, the samples exhibited complex fiber arrangements and a progression toward uniform fiber orientation. Similarly, histological analysis demonstrated progressive remodeling of the enthesis with increasing age. Our results suggest that the ACL enthesis of the developing knee begins to mimic that of an adult as early as 19 months of age, as a more complex transition between ligamentous and chondro-epiphyseal tissue can be appreciated. We hypothesize that the observed changes are likely due to mechanical loading of the enthesis with the onset of weightbearing. Future investigations of ACL reconstruction and repair will benefit from improved understanding of the chondro-epiphyseal/ACL regions.
Collapse
Affiliation(s)
- Sofia Hidalgo Perea
- Pediatric Orthopaedic Service, Hospital for Special Surgery, New York, New York, USA
- Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Tyler J Uppstrom
- Pediatric Orthopaedic Service, Hospital for Special Surgery, New York, New York, USA
| | - Kenneth M Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Craig E Klinger
- Orthopaedic Trauma Service, Hospital for Special Surgery, New York, New York, USA
| | - Timothy G Bromage
- Department of Molecular Pathobiology, Hard Tissue Research Unit, New York University College of Dentistry, New York, New York, USA
| | - Kevin G Shea
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Daniel W Green
- Pediatric Orthopaedic Service, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
2
|
Zhang X, Li K, Wang C, Rao Y, Tuan RS, Wang DM, Ker DFE. Facile and rapid fabrication of a novel 3D-printable, visible light-crosslinkable and bioactive polythiourethane for large-to-massive rotator cuff tendon repair. Bioact Mater 2024; 37:439-458. [PMID: 38698918 PMCID: PMC11063952 DOI: 10.1016/j.bioactmat.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Facile and rapid 3D fabrication of strong, bioactive materials can address challenges that impede repair of large-to-massive rotator cuff tears including personalized grafts, limited mechanical support, and inadequate tissue regeneration. Herein, we developed a facile and rapid methodology that generates visible light-crosslinkable polythiourethane (PHT) pre-polymer resin (∼30 min at room temperature), yielding 3D-printable scaffolds with tendon-like mechanical attributes capable of delivering tenogenic bioactive factors. Ex vivo characterization confirmed successful fabrication, robust human supraspinatus tendon (SST)-like tensile properties (strength: 23 MPa, modulus: 459 MPa, at least 10,000 physiological loading cycles without failure), excellent suture retention (8.62-fold lower than acellular dermal matrix (ADM)-based clinical graft), slow degradation, and controlled release of fibroblast growth factor-2 (FGF-2) and transforming growth factor-β3 (TGF-β3). In vitro studies showed cytocompatibility and growth factor-mediated tenogenic-like differentiation of mesenchymal stem cells. In vivo studies demonstrated biocompatibility (3-week mouse subcutaneous implantation) and ability of growth factor-containing scaffolds to notably regenerate at least 1-cm of tendon with native-like biomechanical attributes as uninjured shoulder (8-week, large-to-massive 1-cm gap rabbit rotator cuff injury). This study demonstrates use of a 3D-printable, strong, and bioactive material to provide mechanical support and pro-regenerative cues for challenging injuries such as large-to-massive rotator cuff tears.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, Hong Kong
| | - Ke Li
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, Hong Kong
| | - Chenyang Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
| | - Ying Rao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
| | - Dan Michelle Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, Hong Kong
| |
Collapse
|
3
|
Li H, Li Y, Xiang L, Luo S, Zhang Y, Li S. Therapeutic potential of GDF-5 for enhancing tendon regenerative healing. Regen Ther 2024; 26:290-298. [PMID: 39022600 PMCID: PMC11252783 DOI: 10.1016/j.reth.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024] Open
Abstract
Tendon injury is a common disorder of the musculoskeletal system, with a higher possibility of occurrence in elderly individuals and athletes. After a tendon injury, the tendon suffers from inadequate and slow healing, resulting in the formation of fibrotic scar tissue, ending up with inferior functional properties. Therapeutic strategies involving the application of growth factors have been advocated to promote tendon healing. Growth and differentiation-5 (GDF-5) represents one such factor that has shown promising effect on tendon healing in animal models and in vitro cultures. Although promising, these studies are limited as the molecular mechanisms by which GDF-5 exerts its effect remain incompletely understood. Starting from broadly introducing essential elements of current understanding about GDF-5, the present review aims to define the effect of GDF-5 and its possible mechanisms of action in tendon healing. Nevertheless, we still need more in vivo studies to explore dosage, application time and delivery strategy of GDF-5, so as to pave the way for future clinical translation.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, PR China
| | - Yini Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Sichuan, PR China
| | - Linmei Xiang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, PR China
| | - Yan Zhang
- Luzhou Vocational and Technical College, PR China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, PR China
| |
Collapse
|
4
|
Tonti E, Dell’Omo R, Filippelli M, Spadea L, Salati C, Gagliano C, Musa M, Zeppieri M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int J Mol Sci 2024; 25:2822. [PMID: 38474069 PMCID: PMC10932063 DOI: 10.3390/ijms25052822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Roberto Dell’Omo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
5
|
Sakatoku S, Hayashi Y, Futenma T, Sugita Y, Ishizaka R, Nawa H, Iohara K. Periostin Is a Candidate Regulator of the Host Microenvironment in Regeneration of Pulp and Dentin Complex and Periodontal Ligament in Transplantation with Stem Cell-Conditioned Medium. Stem Cells Int 2024; 2024:7685280. [PMID: 38435089 PMCID: PMC10907099 DOI: 10.1155/2024/7685280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
Purpose The microenvironment is required for tissues to maintain their properties in vivo. This microenvironment encompasses the types and three-dimensional arrangement of cells forming the tissues, and their interactions with neighboring cells and extracellular matrices, as represented by the stem cell niche. Tissue regeneration depends not on the original tissue source of the transplanted cells, but on the microenvironment in which they are transplanted. We have previously reported pulp regeneration in a heterotopic root graft model by transplantation of conditioned medium alone, which suggests that host-derived cells expressing receptors for migration factors in conditioned medium migrate into the root canal and cause pulp regeneration. Regenerative medicine is needed to restore the original function of complex tissues. To achieve this, it is necessary to reproduce the changes in the microenvironment of the host tissue that accompany the regenerative response. Therefore, it is important to reproduce the microenvironment in vivo for further development of tissue regeneration therapy. Periostin is also found in the epithelial-mesenchymal junction, with expression sites that differ depending on the mineralized matrix stage, and is involved in regulation of calcification. Methods We investigate whether periostin contributes to microenvironmental changes in regenerated pulp tissue. Dental pulp stem cells were induced into dentin, and gene expression of DSPP, nestin, DMP1, Runx2, and periostin was analyzed by qPCR and protein expression by IHC. Similarly, gene expression was analyzed using qPCR and protein expression using IHC in regenerated dental pulp obtained by ectopic transplantation. Results Since these regenerated tissues were observable on the same slice, it was possible to understand changes in the microenvironment within the tissues. Conclusions Periostin promoted proliferation of pulp stem cells, migration in type I collagen, and calcification in regenerated pulp, which strongly suggests that periostin is a promising candidate as a factor that contributes to the microenvironment of regenerated pulp.
Collapse
Affiliation(s)
- Shintarou Sakatoku
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Suemoridouri 2-11, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
| | - Yuki Hayashi
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Suemoridouri 2-11, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
| | - Taku Futenma
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Suemoridouri 2-11, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
| | - Yoshihiko Sugita
- Department of Oral Pathology and Forensic Odontology, School of Dentistry, Aichi Gakuin University, 1-1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Ryo Ishizaka
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Suemoridouri 2-11, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
| | - Hiroyuki Nawa
- Department of Pediatric Dentistry, School of Dentistry, Aichi-Gakuin University, Suemoridouri 2-11, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
| | - Koichiro Iohara
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Research Institute, Morioka 7-430, Obu 474-8511, Aichi, Japan
| |
Collapse
|
6
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
7
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
8
|
Lui H, Vaquette C, Denbeigh JM, Bindra R, van Wijnen AJ, Kakar S. BMP2 and GDF5 for Compartmentalized Regeneration of the Scapholunate Ligament. J Wrist Surg 2023; 12:418-427. [PMID: 37841358 PMCID: PMC10569873 DOI: 10.1055/s-0043-1761608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/27/2022] [Indexed: 10/17/2023]
Abstract
Background Chronic injuries to the scapholunate ligament (SLIL) alter carpal kinematics and may progress to early degenerative osteoarthritis. To date, there is no consensus for the best method for SLIL reconstruction. This study aims to assess the use of growth factors (bone morphogenetic protein [BMP]2 and growth and differentiation factor 5 [GDF5]) for compartmentalized regeneration of bone and ligament in this multiphasic scaffold in a rabbit knee model. Case Description A total of 100 µg of BMP2 and 30 µg of GDF5 were encapsulated into a heparinized gelatin-hyaluronic acid hydrogel and loaded into the appropriate compartment of the multiphasic scaffold. The multiphasic scaffold was implanted to replace the native rabbit medial collateral ligament ( n = 16). The rabbits were randomly assigned to two different treatment groups. The first group was immobilized postoperatively with the knee pinned in flexion with K-wires for 4 weeks ( n = 8) prior to sacrifice. The second group was immobilized for 4 weeks, had the K-wires removed followed by a further 4 weeks of mobilization prior to sample harvesting. Literature Review Heterotopic ossification as early as 4 weeks was noted on gross dissection and confirmed by microcomputed tomography and histological staining. This analysis revealed formation of a bony bridge located within and over the ligament compartment in the intra-articular region. Biomechanical testing showed increased ultimate force of the ligament compartment at 4 weeks postimplantation consistent with the presence of bone formation and higher numbers of scaffold failures at the bone-tendon junction. This study has demonstrated that the addition of BMP2 and GDF5 in the bone-ligament-bone (BLB) scaffold resulted in heterotopic bone formation and failure of the ligament compartment. Clinical Relevance The implantation of a three-dimensional-printed BLB scaffold alone demonstrated superior biomechanical and histological results, and further investigation is needed as a possible clinical reconstruction for the SLIL.
Collapse
Affiliation(s)
- Hayman Lui
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Cedryck Vaquette
- Centre for Oral Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Randy Bindra
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
- Department of Orthopaedic Surgery, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry, University of Vermont, Burlington, Vermont
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Du L, Qin C, Zhang H, Han F, Xue J, Wang Y, Wu J, Xiao Y, Huan Z, Wu C. Multicellular Bioprinting of Biomimetic Inks for Tendon-to-Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301309. [PMID: 37119499 PMCID: PMC10375072 DOI: 10.1002/advs.202301309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Tendon-to-bone interface has a hierarchical structure and gradient component that are conducive to distributing the stresses to achieve movement. Conventional biomaterials lack the capacity to induce synchronous repair of multiple tissues, resulting in the failure of the interface repair. Biomimetic strategies have attracted enormous attention in the field of complex structure regeneration because they can meet the different physiological requirements of multiple tissues. Herein, a biomimetic ink mimicking tendon/bone tissues is developed by combining tendon/bone-related cells and Mo-containing silicate (MS) bioceramics. Subsequently, biomimetic multicellular scaffolds are fabricated to achieve the simulation of the hierarchical structure and cellular composition of tendon-to-bone interfaces by the spatial distribution of the biomimetic inks via 3D bioprinting, which is of great significance for inducing the regeneration of complex structures in the interface region. In addition, attributed to the desirable ionic microenvironment created by MS bioceramics, the biomimetic scaffolds possess the dual function of inducing tendon/bone-related cells tenogenic and osteogenic differentiation in vitro, and promote the integrated regeneration of tendon-to-bone interfaces in vivo. The study offers a feasible strategy to construct biomimetic multicellular scaffolds with bifunction for inducing multi-lineage tissue regeneration, especially for regenerating soft-to-hard tissue interfaces.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yufeng Wang
- Nanjing First Hospital, Nanjing Medical University, 68th Changle Road, Nanjing, Jiangsu, 210006, P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Queensland, 4222, Australia
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Maffulli N, Cuozzo F, Migliorini F, Oliva F. The tendon unit: biochemical, biomechanical, hormonal influences. J Orthop Surg Res 2023; 18:311. [PMID: 37085854 PMCID: PMC10120196 DOI: 10.1186/s13018-023-03796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
The current literature has mainly focused on the biology of tendons and on the characterization of the biological properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic equilibrium. We put forward the concept of the "tendon unit" as a morpho-functional unit that can be influenced by a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself through the production of collagen following different mechanical stimuli and hypothesize that restoration of the homeostatic balance of the tendon unit should be a therapeutic target.
Collapse
Affiliation(s)
- Nicola Maffulli
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke On Trent, England
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany.
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| |
Collapse
|
11
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
12
|
Choi S, Moon JR, Park N, Im J, Kim YE, Kim JH, Kim J. Bone-Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206207. [PMID: 36314423 DOI: 10.1002/adma.202206207] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Tendon consists of soft collagen, yet it is mechanically strong and firmly adhered to the bone owing to its hierarchically anisotropic structure and unique tendon-to-bone integration (enthesis), respectively. Despite the recent advances in biomaterials, hydrogels simultaneously providing tendon-like high mechanical properties and strong adhesion to bone-mimicking enthesis is still challenging. Here, a strong, stiff, and adhesive triple-network (TN) anisotropic hydrogel that mimics a bone-adhering tendon is shown. The tough adhesive TN hydrogel is developed by combining imidazole-containing polyaspartamide (providing multiple hydrogen bonds to the bone surface) and energy-dissipative alginate-polyacrylamide double-network. To mimic the anisotropic structure and high mechanical properties of tendons, the bone-adhered TN hydrogel is linearly stretched and subsequently fixed via secondary cross-linking. The resulting hydrogel exhibits high tensile modulus and strength while maintaining a high bone adhesion without chemical modification of the bone surface. Furthermore, a bone-ligament-bone structure with strong bone adhesion reminiscent of the natural ligament is realized.
Collapse
Affiliation(s)
- Suji Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Ryul Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jihye Im
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
13
|
Growth Differentiation Factor 7 Prevents Sepsis-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3676444. [PMID: 36588594 PMCID: PMC9800101 DOI: 10.1155/2022/3676444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
Objective Acute lung injury (ALI) is a life-threatening complication during sepsis and contributes to multiple organ failure and high mortality for septic patients. The present study aims to investigate the role and molecular basis of growth differentiation factor 7 (GDF7) in sepsis-induced ALI. Methods Mice were subcutaneously injected with recombinant mouse GDF7 Protein (rmGDF7) and then intratracheally injected with lipopolysaccharide (LPS) to generate sepsis-induced ALI. Primary peritoneal macrophages were isolated to further evaluate the role and underlying mechanism of GDF7 in vitro. Results GDF7 was downregulated in LPS-stimulated lung tissues, and rmGDF7 treatment significantly inhibited inflammation and oxidative stress in ALI mice, thereby preventing LPS-induced pulmonary injury and dysfunction. Mechanistically, we found that rmGDF7 activated AMP-activated protein kinase (AMPK), and AMPK inhibition significantly blocked the anti-inflammatory and antioxidant effects of rmGDF7 during LPS-induced ALI. Further findings revealed that rmGDF7 activated AMPK through a downregulated stimulator of interferon gene (STING) in vivo and in vitro. Conclusion GDF7 prevents LPS-induced inflammatory response, oxidative stress, and ALI by regulating the STING/AMPK pathway. Our findings for the first time identify GDF7 as a potential agent for the treatment of sepsis-induced ALI.
Collapse
|
14
|
Kumlin M, Lindberg K, Haldosen LA, Felländer-Tsai L, Li Y. Growth Differentiation Factor 7 promotes multiple-lineage differentiation in tenogenic cultures of mesenchymal stem cells. Injury 2022; 53:4165-4168. [PMID: 36261312 DOI: 10.1016/j.injury.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 02/02/2023]
Abstract
The repair of the tendon-bone interface, which is composed of tendon, fibrocartilage, and bony attachment, remains a clinical challenge. The application of mesenchymal stem cells (MSCs), collagen-rich extracellular matrix (ECMs), as well as growth factors, has the potential to regenerate this special multiple-tissue structure through the so-called biological augmentation. We present here an in vitro tendon regeneration model with C3H10T1/2 cells cultured on Collagen I matrix and evaluated the lineage determination effects of Growth Differentiation Factor 7 (GDF-7). We found that besides tenogenic effect, GDF-7 also stimulates the expression of osteoblastic as well as adipocytic genes. Our results indicate that GDF-7 might be a promising growth factor for regeneration of the tendon-bone interface due to its multiple-lineage stimulating effects. However, the side effect on adipogenic differentiation should be of concern, as it is a known risk factor for repair failures.
Collapse
Affiliation(s)
- Maritha Kumlin
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| | - Karolina Lindberg
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Li Felländer-Tsai
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden; The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Wang D, Zhang X, Ng KW, Rao Y, Wang C, Gharaibeh B, Lin S, Abrams G, Safran M, Cheung E, Campbell P, Weiss L, Ker DFE, Yang YP. Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration. Acta Biomater 2022; 154:108-122. [PMID: 36272687 DOI: 10.1016/j.actbio.2022.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromuscular Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Ng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenyang Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Burhan Gharaibeh
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sien Lin
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Geoffrey Abrams
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Marc Safran
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Emilie Cheung
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Phil Campbell
- Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Lee Weiss
- Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Dai Fei Elmer Ker
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromuscular Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Department of Material Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
17
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
18
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Front Genet 2022; 13:938473. [PMID: 35923711 PMCID: PMC9342863 DOI: 10.3389/fgene.2022.938473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta (TGF-β) family, are critical for the control of developmental processes such as dorsal-ventral axis formation, somite and tooth formation, skeletal development, and limb formation. Despite Oplegnathus having typical healing beak-like teeth and tooth development showing a trend from discrete to healing, the potential role of BMPs in the development of the beak-like teeth is incompletely understood. In the present study, 19 and 16 BMP genes were found in O. fasciatus and O. punctatus, respectively, and divided into the BMP2/4/16, BMP5/6/7/8, BMP9/10, BMP12/13/14, BMP3/15 and BMP11 subfamilies. Similar TGFb and TGF_β gene domains and conserved protein motifs were found in the same subfamily; furthermore, two common tandem repeat genes (BMP9 and BMP3a-1) were identified in both Oplegnathus fasciatus and Oplegnathus punctatus. Selection pressure analysis revealed 13 amino acid sites in the transmembrane region of BMP3, BMP7, and BMP9 proteins of O. fasciatus and O. punctatus, which may be related to the diversity and functional differentiation of genes within the BMP family. The qPCR-based developmental/temporal expression patterns of BMPs showed a trend of high expression at 30 days past hatching (dph), which exactly corresponds to the ossification period of the bones and beak-like teeth in Oplegnathus. Tissue-specific expression was found for the BMP4 gene, which was upregulated in the epithelial and mesenchymal tissues of the beak-like teeth, suggesting that it also plays a regulatory role in the development of the beak-like teeth in O. punctatus. Our investigation not only provides a scientific basis for comprehensively understanding the BMP gene family but also helps screen the key genes responsible for beak-like tooth healing in O. punctatus and sheds light on the developmental regulatory mechanism.
Collapse
Affiliation(s)
- Yuting Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co., Weihai, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| |
Collapse
|
19
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Alfawaz Altamimi AS, Singh SK, Dua K, Gupta G. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 2022; 363:110011. [PMID: 35728671 DOI: 10.1016/j.cbi.2022.110011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Cardiomyocyte regeneration following cardiac damage is challenging to study because of the inflammatory process, the multiplication of cells in the stroma, and the creation of scar tissue. In addition to the initial damage, the subsequent decrease in cardiac myocytes adds to heart failure. Piezo1 is remarkably understudied in the heart, which may be related to its recent discovery. Despite this, Piezo1 is expressed in a variety of cardiovascular cell populations, notably epithelial cells (EC), cardiac fibroblasts (CF), and cardiac myocytes (CM), in both animal and human samples, with fibroblasts expressing more than myocytes. Researchers have recently shown that disrupting Piezo1 signaling causes defects in zebrafish developing the outflow tract (OFT) and aortic valves. Platelet plasma membranes may provide lipid substrates, such as phosphatidylinositol bisphosphate, that aid in activating the piezo 1 ion channel in the cardiovascular system. In addition, CXC chemokine ligand 8/CXC chemokine receptor 1/2 (CXCL8-CXCR1/2) signaling was identified to establish the proliferation of coronary endothelial cells during cardiac regeneration. Notably, all these pathways are calcium-dependent, and cell proliferation and angiogenesis were necessary to recover myocardial cells. This review will examine the most current findings to understand further how platelet-rich plasma (PRP) and the piezo 1 channel might aid in cardiomyocyte regeneration.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
20
|
Pothiawala A, Sahbazoglu BE, Ang BK, Matthias N, Pei G, Yan Q, Davis BR, Huard J, Zhao Z, Nakayama N. GDF5+ chondroprogenitors derived from human pluripotent stem cells preferentially form permanent chondrocytes. Development 2022; 149:dev196220. [PMID: 35451016 PMCID: PMC9245189 DOI: 10.1242/dev.196220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/07/2022] [Indexed: 12/02/2023]
Abstract
It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.
Collapse
Affiliation(s)
- Azim Pothiawala
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Berke E. Sahbazoglu
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bryan K. Ang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qing Yan
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian R. Davis
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Naoki Nakayama
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Two Modulators of Skeletal Development: BMPs and Proteoglycans. J Dev Biol 2022; 10:jdb10020015. [PMID: 35466193 PMCID: PMC9036252 DOI: 10.3390/jdb10020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.
Collapse
|
22
|
Effects of Growth Factor Combinations TGFβ3, GDF5 and GDF6 on the Matrix Synthesis of Nucleus Pulposus and Nasoseptal Chondrocyte Self-Assembled Microtissues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There has been significant interest in identifying alternative cell sources and growth factor stimulation to improve matrix synthesis for disc repair. Recent work has identified nasoseptal chondrocytes (NC) as a possible alternative cell source with significant matrix-forming abilities. While various growth factors such as members of the TGFβ superfamily have been explored to enhance matrix formation, no consensus exists as to the optimum growth factor needed to induce cells towards a discogenic phenotype. This study assessed both nucleus pulposus (NP) and NC microtissues of different densities (1000, 2500 or 5000 cells/microtissue) stimulated by individual or combinations of the growth factors TGFβ3, GDF5, and GDF6. Lower cell densities result in increased sGAG/DNA and collagen/DNA levels due to higher nutrient availability levels. Our findings suggest that growth factors exert differential effects on matrix synthesis depending on the cell type. NP cells were found to be relatively insensitive to the different growth factor types examined in isolation or in combination. Overall, NCs exhibited a higher propensity to form extracellular matrix compared to NP cells. In addition, stimulating NC-microtissues with GDF5 or TGFβ3 alone induced enhanced matrix formation and may be an appropriate growth factor to stimulate this cell type for disc regeneration.
Collapse
|
23
|
Hou Y, Zhou B, Ni M, Wang M, Ding L, Li Y, Liu Y, Zhang W, Li G, Wang J, Xu L. Nonwoven-based gelatin/polycaprolactone membrane loaded with ERK inhibitor U0126 for treatment of tendon defects. Stem Cell Res Ther 2022; 13:5. [PMID: 35012661 PMCID: PMC8744263 DOI: 10.1186/s13287-021-02679-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. METHODS Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. RESULTS In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. CONCLUSION Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.
Collapse
Affiliation(s)
- Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Bingyu Zhou
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ming Ni
- Department of Orthopedics, the First Medical Center, the Fourth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, People's Republic of China
| | - Min Wang
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Wencai Zhang
- Neo Modulus (Suzhou) Medical Sci-Tech Co., Ltd., Suzhou, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China. .,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Room 904, 9/F, Shatin, Hong Kong, SAR, People's Republic of China.
| | - Jiali Wang
- Biomedical Engineering School, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Roberts JH, Halper J. Growth Factor Roles in Soft Tissue Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:139-159. [PMID: 34807418 DOI: 10.1007/978-3-030-80614-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repair and healing of injured and diseased tendons has been traditionally fraught with apprehension and difficulties, and often led to rather unsatisfactory results. The burgeoning research field of growth factors has opened new venues for treatment of tendon disorders and injuries, and possibly for treatment of disorders of the aorta and major arteries as well. Several chapters in this volume elucidate the role of transforming growth factor β (TGFß) in pathogenesis of several heritable disorders affecting soft tissues, such as aorta, cardiac valves, and tendons and ligaments. Several members of the bone morphogenetic group either have been approved by the FDA for treatment of non-healing fractures or have been undergoing intensive clinical and experimental testing for use of healing bone fractures and tendon injuries. Because fibroblast growth factors (FGFs) are involved in embryonic development of tendons and muscles among other tissues and organs, the hope is that applied research on FGF biological effects will lead to the development of some new treatment strategies providing that we can control angiogenicity of these growth factors. The problem, or rather question, regarding practical use of imsulin-like growth factor I (IGF-I) in tendon repair is whether IGF-I acts independently or under the guidance of growth hormone. FGF2 or platelet-derived growth factor (PDGF) alone or in combination with IGF-I stimulates regeneration of periodontal ligament: a matter of importance in Marfan patients with periodontitis. In contrast, vascular endothelial growth factor (VEGF) appears to have rather deleterious effects on experimental tendon healing, perhaps because of its angiogenic activity and stimulation of matrix metalloproteinases-proteases whose increased expression has been documented in a variety of ruptured tendons. Other modalities, such as local administration of platelet-rich plasma (PRP) and/or of mesenchymal stem cells have been explored extensively in tendon healing. Though treatment with PRP and mesenchymal stem cells has met with some success in horses (who experience a lot of tendon injuries and other tendon problems), the use of PRP and mesenchymal stem cells in people has been more problematic and requires more studies before PRP and mesenchymal stem cells can become reliable tools in management of soft tissue injuries and disorders.
Collapse
Affiliation(s)
- Jennifer H Roberts
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
25
|
The role of pro-domains in human growth factors and cytokines. Biochem Soc Trans 2021; 49:1963-1973. [PMID: 34495310 PMCID: PMC8589418 DOI: 10.1042/bst20200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Many growth factors and cytokines are produced as larger precursors, containing pro-domains, that require proteolytic processing to release the bioactive ligand. These pro-domains can be significantly larger than the mature domains and can play an active role in the regulation of the ligands. Mining the UniProt database, we identified almost one hundred human growth factors and cytokines with pro-domains. These are spread across several unrelated protein families and vary in both their size and composition. The precise role of each pro-domain varies significantly between the protein families. Typically they are critical for controlling bioactivity and protein localisation, and they facilitate diverse mechanisms of activation. Significant gaps in our understanding remain for pro-domain function — particularly their fate once the bioactive ligand has been released. Here we provide an overview of pro-domain roles in human growth factors and cytokines, their processing, regulation and activation, localisation as well as therapeutic potential.
Collapse
|
26
|
Perucca Orfei C, Bowles AC, Kouroupis D, Willman MA, Ragni E, Kaplan LD, Best TM, Correa D, de Girolamo L. Human Tendon Stem/Progenitor Cell Features and Functionality Are Highly Influenced by in vitro Culture Conditions. Front Bioeng Biotechnol 2021; 9:711964. [PMID: 34616717 PMCID: PMC8488466 DOI: 10.3389/fbioe.2021.711964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
Our understanding of tendon biology continues to evolve, thus leading to opportunities for developing novel, evidence-based effective therapies for the treatment of tendon disorders. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. We described different molecular and phenotypic profiles of TSPCs modulated by culture density, as well as their multipotency and secretory activities. Moreover, in the same experimental setting, we evaluated for different responses to inflammatory stimuli mediated by TNFα and IFNγ. We also preliminarily investigated their immunomodulatory activity and their role in regulating degradation of substance P. Our findings indicated that TSPCs cultured at low density (LD) exhibited cobblestone morphology and a reduced propensity to differentiate. A distinctive immunophenotypic profile was also observed with high secretory and promising immunomodulatory responses when primed with TNFα and IFNγ. In contrast, TSPCs cultured at high density (HD) showed a more elongated fibroblast-like morphology, a greater adipogenic differentiation potential, and a higher expression of tendon-related genes with respect to LD. Finally, HD TSPCs showed immunomodulatory potential when primed with TNFα and IFNγ, which was slightly lower than that shown by LD. A shift from low to high culture density during TSPC expansion demonstrated intermediate features confirming the cellular adaptability of TSPCs. Taken together, these experiments allowed us to identify relevant differences in TSPCs based on culture conditions. This ability of TSPCs to acquire distinguished morphology, phenotype, gene expression profile, and functional response advances our current understanding of tendons at a cellular level and suggests responsivity to cues in their in situ microenvironment.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Annie C Bowles
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering College of Engineering, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Melissa A Willman
- Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, United States.,Diabetes Research Institute and Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
27
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Murphy RJ, Carr AJ, Dakin SG. Comparison of Cellular Responses to TGF-β1 and BMP-2 Between Healthy and Torn Tendons. Am J Sports Med 2021; 49:1892-1903. [PMID: 34081556 DOI: 10.1177/03635465211011158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons heal by fibrotic repair, increasing the likelihood of reinjury. Animal tendon injury and overuse models have identified transforming growth factor beta (TGF-β) and bone morphogenetic proteins (BMPs) as growth factors actively involved in the development of fibrosis, by mediating extracellular matrix synthesis and cell differentiation. PURPOSE To understand how TGF-β and BMPs contribute to fibrotic processes using tendon-derived cells isolated from healthy and diseased human tendons. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived cells were isolated from patients with a chronic rotator cuff tendon tear (large to massive, diseased) and healthy hamstring tendons of patients undergoing anterior cruciate ligament repair. Isolated cells were incubated with TGF-β1 (10 ng/mL) or BMP-2 (100 ng/mL) for 3 days. Gene expression was measured by real-time quantitative polymerase chain reaction. Cell signaling pathway activation was determined by Western blotting. RESULTS TGF-β1 treatment induced ACAN mRNA expression in both cell types but less in the diseased compared with healthy cells (P < .05). BMP-2 treatment induced BGN mRNA expression in healthy but not diseased cells (P < .01). In the diseased cells, TGF-β1 treatment induced increased ACTA2 mRNA expression (P < .01) and increased small mothers against decapentaplegic (SMAD) signaling (P < .05) compared with those of healthy cells. Moreover, BMP-2 treatment induced ACTA2 mRNA expression in the diseased cells only (P < .05). CONCLUSION Diseased tendon-derived cells show reduced expression of the proteoglycans aggrecan and biglycan in response to TGF-β1 and BMP-2 treatments. These same treatments induced enhanced fibrotic differentiation and canonical SMAD cell signaling in diseased compared with healthy cells. CLINICAL RELEVANCE Findings from this study suggest that diseased tendon-derived cells respond differently than healthy cells in the presence of TGF-β1 and BMP-2. The altered responses of diseased cells may influence fibrotic repair processes during tendon healing.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Brighton and Sussex University NHS Trust, Royal Sussex County Hospital, Brighton, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell Tissue Bank 2021; 23:237-246. [PMID: 34013429 DOI: 10.1007/s10561-021-09935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.
Collapse
|
29
|
Lui H, Denbeigh J, Vaquette C, Tran HM, Dietz AB, Cool SM, Dudakovic A, Kakar S, van Wijnen AJ. Fibroblastic differentiation of mesenchymal stem/stromal cells (MSCs) is enhanced by hypoxia in 3D cultures treated with bone morphogenetic protein 6 (BMP6) and growth and differentiation factor 5 (GDF5). Gene 2021; 788:145662. [PMID: 33887373 DOI: 10.1016/j.gene.2021.145662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e., BMP6 and GDF5) to mediate collagenous ECM synthesis and tissue maturation in vitro under normoxic and hypoxic conditions based on the hypothesis that BMP6 and GDF5 are components of normal paracrine signalling events that support connective tissue homeostasis. METHODS Human adipose-derived MSCs were seeded on 3D-printed medical-grade polycaprolactone (PCL) scaffolds using a bioreactor and incubated in media containing GDF5 and/or BMP6 for 21 days in either normoxic (5% oxygen) or hypoxic (2% oxygen) conditions. Constructs were harvested on Day 3 and 21 for cell viability analysis by live/dead staining, structural analysis by scanning electron microscopy, mRNA levels by RTqPCR analysis, and in situ deposition of proteins by immunofluorescence microscopy. RESULTS Pro-fibroblastic gene expression is enhanced by hypoxic culture conditions compared to normoxic conditions. Hypoxia renders cells more responsive to treatment with BMP6 as reflected by increased expression of ECM mRNA levels on Day 3 with sustained expression until Day 21. GDF5 was not particularly effective either in the absence or presence of BMP6. CONCLUSIONS Fibroblastic differentiation of MSCs is selectively enhanced by BMP6 and not GDF5. Environmental factors (i.e., hypoxia) also influenced the responsiveness of cells to this morphogen.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Hoai My Tran
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
30
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
31
|
Sun K, Guo J, Yao X, Guo Z, Guo F. Growth differentiation factor 5 in cartilage and osteoarthritis: A possible therapeutic candidate. Cell Prolif 2021; 54:e12998. [PMID: 33522652 PMCID: PMC7941218 DOI: 10.1111/cpr.12998] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Growth differentiation factor 5 (GDF-5) is essential for cartilage development and homeostasis. The expression and function of GDF-5 are highly associated with the pathogenesis of osteoarthritis (OA). OA, characterized by progressive degeneration of joint, particularly in cartilage, causes severe social burden. However, there is no effective approach to reverse the progression of this disease. Over the past decades, extensive studies have demonstrated the protective effects of GDF-5 against cartilage degeneration and defects. Here, we summarize the current literature describing the role of GDF-5 in development of cartilage and joints, and the association between the GDF-5 gene polymorphisms and OA susceptibility. We also shed light on the protective effects of GDF-5 against OA in terms of direct GDF-5 supplementation and modulation of the GDF-5-related signalling. Finally, we discuss the current limitations in the application of GDF-5 for the clinical treatment of OA. This review provides a comprehensive insight into the role of GDF-5 in cartilage and emphasizes GDF-5 as a potential therapeutic candidate in OA.
Collapse
Affiliation(s)
- Kai Sun
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Jiachao Guo
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xudong Yao
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Zhou Guo
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Fengjing Guo
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
32
|
Nakamichi R, Asahara H. Regulation of tendon and ligament differentiation. Bone 2021; 143:115609. [PMID: 32829041 PMCID: PMC7770025 DOI: 10.1016/j.bone.2020.115609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
Tendons transmit power from muscles to bones, and ligaments maintain the stability of joints, thus producing smooth and flexible movements of articular joints. However, tendons have poor self-healing ability upon damage due to injuries, diseases, or aging. To maintain homeostasis or promote regeneration of the tendon/ligament, it is critical to understand the mechanism responsible for the coordination of tendon/ligament-specific gene expression and subsequent cell differentiation. In this review, we have discussed the core molecular mechanisms involved in the development and homeostasis of tendons and ligaments, with particular focus on transcription factors, signaling, and mechanical stress.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, , La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
33
|
Zhou Y, Liu S, Wang W, Sun Q, Lv M, Yang S, Tong S, Guo S. The miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of human adipose-derived stem cells via the AKT and p38 signalling pathways. Stem Cell Res Ther 2021; 12:64. [PMID: 33461605 PMCID: PMC7814734 DOI: 10.1186/s13287-020-02117-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. miR-204-5p is expressed at low levels during the osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p in the osteogenic differentiation of hADSCs. METHODS The expression patterns of miR-204-5p, Runx2, alkaline phosphatase (ALP), osteocalcin (OCN), forkhead box C1 (FOXC1) and growth differentiation factor 7 (GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect osteoblast activities and mineral deposition. Western blotting was conducted to confirm the protein levels. The regulatory relationship among miR-204-5p, FOXC1 and GDF7 was verified by dual-luciferase activity and chromatin immunoprecipitation (ChIP) assays. RESULTS miR-204-5p expression was downregulated in hADSC osteogenesis, and overexpression of miR-204-5p suppressed osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicates that miR-204-5p overexpression suppresses the expression of FOXC1 and GDF7 by binding to their 3'-untranslated regions (UTRs). Overexpression of FOXC1 or GDF7 improved the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 was found to bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduce the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 induced hADSC osteogenesis differentiation by activating the AKT and P38 signalling pathways. CONCLUSIONS Our results demonstrated that the miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of hADSCs via the AKT and p38 signalling pathways. This study further revealed the regulatory mechanism of hADSC differentiation from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Wei Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
34
|
Comparative Analysis of Tenogenic Gene Expression in Tenocyte-Derived Induced Pluripotent Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells in Response to Biochemical and Biomechanical Stimuli. Stem Cells Int 2021; 2021:8835576. [PMID: 33510795 PMCID: PMC7825360 DOI: 10.1155/2021/8835576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tendon is highly prone to injury, overuse, or age-related degeneration in both humans and horses. Natural healing of injured tendon is poor, and cell-based therapeutic treatment is still a significant clinical challenge. In this study, we extensively investigated the expression of tenogenic genes in equine bone marrow mesenchymal stem cells (BMSCs) and tenocyte-derived induced pluripotent stem cells (teno-iPSCs) stimulated by growth factors (TGF-β3 and BMP12) combined with ectopic expression of tenogenic transcription factor MKX or cyclic uniaxial mechanical stretch. Western blotting revealed that TGF-β3 and BMP12 increased the expression of transcription factors SCX and MKX in both cells, but the tenocyte marker tenomodulin (TNMD) was detected only in BMSCs and upregulated by either inducer. On the other hand, quantitative real-time PCR showed that TGF-β3 increased the expression of EGR1, COL1A2, FMOD, and TNC in BMSCs and SCX, COL1A2, DCN, FMOD, and TNC in teno-iPSCs. BMP12 treatment elevated SCX, MKX, DCN, FMOD, and TNC in teno-iPSCs. Overexpression of MKX increased SCX, DCN, FMOD, and TNC in BMSCs and EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 further enhanced TNC in BMSCs. Moreover, mechanical stretch increased SCX, EGR1, DCN, ELN, and TNC in BMSCs and SCX, MKX, EGR1, COL1A2, DCN, FMOD, and TNC in teno-iPSCs; TGF-β3 tended to further elevate SCX, ELN, and TNC in BMSCs and SCX, MKX, COL1A2, DCN, and TNC in teno-iPSCs, while BMP12 further uptrended the expression of SCX and DCN in BMSCs and DCN in teno-iPSCs. Additionally, the aforementioned tenogenic inducers also affected the expression of signaling regulators SMAD7, ETV4, and SIRT1 in BMSCs and teno-iPSCs. Taken together, our data demonstrate that, in respect to the tenocyte-lineage-specific gene expression, BMSCs and teno-iPSCs respond differently to the tenogenic stimuli, which may affect the outcome of their application in tendon repair or regeneration.
Collapse
|
35
|
Hanai H, Jacob G, Nakagawa S, Tuan RS, Nakamura N, Shimomura K. Potential of Soluble Decellularized Extracellular Matrix for Musculoskeletal Tissue Engineering - Comparison of Various Mesenchymal Tissues. Front Cell Dev Biol 2020; 8:581972. [PMID: 33330460 PMCID: PMC7732506 DOI: 10.3389/fcell.2020.581972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background It is well studied that preparations of decellularized extracellular matrix (ECM) obtained from mesenchymal tissues can function as biological scaffolds to regenerate injured musculoskeletal tissues. Previously, we reported that soluble decellularized ECMs derived from meniscal tissue demonstrated excellent biocompatibility and produced meniscal regenerate with native meniscal anatomy and biochemical characteristics. We therefore hypothesized that decellularized mesenchymal tissue ECMs from various mesenchymal tissues should exhibit tissue-specific bioactivity. The purpose of this study was to test this hypothesis using porcine tissues, for potential applications in musculoskeletal tissue engineering. Methods Nine types of porcine tissue, including cartilage, meniscus, ligament, tendon, muscle, synovium, fat pad, fat, and bone, were decellularized using established methods and solubilized. Although the current trend is to develop tissue specific decellularization protocols, we selected a simple standard protocol across all tissues using Triton X-100 and DNase/RNase after mincing to compare the outcome. The content of sulfated glycosaminoglycan (sGAG) and hydroxyproline were quantified to determine the biochemical composition of each tissue. Along with the concentration of several growth factors, known to be involved in tissue repair and/or maturation, including bFGF, IGF-1, VEGF, and TGF-β1. The effect of soluble ECMs on cell differentiation was explored by combining them with 3D collagen scaffold culturing human synovium derived mesenchymal stem cells (hSMSCs). Results The decellularization of each tissue was performed and confirmed both histologically [hematoxylin and eosin (H&E) and 4’,6-diamidino-2-phenylindole (DAPI) staining] and on the basis of dsDNA quantification. The content of hydroxyproline of each tissue was relatively unchanged during the decellularization process when comparing the native and decellularized tissue. Cartilage and meniscus exhibited a significant decrease in sGAG content. The content of hydroxyproline in meniscus-derived ECM was the highest when compared with other tissues, while sGAG content in cartilage was the highest. Interestingly, a tissue-specific composition of most of the growth factors was measured in each soluble decellularized ECM and specific differentiation potential was particularly evident in cartilage, ligament and bone derived ECMs. Conclusion In this study, soluble decellularized ECMs exhibited differences based on their tissue of origin and the present results are important going forward in the field of musculoskeletal regeneration therapy.
Collapse
Affiliation(s)
- Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - George Jacob
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Orthopaedics, Tejasvini Hospital, Mangalore, India
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
36
|
Chen S, Wang J, Chen Y, Mo X, Fan C. Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111506. [PMID: 33321604 DOI: 10.1016/j.msec.2020.111506] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering, especially cell sheets-based engineering, offers a promising approach to tendon regeneration; however, obtaining a sufficient source of cells for tissue engineering applications is challenging. Adipose-derived stem cells (ASCs) are essential sources for tissue regeneration and have been shown to have the potential for tenogenic differentiation in vitro via induction by growth differentiation factor 5 (GDF-5). In this study, we explored the feasibility of ASCs cell sheets stimulated by GDF-5 for engineered tendon repair. As shown by quantitative polymerase chain reaction and western blotting, tenogenesis-related markers (Col I&III, TNMD, biglycan, and tenascin C) were significantly increased in GDF-5-induced ASCs cell sheets compared with the uninduced. Moreover, the levels of SMAD2/3 proteins and phospho-SMAD1/5/9 were significantly enhanced, demonstrating that GDF-5 may exert its functions through phosphorylation of SMAD1/5/9. Furthermore, the cell sheets were combined with P(LLA-CL)/Silk fibroin nanoyarn scaffolds to form constructs for tendon tissue engineering. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence assays demonstrated favorable cell viability and tenogenesis-related marker expression in GDF-5-induced constructs. In addition, the constructs showed the potential for tendon repair in rabbit models, as demonstrated by histological, immunohistochemical, and biomechanical analyses. In our study, we successfully produced a new tissue-engineered tendon by the combination of GDF-5-induced ASCs cell sheets and nanoyarn scaffold which is valuable for tendon regeneration.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
37
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
38
|
Javanshir S, Younesi Soltani F, Dowlati G, Parham A, Naderi-Meshkin H. Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6. Mol Biol Rep 2020; 47:6855-6862. [PMID: 32875433 DOI: 10.1007/s11033-020-05742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Javanshir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Younesi Soltani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Dowlati
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
39
|
Liu R, Zhang S, Chen X. Injectable hydrogels for tendon and ligament tissue engineering. J Tissue Eng Regen Med 2020; 14:1333-1348. [PMID: 32495524 DOI: 10.1002/term.3078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 01/14/2023]
Abstract
The problem of tendon and ligament (T/L) regeneration in musculoskeletal diseases has long constituted a major challenge. In situ injection of formable biodegradable hydrogels, however, has been demonstrated to treat T/L injury and reduce patient suffering in a minimally invasive manner. An injectable hydrogel is more suitable than other biological materials due to the special physiological structure of T/L. Most other materials utilized to repair T/L are cell-based, growth factor-based materials, with few material properties. In addition, the mechanical property of the gel cannot reach the normal T/L level. This review summarizes advances in natural and synthetic polymeric injectable hydrogels for tissue engineering in T/L and presents prospects for injectable and biodegradable hydrogels for its treatment. In future T/L applications, it is necessary develop an injectable hydrogel with mechanics, tissue damage-specific binding, and disease response. Simultaneously, the advantages of various biological materials must be combined in order to achieve personalized precision therapy.
Collapse
Affiliation(s)
- Richun Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Chen
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Ciardulli MC, Marino L, Lamparelli EP, Guida M, Forsyth NR, Selleri C, Della Porta G, Maffulli N. Dose-Response Tendon-Specific Markers Induction by Growth Differentiation Factor-5 in Human Bone Marrow and Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:E5905. [PMID: 32824547 PMCID: PMC7460605 DOI: 10.3390/ijms21165905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) are utilized in tendon tissue-engineering protocols while extra-embryonic cord-derived, including from Wharton's Jelly (hWJ-MSCs), are emerging as useful alternatives. To explore the tenogenic responsiveness of hBM-MSCs and hWJ-MSCs to human Growth Differentiation Factor 5 (hGDF-5) we supplemented each at doses of 1, 10, and 100 ng/mL of hGDF-5 and determined proliferation, morphology and time-dependent expression of tenogenic markers. We evaluated the expression of collagen types 1 (COL1A1) and 3 (COL3A1), Decorin (DCN), Scleraxis-A (SCX-A), Tenascin-C (TNC) and Tenomodulin (TNMD) noting the earliest and largest increase with 100 ng/mL. With 100 ng/mL, hBM-MSCs showed up-regulation of SCX-A (1.7-fold) at Day 1, TNC (1.3-fold) and TNMD (12-fold) at Day 8. hWJ-MSCs, at the same dose, showed up-regulation of COL1A1 (3-fold), DCN (2.7-fold), SCX-A (3.8-fold) and TNC (2.3-fold) after three days of culture. hWJ-MSCs also showed larger proliferation rate and marked aggregation into a tubular-shaped system at Day 7 (with 100 ng/mL of hGDF-5). Simultaneous to this, we explored the expression of pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokines across for both cell types. hBM-MSCs exhibited a better balance of pro-inflammatory and anti-inflammatory cytokines up-regulating IL-1β (11-fold) and IL-10 (10-fold) at Day 8; hWJ-MSCs, had a slight expression of IL-12A (1.5-fold), but a greater up-regulation of IL-10 (2.5-fold). Type 1 collagen and tenomodulin proteins, detected by immunofluorescence, confirming the greater protein expression when 100 ng/mL were supplemented. In the same conditions, both cell types showed specific alignment and shape modification with a length/width ratio increase, suggesting their response in activating tenogenic commitment events, and they both potential use in 3D in vitro tissue-engineering protocols.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Maurizio Guida
- Department of Neuroscience and Reproductive Science and Dentistry, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy;
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
- Mile End Hospital, Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
41
|
K N, Ca V, Joseph J, U A, John A, Abraham A. Mesenchymal Stem Cells Seeded Decellularized Tendon Scaffold for Tissue Engineering. Curr Stem Cell Res Ther 2020; 16:155-164. [PMID: 32707028 DOI: 10.2174/1574888x15666200723123901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tendon is a collagenous tissue to connect bone and muscle. Healing of damaged/injured tendon is the primary clinical challenge in musculoskeletal regeneration because they often react poorly to treatment. Tissue engineering (a triad strategy of scaffolds, cells and growth factors) may have the potential to improve the quality of tendon tissue healing under such impaired situations. Tendon tissue engineering aims to synthesize graft alternatives to repair the injured tendon. Biological scaffolds derived from decellularized tissue may be a better option as their biomechanical properties are similar to the native tissue. This review is designed to provide background information on the current challenges in curing torn/worn out the tendon and the clinical relevance of decellularized scaffolds for such applications.
Collapse
Affiliation(s)
- Niveditha K
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Vineeth Ca
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Arun U
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie John
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
42
|
Yang Q, Han Y, Liu P, Huang Y, Li X, Jia L, Zheng Y, Li W. Long Noncoding RNA GAS5 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Regulating GDF5 and p38/JNK Signaling Pathway. Front Pharmacol 2020; 11:701. [PMID: 32508644 PMCID: PMC7251029 DOI: 10.3389/fphar.2020.00701] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Both extracellular matrix (ECM) and stem cells contribute to the formation of bones. Accumulating evidence proved that the growth differentiation factor 5 (GDF5) plays a vital role in ECM osteogenesis regulation; the use of human periodontal ligament stem cells (hPDLSCs) may contribute to alveolar bone regeneration. Moreover, long noncoding RNAs (lncRNA) serves as a regulator in the growing process of cellular organisms including bone formation. Previous efforts has led us to the discovery that the expression of growth arrest specific transcript 5 (GAS5) changed in the osteogenic differentiation of hPDLSCs. Moreover, the expression of GAS5, as it turns out, is correlated to GDF5. This study attempts to investigate the inner workings of GAS5 in its regulation of osteoblastic differentiation of hPDLSCs. Cell transfection, Alkaline phosphatase (ALP) staining, Alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining analysis and western blotting were employed in this study. It came to our notice that GAS5 and GDF5 expression increased during osteogenesis induction of hPDLSCs. Knocking down of GAS5 inhibited the osteogenic differentiation of hPDLSCs, whereas overexpressing GAS5 promoted these effects. Molecular mechanism study further demonstrated that overexpressing GAS5 bolsters GDF5 expression and boosts the phosphorylation of JNK and p38 in hPDLSCs, with opposite effects in GAS5 knockdown group. To sum up, long noncoding RNA GAS5 serves to regulate the osteogenic differentiation of PDLSCs via GDF5 and p38/JNK signaling pathway. Our findings expand the theoretical understanding of the osteogenesis mechanism in hPDLSCs, providing new insights into the treatment of bone defects.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Peng Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
43
|
Olafsdottir T, Thorleifsson G, Sulem P, Stefansson OA, Medek H, Olafsson K, Ingthorsson O, Gudmundsson V, Jonsdottir I, Halldorsson GH, Kristjansson RP, Frigge ML, Stefansdottir L, Sigurdsson JK, Oddsson A, Sigurdsson A, Eggertsson HP, Melsted P, Halldorsson BV, Lund SH, Styrkarsdottir U, Steinthorsdottir V, Gudmundsson J, Holm H, Tragante V, Asselbergs FW, Thorsteinsdottir U, Gudbjartsson DF, Jonsdottir K, Rafnar T, Stefansson K. Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank. Commun Biol 2020; 3:129. [PMID: 32184442 PMCID: PMC7078216 DOI: 10.1038/s42003-020-0857-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Pelvic organ prolapse (POP) is a downward descent of one or more of the pelvic organs, resulting in a protrusion of the vaginal wall and/or uterus. We performed a genome-wide association study of POP using data from Iceland and the UK Biobank, a total of 15,010 cases with hospital-based diagnosis code and 340,734 female controls, and found eight sequence variants at seven loci associating with POP (P < 5 × 10-8); seven common (minor allele frequency >5%) and one with minor allele frequency of 4.87%. Some of the variants associating with POP also associated with traits of similar pathophysiology. Of these, rs3820282, which may alter the estrogen-based regulation of WNT4, also associates with leiomyoma of uterus, gestational duration and endometriosis. Rs3791675 at EFEMP1, a gene involved in connective tissue homeostasis, also associates with hernias and carpal tunnel syndrome. Our results highlight the role of connective tissue metabolism and estrogen exposure in the etiology of POP.
Collapse
Affiliation(s)
| | | | - Patrick Sulem
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Helga Medek
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Karl Olafsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Orri Ingthorsson
- Department of Obstetrics and Gynecology, Akureyri Hospital, 600, Akureyri, Iceland
| | - Valur Gudmundsson
- Department of Obstetrics and Gynecology, Akureyri Hospital, 600, Akureyri, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, 101, Reykjavik, Iceland
| | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | | | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Vinicius Tragante
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Kristin Jonsdottir
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
44
|
Tan GK, Pryce BA, Stabio A, Brigande JV, Wang C, Xia Z, Tufa SF, Keene DR, Schweitzer R. Tgfβ signaling is critical for maintenance of the tendon cell fate. eLife 2020; 9:52695. [PMID: 31961320 PMCID: PMC7025861 DOI: 10.7554/elife.52695] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFβ type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.
Collapse
Affiliation(s)
- Guak-Kim Tan
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Anna Stabio
- Research Division, Shriners Hospital for Children, Portland, United States
| | - John V Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, United States
| | - ChaoJie Wang
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States.,Department of Orthopedics, Oregon Health & Science University, Portland, United States
| |
Collapse
|
45
|
Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handb Exp Pharmacol 2020; 265:235-268. [PMID: 33471201 DOI: 10.1007/164_2020_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
47
|
Abstract
Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.
Collapse
Affiliation(s)
- Sophia K Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Nathan R Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
48
|
Gonçalves AI, Berdecka D, Rodrigues MT, Eren AD, de Boer J, Reis RL, Gomes ME. Evaluation of tenogenic differentiation potential of selected subpopulations of human adipose-derived stem cells. J Tissue Eng Regen Med 2019; 13:2204-2217. [PMID: 31606945 DOI: 10.1002/term.2967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022]
Abstract
Identification of a suitable cell source and bioactive agents guiding cell differentiation towards tenogenic phenotype represents a prerequisite for advancement of cell-based therapies for tendon repair. Human adipose-derived stem cells (hASCs) are a promising, yet intrinsically heterogenous population with diversified differentiation capacities. In this work, we investigated antigenically-defined subsets of hASCs expressing markers related to tendon phenotype or associated with pluripotency that might be more prone to tenogenic differentiation, when compared to unsorted hASCs. Subpopulations positive for tenomodulin (TNMD+ hASCs) and stage specific early antigen 4 (SSEA-4+ hASCs), as well as unsorted ASCs were cultured up to 21 days in basic medium or media supplemented with TGF-β3 (10 ng/ml), or GDF-5 (50 ng/ml). Cell response was evaluated by analysis of expression of tendon-related markers at gene level and protein level by real time RT-PCR, western blot, and immunocytochemistry. A significant upregulation of scleraxis was observed for both subpopulations and unsorted hASCs in the presence of TGF-β3. More prominent alterations in gene expression profile in response to TGF-β3 were observed for TNMD+ hASCs. Subpopulations evidenced an increased collagen III and TNC deposition in basal medium conditions in comparison with unsorted hASCs. In the particular case of TNMD+ hASCs, GDF-5 seems to influence more the deposition of TNC. Within hASCs populations, discrete subsets could be distinguished offering varied sensitivity to specific biochemical stimulation leading to differential expression of tenogenic components suggesting that cell subsets may have distinctive roles in the complex biological responses leading to tenogenic commitment to be further explored in cell based strategies for tendon tissues.
Collapse
Affiliation(s)
- Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Dominika Berdecka
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Aysegul Dede Eren
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht, The Netherlands
| | - Jan de Boer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht, The Netherlands
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
49
|
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 2019; 76:3939-3952. [PMID: 31201464 PMCID: PMC11105481 DOI: 10.1007/s00018-019-03191-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
50
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|