1
|
Peng BG, Li YC, Yang L. Role of neurogenic inflammation in intervertebral disc degeneration. World J Orthop 2025; 16:102120. [PMID: 39850033 PMCID: PMC11752484 DOI: 10.5312/wjo.v16.i1.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation. IVD cells and infiltrating immune cells express functional receptors for neuropeptides through which they receive signals from the nervous system. In return, IVD cells and immune cells produce neuropeptides and nerve growth factor, which stimulate nerve fibers. This communication generates a positive bidirectional feedback loop that can enhance the inflammatory response of the IVD. Recently emerging transient receptor potential channels have been recognized as contributors to neurogenic inflammation in the degenerative IVDs. These findings suggest that neurogenic inflammation involves complex pathophysiological interactions between sensory nerves and multiple cell types in the degenerative IVDs. Clarifying the mechanism of neurogenic inflammation in IVD degeneration may provide in-depth understanding of the pathology of discogenic low back pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Yong-Chao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People’s Armed Police Forces, Tianjin 300000, China
| |
Collapse
|
2
|
Ma J, Eglauf J, Grad S, Alini M, Serra T. Engineering Sensory Ganglion Multicellular System to Model Tissue Nerve Ingrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308478. [PMID: 38113315 PMCID: PMC10953573 DOI: 10.1002/advs.202308478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Discogenic pain is associated with deep nerve ingrowth in annulus fibrosus tissue (AF) of intervertebral disc (IVD). To model AF nerve ingrowth, primary bovine dorsal root ganglion (DRG) micro-scale tissue units are spatially organised around an AF explant by mild hydrodynamic forces within a collagen matrix. This results in a densely packed multicellular system mimicking the native DRG tissue morphology and a controlled AF-neuron distance. Such a multicellular organisation is essential to evolve populational-level cellular functions and in vivo-like morphologies. Pro-inflammatory cytokine-primed AF demonstrates its neurotrophic and neurotropic effects on nociceptor axons. Both effects are dependent on the AF-neuron distance underpinning the role of recapitulating inter-tissue/organ anatomical proximity when investigating their crosstalk. This is the first in vitro model studying AF nerve ingrowth by engineering mature and large animal tissues in a morphologically and physiologically relevant environment. The new approach can be used to biofabricate multi-tissue/organ models for untangling pathophysiological conditions and develop novel therapies.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Janick Eglauf
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- ETH ZürichRämistrasse 101Zürich8092Switzerland
| | - Sibylle Grad
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Mauro Alini
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Tiziano Serra
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ETNetherlands
| |
Collapse
|
3
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
4
|
Liu Q, Luo J, Wang H, Zhang L, Guo J, Jin G. GAS5, a long noncoding RNA, contributes to annulus fibroblast osteogenic differentiation and apoptosis in intervertebral disk degeneration via the miR-221-3p/SOX11 axis. Aging (Albany NY) 2024; 16:3896-3914. [PMID: 38407972 PMCID: PMC10929823 DOI: 10.18632/aging.205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
miR-221-3p has been reported to attenuate the osteogenic differentiation of annulus fibrosus cells (AFs), which has been implicated in intervertebral disk degeneration (IVDD) development. This study aimed to elucidate miR-221-3p's role in osteogenic differentiation and apoptosis of AFs in an IVDD model. After successfully establishing an IVDD rat model by annulus fibrosus needle puncture, AFs were isolated. Bioinformatics, dual-luciferase reporter, and AGO2-RNA immunoprecipitation (RIP) assays predicted and confirmed the potential miR-221-3p lncRNA and gene target. Functional analyses were performed after AF transfection to explore the roles of the identified lncRNA and gene. Western blotting, Alkaline phosphatase (ALP), and Alizarin red and TUNEL staining were performed to investigate AF apoptosis and osteogenic differentiation with different transfections. Compared with AFs isolated from sham rats, IVDD-isolated Afs exhibited stronger osteogenic potential and higher apoptosis rates accompanied by miR-221-3p downregulation. The growth arrest-specific transcript 5 (GAS5) was identified as miR-221-3p's target lncRNA, which was highly expressed in IVDD. GAS5 overexpression facilitated AF apoptosis and osteogenic differentiation, whereas silencing GAS5 had the opposite effect. SRY box-related11 (SOX11) was identified as a downstream miR-221-3p target gene in IVDD. GASS silencing-induced suppression of AF apoptosis and osteogenic differentiation could be reversed by SOX11 overexpression. Our findings uncovered a lncRNA GAS5/miR-221-3p/SOX11 axis in Afs under IVDD, which may help implement novel IVDD therapeutic strategies.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jiaying Luo
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lei Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jingwen Guo
- Institute of Health Sciences, China Medical University, Shenyang 110000, China
| | - Guoxin Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
5
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
6
|
Lorio MP, Beall DP, Calodney AK, Lewandrowski KU, Block JE, Mekhail N. Defining the Patient with Lumbar Discogenic Pain: Real-World Implications for Diagnosis and Effective Clinical Management. J Pers Med 2023; 13:jpm13050821. [PMID: 37240991 DOI: 10.3390/jpm13050821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
There is an enormous body of literature that has identified the intervertebral disc as a potent pain generator. However, with regard to lumbar degenerative disc disease, the specific diagnostic criteria lack clarity and fail to capture the primary components which include axial midline low back pain with or without non-radicular/non-sciatic referred leg pain in a sclerotomal distribution. In fact, there is no specific ICD-10-CM diagnostic code to classify and define discogenic pain as a unique source of pain distinct from other recognized sources of chronic low back pain including facetogenic, neurocompressive including herniation and/or stenosis, sacroiliac, vertebrogenic, and psychogenic. All of these other sources have well-defined ICD-10-CM codes. Corresponding codes for discogenic pain remain absent from the diagnostic coding vernacular. The International Society for the Advancement of Spine Surgery (ISASS) has proposed a modernization of ICD-10-CM codes to specifically define pain associated with lumbar and lumbosacral degenerative disc disease. The proposed codes would also allow the pain to be characterized by location: lumbar region only, leg only, or both. Successful implementation of these codes would benefit both physicians and payers in distinguishing, tracking, and improving algorithms and treatments for discogenic pain associated with intervertebral disc degeneration.
Collapse
Affiliation(s)
- Morgan P Lorio
- Advanced Orthopedics, 499 E. Central Pkwy., Ste. 130, Altamonte Springs, FL 32701, USA
| | - Douglas P Beall
- Clinical Radiology of Oklahoma, 1800 S. Renaissance Blvd., Ste. 110, Edmond, OK 73013, USA
| | | | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, 4787 E. Camp Lowell Drive, Tucson, AZ 85712, USA
| | - Jon E Block
- Independent Consultant, 2210 Jackson Street, Ste. 401, San Francisco, CA 94115, USA
| | - Nagy Mekhail
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Staszkiewicz R, Gralewski M, Gładysz D, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO, sobaÅ Ski D, Grabarek BO. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol Pain 2023; 19:17448069231158287. [PMID: 36733259 PMCID: PMC10071099 DOI: 10.1177/17448069231158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm2 of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, 49613Medical University of Silesia, Katowice, Poland.,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland.,Department of Neurosurgery, Szpital sw Rafala w Krakowie, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | | | | |
Collapse
|
8
|
Silencing ATF3 Might Delay TBHP-Induced Intervertebral Disc Degeneration by Repressing NPC Ferroptosis, Apoptosis, and ECM Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4235126. [PMID: 35480873 PMCID: PMC9036167 DOI: 10.1155/2022/4235126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration (IDD), being the predominant root cause of lower back pain, has led to an enormous socioeconomic burden in the world. Ferroptosis is an iron-dependent nonapoptotic and nonpyroptotic programmed cell death associated with an increase in reactive oxygen species (ROS), which has been implicated in the pathogenesis of IDD. Activation transcription factor 3 (ATF3) is widely reported to promote ferroptosis and apoptosis in multiple diseases, but its roles and underlying regulatory mechanism in IDD have not been identified. FAoptosis is defined as a mixed cell death consisting of ferroptosis and apoptosis. The loss- and gain-of-function experiments demonstrated that ATF3 positively regulated tert-butyl hydroperoxide- (TBHP-) induced nucleus pulposus cell (NPC) FAoptosis, ROS production, inflammatory response, and extracellular matrix (ECM) degradation. Furthermore, silencing ATF3 ameliorated the progression of IDD in vivo, whereas its overexpression showed the opposite phenotype. Bioinformatics analysis and molecular experiments corroborated that ATF3 is a direct target of miR-874-3p, suggesting that the upregulation of ATF3 in IDD might be caused at least in part due to the downregulation of miR-874-3p in IDD, thereby relieving the inhibition of ATF3 by miR-874-3p. The findings revealed that ATF3 has the potential to be used as a promising therapeutic target against IDD.
Collapse
|
9
|
Kim JH, Ham CH, Kwon WK. Current Knowledge and Future Therapeutic Prospects in Symptomatic Intervertebral Disc Degeneration. Yonsei Med J 2022; 63:199-210. [PMID: 35184422 PMCID: PMC8860939 DOI: 10.3349/ymj.2022.63.3.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is the main source of intractable lower back pain, and symptomatic IVD degeneration could be due to different degeneration mechanisms. In this article, we describe the molecular basis of symptomatic IVD degenerative disc diseases (DDDs), emphasizing the role of degeneration, inflammation, angiogenesis, and extracellular matrix (ECM) regulation during this process. In symptomatic DDD, pro-inflammatory mediators modulate catabolic reactions, resulting in changes in ECM homeostasis and, finally, neural/vascular ingrowth-related chronic intractable discogenic pain. In ECM homeostasis, anabolic protein-regulating genes show reduced expression and changes in ECM production, while matrix metalloproteinase gene expression increases and results in aggressive ECM degradation. The resultant loss of normal IVD viscoelasticity and a concomitant change in ECM composition are key mechanisms in DDDs. During inflammation, a macrophage-related cascade is represented by the secretion of high levels of pro-inflammatory cytokines, which induce inflammation. Aberrant angiogenesis is considered a key initiative pathologic step in symptomatic DDD. In reflection of angiogenesis, vascular endothelial growth factor expression is regulated by hypoxia-inducible factor-1 in the hypoxic conditions of IVDs. Furthermore, IVD cells undergoing degeneration potentially enhance neovascularization by secreting large amounts of angiogenic cytokines, which penetrate the IVD from the outer annulus fibrosus, extending deep into the outer part of the nucleus pulposus. Based on current knowledge, a multi-disciplinary approach is needed in all aspects of spinal research, starting from basic research to clinical applications, as this will provide information regarding treatments for DDDs and discogenic pain.
Collapse
Affiliation(s)
- Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Chang Hwa Ham
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Bonnaire FC, Danalache M, Sigwart VA, Breuer W, Rolauffs B, Hofmann UK. The intervertebral disc from embryonic development to disc degeneration: insights into spatial cellular organization. Spine J 2021; 21:1387-1398. [PMID: 33872805 DOI: 10.1016/j.spinee.2021.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Low back pain is commonly attributed to intervertebral disc (IVD) degeneration. IVD resembles articular cartilage in its biochemical and cellular composition in many ways. For articular cartilage, degeneration stage-specific characteristic spatial chondrocyte patterns have recently been described. PURPOSE This study addresses how spatial chondrocyte organization in the IVD changes from early embryonic development to end stage degeneration. STUDY DESIGN Ex vivo immunohistochemical analysis. METHODS We immunohistochemically investigated bovine IVD-tissue (n=72) from early embryonic development to early disc degeneration and human adult IVD-tissue (n=25) operated for trauma or degeneration for cellular density and chondrocyte spatial organization. IVD samples were sectioned along the main collagen fiber orientation. Nuclei were stained with DAPI and their number and spatial patterns were analyzed in an area of 250,000 µm² for each tissue category. RESULTS The initially very high cellular density in the early embryonic bovine disc (11,431 cells/mm²) steadily decreases during gestation, growth and maturation to about 71 cell/mm² in the fully grown cattle. Interestingly, in human degenerative discs, a new increase in this figure could be noted (184 cells/mm). The IVD chondrocytes appear to be predominantly present as single cells. Especially in the time after birth, string-formations represent up to 32% of all cells in the anulus fibrosus, although single cells are the predominant spatial pattern (>50%) over the entire time. With increasing degeneration, the relative proportion of single cells in human IVDs continuously decreases (12%). At the same time, the share of cells organized in clusters increases (70%). CONCLUSION Similar to articular cartilage, spatial chondrocyte organization appears to be a strong indicator for local tissue degeneration in the IVD. CLINICAL SIGNIFICANCE In the future these findings may be important for the detection and therapy of IVD degeneration in early stages.
Collapse
Affiliation(s)
- Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Department of Orthopedic Surgery University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany
| | - Viktor Amadeus Sigwart
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Medical Faculty of the University of Tübingen, Geissweg 5/1, 72076 Tübingen, Germany
| | - Wolfram Breuer
- Bavarian Health and Food Authority, Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Bernd Rolauffs
- Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Germany
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Department of Orthopedic Surgery University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Vincent K, Dona CPG, Albert TJ, Dahia CL. Age-related molecular changes in the lumbar dorsal root ganglia of mice: Signs of sensitization, and inflammatory response. JOR Spine 2020; 3:e1124. [PMID: 33392459 PMCID: PMC7770202 DOI: 10.1002/jsp2.1124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/18/2020] [Accepted: 08/23/2020] [Indexed: 11/06/2022] Open
Abstract
Aging is a major risk factor for numerous painful, inflammatory, and degenerative diseases including disc degeneration. A better understanding of how the somatosensory nervous system adapts to the changing physiology of the aging body will be of great significance for our expanding aging population. Previously, we reported that chronological aging of mouse lumbar discs is pathological and associated with behavioral changes related to pain. It is established that with age and degeneration the lumbar discs become inflammatory and innervated. Here we analyze the aging lumbar dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) in mice between 3 and 24 months of age for age-related somatosensory adaptations. We observe that as mice age there are signs of peripheral sensitization, and response to inflammation at the molecular and cellular level in the DRGs. From 12 months onwards the mRNA expression of vasodilator and neurotransmitter, Calca (CGRP); stress (and survival) marker, Atf3; and neurotrophic factor, Bdnf, increases linearly with age in the DRGs. Further, while the mRNA expression of neuropeptide, Tac1, precursor of Substance P, did not change at the transcriptional level, TAC1 protein expression increased in 24-month-old DRGs. Additionally, elevated expression of NFκB subunits, Nfkb1 and Rela, but not inflammatory mediators, Tnf, Il6, Il1b, or Cox2, in the DRGs suggest peripheral nerves are responding to inflammation, but do not increase the expression of inflammatory mediators at the transcriptional level. These results identify a progressive, age-related shift in the molecular profile of the mouse somatosensory nervous system and implicates nociceptive sensitization and inflammatory response.
Collapse
Affiliation(s)
- Kathleen Vincent
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| | - Chethana Prabodhanie Gallage Dona
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Todd J Albert
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- Orthopaedic SurgeryHospital for Special SurgeryNew YorkNew YorkUSA
| | - Chitra Lekha Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| |
Collapse
|
12
|
Deng Y, Gao X, Feng T, Wang Z, Xiao W, Xiong Z, Zhao L. Systematically characterized mechanism of treatment for lumbar disc herniation based on Yaobitong capsule ingredient analysis in rat plasma and its network pharmacology strategy by UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113097. [PMID: 32531413 DOI: 10.1016/j.jep.2020.113097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yaobitong capsule (YBTC) was a traditional Chinese medicine (TCM) and it had clinically used to treat lumbar disc degeneration (LDH) for a long time. However, the active ingredients of YBTC absorption into the plasma and its pharmacological mechanism of treatment for LDH still remained unclear. AIM OF THE STUDY In this study, our research committed to identify the absorbed active ingredients of YBTC in rat plasma, and it may be a potential mechanism of action on LDH by the biological targets regulating related pathways. MATERIALS AND METHODS An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to identify the absorption components and metabolites of YBTC in rat plasma, and the network pharmacology was further investigated to illuminate its potential mechanism of treatment for LDH by the biological targets regulating related pathways. RESULTS The network analysis found that 56 components were identified as its main active ingredients including ginsenoside Rg1, ginsenoside Rb1, senkyunolide H, and tetrahydropalmatine, etc. Combining with biological process, cellular component and molecular functions of GO, and kyotoencyclopedia of genes and genomes pathway enrichment analysis to perform network topology analysis on core targets. These active ingredients regulated 29 mainly pathways by 87 direct target genes including MAPK, Ras, PI3K-Akt, and NF-kappa B signaling pathway, etc. CONCLUSION: In this study, the absorption active ingredients of YBTC in rat plasma were firstly combined with the network pharmacology investigation to elucidate its biological mechanism of treatment for LDH in vivo. It inhibited excessive inflammatory reactions, thereby reducing the sensitivity of the nerves to reduce pain and relieve LDH, and potential medicine targets could be identified to clarify the molecular mechanism of YBTCs' regulation of LDH.
Collapse
Affiliation(s)
- Yajie Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Tiantian Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Jiangsu, Lianyungang, 222001, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, 222001, Jiangsu Lianyungang, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China.
| |
Collapse
|
13
|
Ohtori S, Miyagi M, Inoue G. Sensory nerve ingrowth, cytokines, and instability of discogenic low back pain: A review. Spine Surg Relat Res 2018; 2:11-17. [PMID: 31440640 PMCID: PMC6698542 DOI: 10.22603/ssrr.2016-0018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Many patients suffer from discogenic low back pain. However, the mechanisms, diagnosistic strategy, and treatment of discogenic low back pain all remain controversial. The purpose of this paper was to review the pathological mechanisms of discogenic low back pain. Methods Many authors have investigated the pathological mechanisms of discogenic low back pain using animal models and examining human patients. Central to most investigations is understanding the innervation and instabilities of diseased intervertebral discs and the role of inflammatory mediators. We discuss three pathological mechanisms of discogenic low back pain: innervation, inflammation, and mechanical hypermobility of the intervertebral disc. Results Sensory nerve fibers include C-fibers and A delta-fibers, which relay pain signals from the innervated outer layers of the intervertebral disc under normal conditions. However, ingrowth of these sensory nerve fibers into the inner layers of intervertebral disc occurs under disease conditions. Levels of neurotrophic factors and some cytokines are significantly higher in diseased discs than in normal discs. Stablization of the segmental hypermobility, which can be induced by intervertebral disc degeneration, suppresses inflammation and prevents sensitization of sensory nerve fibers innervating the disc. Conclusions Pathological mechanisms of discogenic low back pain include sensory nerve ingrowth into inner layers of the intervertebral disc, upregulation of neurotrophic factors and cytokines, and instability. Inhibition of these mechanisms is important in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine Chiba University, Chiba, Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, Kanagawa, Japan
| |
Collapse
|
14
|
Investigation of the Effect of Diabetes on Radiculopathy Induced by Nucleus Pulposus Application to the DRG in a Spontaneously Diabetic Rat Model. Spine (Phila Pa 1976) 2017; 42:1749-1756. [PMID: 28658037 DOI: 10.1097/brs.0000000000002299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A controlled, interventional animal study. OBJECTIVE The aim of this study was to evaluate the effect of diabetes mellitus (DM) on radiculopathy due to lumbar disc herniation (LDH), by investigating pain-related behavior and the expression of tumor necrosis factor-alpha (TNF-α) and growth-associated protein 43 (GAP43) in type 2 diabetic rats following application of nucleus pulposus (NP) to the dorsal root ganglion (DRG). SUMMARY OF BACKGROUND DATA Previous clinical studies suggested negative effects of DM on radiculopathy due to LDH, and that inflammation and nerve regeneration could interact with DM and radiculopathy. METHODS We applied autologous NP to the left L5 DRG of adult male Wistar rats and Goto-Kakizaki rats. Behavioral testing measured the mechanical withdrawal threshold of rats. We immunohistochemically evaluated the localization of ionized calcium-binding adapter molecule-1 (Iba-1), receptor of advanced glycation end products (RAGE), and TNF-α in DRGs. TNF-α and GAP43 expression levels in DRG were determined by quantitative real-time PCR and western blotting. RESULTS The mechanical withdrawal threshold significantly declined in the non-DM NP group compared with the non-DM sham group for 28 days, whereas the decline in threshold extended to 35 days in the DM NP group compared with the DM sham group. RAGE and TNF-α expression in DRGs was colocalized in Iba-1 positive cells. The non-DM NP rats had higher TNF-α protein expression levels versus the non-DM sham rats on day 7, and the DM NP group had higher levels versus the DM sham group on days 7 and 14. The non-DM NP group had higher GAP43 mRNA expression than the non-DM sham group for 28 days, while the DM NP group had a higher level than the DM sham group for 35 days. CONCLUSION DM prolongs the pain-related behavior caused by NP. The prolonged inflammation and nerve regeneration could elucidate the pathogenesis of continuous pain of radiculopathy initiated by LDH. LEVEL OF EVIDENCE N /A.
Collapse
|
15
|
Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway. Spine (Phila Pa 1976) 2017; 42:1604-1613. [PMID: 28368980 DOI: 10.1097/brs.0000000000002181] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Structural investigation of mechanically induced herniations in ovine lumbar motion segments. OBJECTIVE This new study addresses the question of whether there are regions other than the posterior and posterolateral aspects that are implicated in the initiation of disc disruption and herniation. SUMMARY OF BACKGROUND DATA Flexion in combination with compressive loading will induce disc herniations in healthy motion segments in vitro. Although it is widely accepted that the posterior and posterolateral regions of the disc are the primary sites of herniation much less is known as to whether other regions of the disc might be involved in the herniation process. METHODS Healthy ovine lumbar motion segments (n = 14) were flexed 10° and compressed at a rate of 40 mm/min up to point of failure. The discs were macroscopically analyzed using progressive transverse sectioning to obtain a more global picture of internal disc disruption and herniation. RESULTS A high prevalence of disruption in the lateral annulus was found associated with circumferential tracking of nucleus between the annular layers toward the posterolateral and posterior regions. In all tests this lateral disruption did not cause any discernible external change in the lateral disc periphery after the removal of load. After imposing the predetermined flexion the applied compression also induced a forward anterior shear of the superior vertebra of approximately equal magnitude to the axial compressive displacement. CONCLUSION The vulnerability of the lateral annulus to disruption is thought to arise from the overloading of its differentially recruited oblique/counteroblique fiber sets, this in turn generated by anterior shear developed in the flexed, compressed motion segment. This lateral annular disruption, followed by circumferential tracking of nuclear material and resulting in either contained or uncontained extrusions in the posterior or posterolateral annulus, highlights the complexity of the herniation process. LEVEL OF EVIDENCE N/A.
Collapse
|
16
|
Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep 2017; 7:13234. [PMID: 29038477 PMCID: PMC5643303 DOI: 10.1038/s41598-017-13364-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is associated with the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. Emerging studies have shown that long noncoding RNAs (lncRNAs) play critical roles in the development of IDD. Using bioinformatics prediction, we hereby sought to identify the lncRNAs that regulate the expression of microRNA-146a-5p (miR-146a-5p), an IDD-related inflammatory factor. Our study demonstrated that lncRNA HCG18 acted as an endogenous sponge to down-regulate miR-146a-5p expression in the NP cells by directly binding to miR-146a-5p. In addition, HCG18 expression was up-regulated in the patients with IDD, bulging or herniated discs, and its level was positively correlated with the disc degeneration grade. In vitro, miR-146a-5p up-regulation HCG18 retarded the growth of NP cells by decreasing S phase of cell cycle, inducing cell apoptosis, recruitment of macrophages and hypercalcification. Conversely, down-regulation of miR-146a-5p exerted opposite effects. Furthermore, we elucidated that TRAF6, a target gene by miR-146a-5p, was modulated by HCG18 expression. Restore of TRAF6 expression by virus infection reserved the effect of HCG18 on the NP cells. Altogether, our data indicated that HCG18 suppressed the growth of NP cells and promoted the IDD development via the miR-146a-5p/TRAF6/NFκB axis.
Collapse
|
17
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Xin L, Xu W, Yu L, Fan S, Wang W, Yu F, Wang Z. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration. J Orthop Surg Res 2017; 12:73. [PMID: 28499451 PMCID: PMC5429511 DOI: 10.1186/s13018-017-0572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/26/2017] [Indexed: 12/01/2022] Open
Abstract
Background Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. Methods New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Results Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Conclusions Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weixing Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Leijun Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Wei Wang
- Department of Polymer Materials Science and Engineering, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Fang Yu
- Department of Mental Health, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenbin Wang
- Orthopedics Laboratory, Department of Spine Surgery, The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
19
|
Cunha C, Lamas S, Gonçalves RM, Barbosa MA. Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model. J Orthop Res 2017; 35:258-268. [PMID: 26610284 DOI: 10.1002/jor.23114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration is responsible for various spine pathologies and present clinical treatments are insufficient. Concurrently, the mechanisms behind IVD degeneration are still not completely understood, so as to allow development of efficient tissue engineering approaches. A model of rat IVD degeneration directly coupled to herniation is here proposed in a pilot study. Disc injury is induced by needle puncture, using two different needles gauges: a low caliber 25-G needle and a high caliber 21-G needle. Histological, biochemical, and radiographic degeneration was evaluated at 2 and 6 weeks post-injury. We show that the larger caliber needle results in a more extended histological and radiographic degeneration within the IVD, compared to the smaller one. TUNEL quantification indicates also increased cell death in the 21-G group. Analyses of collagen type I (Picrosirius red staining), collagen type II (immunofluorescence), and GAG content (Blyscan assay) indicate that degeneration features spontaneously recover from 2 to 6 weeks, for both needle types. Moreover, we show the occurrence of hernia proportional to the needle gauge. The number of CD68+ macrophages present, as well as cell apoptosis within the herniated tissue are both proportional to hernia volume. Moreover, hernias formed after lesion tend to spontaneously diminish in volume after 6 weeks. Finally, MMP3 is increased in the hernia in the 21-G group at 2 weeks. This model, by uniquely combining IVD degeneration and IVD herniation in the same animal, may help to understand mechanisms behind IVD pathophysiology, such as hernia formation and spontaneous regression. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:258-268, 2017.
Collapse
Affiliation(s)
- Carla Cunha
- Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Sofia Lamas
- Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Rua do Campo Alegre 823, 4150-180, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
20
|
Yeh CH, Jin L, Shen F, Balian G, Li X. miR-221 attenuates the osteogenic differentiation of human annulus fibrosus cells. Spine J 2016; 16:896-904. [PMID: 26997108 PMCID: PMC4970913 DOI: 10.1016/j.spinee.2016.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/30/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND In the moderate and end stages of intervertebral disc (IVD) degeneration, endochondral ossifications are found in the IVD. PURPOSE The aim of this study was to investigate whether endochondral ossification in the late stages of disc degeneration is due to the differentiation of resident progenitor cell in the annulus fibrosus (AF) and the potential signaling pathways in vitro. STUDY DESIGN This is an in vitro study of AF cell osteogenic differentiation and possible mechanisms METHODS Normal annulus fibrosus (NAF) and degenerated annulus fibrosus (DAF) cells were isolated from tissue removed surgically from juvenile patients with idiopathic scoliosis and adult patients with degenerative scoliosis. Osteogenic differentiation was investigated using quantitative reverse transcription polymerase chain reaction (RT-PCR) and histology. The effects of miR-221 on osteogenesis were measured by overexpression of miR-221 with lentivirus. BMP2 and phospho-Smad proteins were detected by Western blotting. RESULTS Both NAF and DAF cells underwent osteogenic differentiation, which was confirmed by detecting mineralization of the cell cultures and by an increase in the expression mRNAs for BMP2, runx2, alkaline phosphatase (ALP), and osteocalcin. DAF cells exhibited increased osteogenic differentiation potential over the NAF cells. By contrast to the elevated phospho-Smads, the basal level of miR-221 significantly decreased in DAF cells compared with that in NAF cells. Cultures of both cell types in osteogenic medium showed a decrease in miR-221 expression, and overexpression of miR-221 markedly decreased the level of BMP2, phospho-Smads, and the expression of osteogenic genes in DAF cells. The osteogenic potential of DAF cells diminished by the overexpression of miR-221. CONCLUSION Compared with NAF cells, AF cells from degenerated discs have a greater tendency for osteogenic differentiation, which involves the BMP-Smad pathways and can be regulated by miR-221. These observations may be developed into a therapeutic to prevent the endochondral ossification.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Li
- Corresponding Author: Dr. Xudong Li, Mailing Address: Orthopaedic Surgery Laboratory, University of Virginia, Charlottesville, VA 22908, USA, , Tel: 434-982-4135, Fax: 434-922-1691
| |
Collapse
|
21
|
Miyagi M, Ishikawa T, Kamoda H, Suzuki M, Inoue G, Sakuma Y, Oikawa Y, Uchida K, Suzuki T, Takahashi K, Takaso M, Ohtori S. The efficacy of nerve growth factor antibody in a mouse model of neuropathic cancer pain. Exp Anim 2016; 65:337-343. [PMID: 27194075 PMCID: PMC5111836 DOI: 10.1538/expanim.16-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuropathic cancer pain is caused by tumors compressing the spinal nerve roots and is
usually difficult to treat. The aim of current study was to determine the influence of NGF
antibody on pain-related markers and behavior in a mouse model of neuropathic cancer pain.
Twenty mice were used to model neuropathic cancer pain by applying murine sarcoma cells to
their left sciatic nerve. Ten mice were sham operated. Two weeks after surgery, the murine
sarcoma-affected mice were allocated randomly into treatment groups receiving either
sterile saline (saline group) or an anti-nerve growth factor antibody (anti-NGF group).
Three weeks after surgery (a week after treatment), the pain-related behavior of mice was
evaluated using a CatWalk system. Subsequently, bilateral dorsal root ganglia (DRGs) from
the L4–L6 levels and spinal cords at L4–L6 levels were resected. DRGs were immunostained
for calcitonin gene-related peptide (CGRP) and activating transcription factor 3 (ATF-3),
and spinal cords were immunostained for ionized calcium-binding adaptor molecule-1
(iba-1). Mechanical allodynia was observed in mice from the saline group and was improved
in mice from the anti-NGF group. CGRP and ATF-3-immunoreactivity in DRGs and microglia
expression in the spinal dorsal horn were upregulated in the saline group compared with
the sham group, and they were suppressed in the anti-NGF group compared with the saline
group (P<0.05). These findings suggest that anti-NGF therapy might be
valuable for treating neuropathic cancer pain.
Collapse
Affiliation(s)
- Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara city, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pathomechanisms of discogenic low back pain in humans and animal models. Spine J 2015; 15:1347-55. [PMID: 24657737 DOI: 10.1016/j.spinee.2013.07.490] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 02/10/2013] [Accepted: 07/25/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although explored in humans and animal models, the pathomechanisms of discogenic low back pain (LBP) remain unknown. PURPOSE The aim of this study was to review the literature about the pathomechanisms of discogenic LBP. METHODS Animal models of discogenic pain and specimens from degenerated human intervertebral discs (IVDs) have provided clues about the pathomechanisms of discogenic LBP. Painful discs are characterized by a confluence of innervation, inflammation, and mechanical hypermobility. These three possible mechanisms are discussed in this review. RESULTS Animal models and specimens from humans have revealed sensory innervation of lumbar IVDs and sensory nerve ingrowth into the inner layer of IVDs. Cytokines such as tumor necrosis factor-α and interleukins induce this ingrowth. Nerve growth factor has also been recently identified as an inducer of ingrowth. Finally, disc degeneration induces several collagenases; their action results in hypermobility and pain. CONCLUSIONS To treat discogenic LBP, it is important to prevent sensitization of sensory nerve fibers innervating the IVD, to suppress pathogenic increases of cytokines, and to decrease disc hypermobility.
Collapse
|
23
|
Analysis of chronic low back pain with magnetic resonance imaging T2 mapping of lumbar intervertebral disc. J Orthop Sci 2015; 20:295-301. [PMID: 25649736 DOI: 10.1007/s00776-014-0686-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) T2 mapping utilizes the T2 values for quantification of moisture content and collagen sequence breakdown. Recently, attempts at quantification of lumbar disc degeneration through MRI T2 mapping have been reported. We conducted an analysis of the relationship between T2 values of degenerated intervertebral discs (IVD) and chronic low back pain (CLBP). METHODS The subjects who had CLBP comprised 28 patients (15 male, 13 female; mean age 48.9 ± 9.6 years; range 22-60 years). All subjects underwent MRI and filled out the low back pain visual analog scale (VAS) and Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ). The disc was divided into the anterior annulus fibrosus (AF), the nucleus pulposus (NP), and the posterior AF, and each T2 value was measured. This study involved 25 asymptomatic control participants matched with the CLBP group subjects for gender and age (13 male, 12 female; mean age 43.8 ± 14.5 years; range 23-60 years). These subjects had no low back pain, and constituted the control group. RESULTS T2 values for IVD tended to be lower in the CLBP group than in the control group, and these values were significantly different within the posterior AF. The correlation coefficients between the VAS scores and T2 values of anterior AF, NP and posterior AF were r = 0.30, -0.15 and -0.50. The correlation coefficient between the JOABPEQ scores (low back pain) and T2 values of anterior AF, NP and posterior AF were r = -0.0041, 0.11 and 0.42. Similarly, the JOABPEQ scores (lumbar function) were r = -0.22, -0.12 and 0.57. CONCLUSIONS The results indicated a correlation between posterior AF degeneration and CLBP. This study suggests that MRI T2 mapping could be used as a quantitative method for diagnosing discogenic pain.
Collapse
|
24
|
ISSLS Prize winner: Increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration. Spine (Phila Pa 1976) 2014; 39:1345-54. [PMID: 24718079 DOI: 10.1097/brs.0000000000000334] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and behavioral study using the SPARC (secreted protein, acidic, rich in cysteine)-null mouse model of low back pain (LBP) associated with accelerated intervertebral disc (IVD) degeneration. OBJECTIVE To determine if behavioral signs of LBP in SPARC-null mice are accompanied by sensory nervous system plasticity. SUMMARY OF BACKGROUND DATA IVD pathology is a significant contributor to chronic LBP. In humans and rodents, decreased expression of SPARC is associated with IVD degeneration. We previously reported that SPARC-null mice exhibit age-dependent behavioral signs of chronic axial LBP and radiating leg pain. METHODS SPARC-null and age-matched control young, middle-aged, and old mice (1.5, 6, and 24 mo of age, respectively) were evaluated. Cutaneous hind paw sensitivity to cold, heat, and mechanical stimuli were evaluated as measures of radiating pain. The grip force and tail suspension assays were performed to evaluate axial LBP. Motor impairment was assessed using an accelerating rotarod. IVD innervation was identified by immunohistochemistry targeting the nerve fiber marker PGP9.5 and the sensory neuropeptide calcitonin gene-related peptide (CGRP). Sensory nervous system plasticity was evaluated by quantification of CGRP- and neuropeptide-Y-immunoreactivity (-ir) in dorsal root ganglia neurons and CGRP-ir, GFAP-ir (astrocyte marker), and Iba-1-ir (microglia marker) in the spinal cord. RESULTS SPARC-null mice developed hypersensitivity to cold, axial discomfort, age-dependent motor impairment, age-dependent increases in sensory innervation in and around the IVDs, age-dependent upregulation of CGRP and neuropeptide-Y in dorsal root ganglia, and age-dependent upregulation of CGRP, microglia, and astrocytes in the spinal cord dorsal horn. CONCLUSION Increased innervation of degenerating IVDs by sensory nerve fibers and the neuroplasticity in sensory neurons and spinal cord could contribute to the underlying pathobiology of chronic discogenic LBP. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Aoki Y, Nakajima A, Ohtori S, Takahashi H, Watanabe F, Sonobe M, Terajima F, Saito M, Takahashi K, Toyone T, Watanabe A, Nakajima T, Takazawa M, Nakagawa K. Increase of nerve growth factor levels in the human herniated intervertebral disc: can annular rupture trigger discogenic back pain? Arthritis Res Ther 2014; 16:R159. [PMID: 25069717 PMCID: PMC4261264 DOI: 10.1186/ar4674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Nerve growth factor (NGF) has an important role in the generation of discogenic pain. We hypothesized that annular rupture is a trigger for discogenic pain through the action of NGF. In this study, the protein levels of NGF in discs from patients with disc herniation were examined and compared with those from discs of patients with other lumbar degenerative disc diseases. METHODS Patients (n = 55) with lumbar degenerative disc disease treated by surgery were included. Nucleus pulposus tissue (or herniated disc tissue) was surgically removed and homogenized; protein levels were quantified using an enzyme-linked immunosorbent assay (ELISA) for NGF. Levels of NGF in the discs were compared between 1) patients with herniated discs (herniated group) and those with other lumbar degenerative disc diseases (non-herniated group), and 2) low-grade and high-grade degenerated discs. Patient's symptoms were assessed using a visual analog scale (VAS) and the Oswestry disability index (ODI); the influence of NGF levels on pre- and post-operative symptoms was examined. RESULTS Mean levels of NGF in discs of patients were significantly higher in herniated discs (83.4 pg/mg total protein) than those in non-herniated discs (68.4 pg/mg). CONCLUSIONS This study reports that NGF increased in herniated discs, and may play an important role in the generation of discogenic pain. Analysis of patient symptoms revealed that pre-operative NGF levels were related to post-operative residual lower extremity pain and LBP in motion. The results suggest that NGF in the disc is related to pain generation, however, the impact of NGF on generation of LBP varies in individual patients.
Collapse
Affiliation(s)
- Yasuchika Aoki
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
- />Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba, 283-8686 Japan
| | - Arata Nakajima
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Seiji Ohtori
- />Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8677 Japan
| | - Hiroshi Takahashi
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Fusako Watanabe
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Masato Sonobe
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Fumiaki Terajima
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Masahiko Saito
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| | - Kazuhisa Takahashi
- />Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8677 Japan
| | - Tomoaki Toyone
- />Department of Orthopaedic Surgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara-city, Chiba, 299-0111 Japan
| | - Atsuya Watanabe
- />Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba, 283-8686 Japan
| | - Takayuki Nakajima
- />Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba, 283-8686 Japan
| | - Makoto Takazawa
- />Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba, 283-8686 Japan
| | - Koichi Nakagawa
- />Department of Orthopaedic Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba, 285-8741 Japan
| |
Collapse
|
26
|
Inhibiting IκB kinase-β downregulates inflammatory cytokines in injured discs and neuropeptides in dorsal root ganglia innervating injured discs in rats. Spine (Phila Pa 1976) 2014; 39:1171-7. [PMID: 24825147 DOI: 10.1097/brs.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Quantitative and immunohistological analysis of the efficacy of an IκB kinase-β (IKKβ) inhibitor in an injured intervertebral disc (IVD) model. OBJECTIVE To elucidate the efficacy of an IKKβ inhibitor on inflammatory cytokine levels in injured IVDs or on neuropeptide levels in the dorsal root ganglia (DRG) neurons innervating injured IVDs in rats. SUMMARY OF BACKGROUND DATA Multiple studies have suggested that upregulation of inflammatory cytokines in damaged IVDs causes discogenic low back pain. The efficacy of blocking individual inflammatory cytokines is limited; however, inflammatory cytokine stimuli often require IKKβ to activate nuclear factor-k B. METHODS Sprague-Dawley rats were divided into 3 groups: sham, saline (disc-injury plus saline), and IKKβ (disc-injury plus anti-IKKβ). To induce injury, IVDs were repeatedly punctured.Experiment 1: Four, 7, and 14 days postinjury, coccygeal (Co) 5/6, Co6/7, and Co7/8 IVDs were resected and tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels were quantified by enzyme-linked immunosorbent assay. Experiment 2: The neurotracer Fluoro-Gold was injected into injured L5-L6 IVDs and uninjured sham group IVDs to detect DRG neurons. One week postsurgery, L1-L6 DRGs were immunolabeled with the neuropeptide calcitonin gene-related peptide. The proportions of Fluoro-Gold-labeled calcitonin gene-related peptide-immunoreactive DRG neurons were assessed. RESULTS Experiment 1: IVD levels of tumor necrosis factor-α (through 2 wk), IL-1β (at 4 d), and IL-6 (at 4 d) were significantly higher in the saline group than in the sham group, and significantly lower in the IKKβ group than in the saline group (P < 0.05). Experiment 2: The percentage of calcitonin gene-related peptide-immunoreactive Fluoro-Gold-labeled DRG neurons was significantly higher in the saline group than in the sham group, and significantly lower in the IKKβ group than in the saline group (P < 0.05). CONCLUSION Injury-induced upregulation of inflammatory cytokines within IVDs and increased levels of neuropeptides within DRG neurons can be suppressed by inhibiting IKKβ. LEVEL OF EVIDENCE N/A.
Collapse
|
27
|
Jin L, Liu Q, Scott P, Zhang D, Shen F, Balian G, Li X. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 2014; 9:e96519. [PMID: 24796761 PMCID: PMC4010482 DOI: 10.1371/journal.pone.0096519] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/08/2014] [Indexed: 01/07/2023] Open
Abstract
In the end stage of intervertebral disc degeneration, cartilage, bone, endothelial cells, and neurons appear in association with the worsening condition. The origin of the abnormal cells is not clear. This study investigated the properties of progenitor cells in the annulus fibrosus (AF) using one in vitro and two in vivo models. Cultivation of rabbit AF cells with chondrogenic media significantly increased expressions of collagen and aggrecan. Upon exposure to osteogenic conditions, the cultures showed increased mineralization and expression of osteopontin, runx2, and bmp2 genes. Two models were used in the in vivo subcutaneous implantation experiments: 1) rabbit AF tissue in a demineralized bone matrix (DBM) cylinder (DBM/AF), and, 2) rat intact and needle punctured lumbar discs. Bone formation in the AF tissue was detected and hypertrophic chondrocytes and osteoblasts were present 1 month after implantation of the DBM/AF to nude mice. In addition to collagen I and II, immunostaining shows collagen X and osteocalcin expression in DBM/AF specimens 4 months after implantation. Similar changes were detected in the injured discs. Almost the entire needle punctured disc had ossified at 6 months. The results suggest that AF cells have characteristics of progenitor cells and, under appropriate stimuli, are capable of differentiating into chondrocytes and osteoblasts in vitro as well as in vivo. Importantly, these cells may be a target for biological treatment of disc degeneration.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Qihai Liu
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Phillip Scott
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dawei Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Francis Shen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gary Balian
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
28
|
Abstract
STUDY DESIGN Animal study. OBJECTIVE To investigate pain-related expression of NaV1.7 in dorsal root ganglia (DRG) innervating intervertebral discs. SUMMARY OF BACKGROUND DATA The pathophysiology of discogenic low back pain is not fully understood. Prostaglandins and cytokines produced by degenerated discs can cause pain, but nonsteroidal anti-inflammatory and steroid medications are often ineffective at pain reduction. Tetrodotoxin-sensitive, voltage-gated sodium (NaV) channels are associated with sensory transmission in primary sensory nerves, and the NaV1.7 channel has emerged as an attractive analgesic target. The purpose of this study was to investigate pain-related expression of NaV1.7 in DRG innervating intervertebral discs. METHODS Using a rodent model of disc puncture, we labeled DRG neurons innervating L5-L6 discs with FluoroGold neurotracer (n = 20). Half of the rats (n = 10) underwent intervertebral disc puncture using a 23-gauge needle (puncture group), and the other half underwent non-puncture sham surgery (non-puncture group). Seven and 14 days after surgery, DRGs from the L1 to L6 levels were harvested, sectioned, and immunostained for NaV1.7, and the proportion of NaV1.7-immunoreactive DRG neurons was evaluated. RESULTS NaV1.7 was expressed in DRG neurons innervating intervertebral discs from L1 to L5. The ratio of NaV1.7-expressing DRG neurons to total FG-labeled neurons was 7.2% and 7.6% at 1 and 2 weeks after surgery, respectively, in the non-puncture group and 16.2% and 16.3% at 1 and 2 weeks, respectively, in the puncture group. The upregulation of NaV1.7 after puncture was significant at both 1 and 2 weeks after surgery (P < 0.01). CONCLUSION We found that disc injury increases NaV1.7 expression in DRG neurons innervating injured discs. NaV1.7 may be a therapeutic target for pain control in patients with lumbar disc degeneration.
Collapse
|
29
|
Vertebral compression exacerbates osteoporotic pain in an ovariectomy-induced osteoporosis rat model. Spine (Phila Pa 1976) 2013; 38:2085-91. [PMID: 24225423 DOI: 10.1097/brs.0000000000000001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic pain study using osteoporotic rodent models. OBJECTIVE To examine alterations in distribution of pain-related neuropeptides after compressive force on osteoporotic vertebrae and their chronic pain-related properties. SUMMARY OF BACKGROUND DATA We previously reported significantly increased production of calcitonin gene-related peptide (CGRP), a marker of inflammatory pain, in the dorsal root ganglia (DRG) of vertebrae in osteoporosis-model ovariectomized (OVX) rats. Here, we hypothesized that longitudinal compressive force on vertebrae can affect osteoporotic pain properties, which has not been examined yet. METHODS OVX rats were used as the osteoporosis model. Female Sprague-Dawley rats were prepared and Fluoro-Gold (FG) neurotracer was applied to the periosteal surface of the Co5 vertebra. After FG labeling, the animals were divided into 4 groups: Control, Control + compression, OVX, and OVX + compression. The Control groups were not ovariectomized. In the compression groups, K-wires were stabbed transversely through Co4 and Co6 with Co5 compressed longitudinally by rubber bands bridged between the 2. One, 2, 4, and 8 weeks after surgery, bilateral S1 to S3 DRGs were excised for immunofluorescence assays. Expression of CGRP and activating transcription factor 3, a marker of neuronal injury, were compared among the 4 groups. RESULTS Sustained upregulation of CGRP in DRG neurons was observed after compression of the Co5 vertebra, and Co5 compression caused significant increase in CGRP production in DRG neurons, whereas a greater level of activating transcription factor 3 upregulation was observed in DRGs in OVX rats after dynamic vertebral compression 8 weeks after surgery, implying potential neuropathic pain. CONCLUSION There was sustained upregulation of CGRP and activating transcription factor 3 in DRGs in osteoporotic model rats compared with controls, and levels were further enhanced by dynamic vertebral compression. These findings imply that dynamic compression stress on vertebrae can exacerbate osteoporotic pain by inducing both inflammatory and neuropathic pain mediators. LEVEL OF EVIDENCE N/A.
Collapse
|
30
|
Liu Q, Jin L, Mahon BH, Chordia MD, Shen FH, Li X. Novel treatment of neuroinflammation against low back pain by soluble fullerol nanoparticles. Spine (Phila Pa 1976) 2013; 38:1443-51. [PMID: 23466506 PMCID: PMC3731423 DOI: 10.1097/brs.0b013e31828fc6b7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro study to investigate the anti-inflammatory effects of fullerol on mouse dorsal root ganglia (DRG) under tumor necrosis factor (TNF)-α induction. OBJECTIVE To evaluate the potential of a free radical scavenger, fullerol nanoparticles, to prevent DRG tissue and neuron inflammatory responses under TNF-α induction in vitro. SUMMARY OF BACKGROUND DATA Low back pain is one of the most common reasons for clinician visits in Western societies. Symptomatic intervertebral disc degeneration is strongly implicated as a cause of low back pain, as it results in DRG inflammation. Increased production of reactive oxygen species (ROS) is associated with DRG inflammation. METHODS With or without fullerol treatment, DRG tissue and DRG neurons isolated from wild-type C3H/HeNCrl (Charles River Laboratories, Wilmington, MA) mice were cultured under TNF-α induction. The amount of intracellular ROS was measured with H2DCFDA (Life Technologies Corporation, Grand Island, NY) fluorescence staining. Cellular apoptosis was detected via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The expression of inflammatory as well as antioxidative enzyme genes in neurons was analyzed by real-time polymerase chain reaction. In addition, inflammatory cytokine expression in DRG tissue was determined by immunofluorescence staining and enzyme-linked immunosorbent assay. RESULTS Fluorescence staining results indicated that TNF-α markedly increased the production of intracellular ROS and the number of apoptotic cells. Under fullerol treatment, cellular apoptosis was reduced along with concomitant suppression of ROS. The expression of inflammatory cytokines interleukin 1 β, interleukin 6, cyclooxygenase-2, and prostaglandin E2, was also inhibited by fullerol in a dose-dependent manner. Furthermore, fullerol-treated cells exhibited upregulation of antioxidative enzyme genes superoxide dismutase 2 and catalase. CONCLUSION The results obtained from this study clearly suggest that fullerol treatment suppresses the inflammatory responses of DRG and neurons, as well as cellular apoptosis by decreasing the level of ROS and potentially enhancing antioxidative enzyme gene expression. Therefore, fullerol has potential to serve as a novel therapeutic agent for low back pain treatment. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Qihai Liu
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Li Jin
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Brian H. Mahon
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Mahendra D. Chordia
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Francis H. Shen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Xudong Li
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
31
|
Assessment of pain behavior in a rat model of intervertebral disc injury using the CatWalk gait analysis system. Spine (Phila Pa 1976) 2013; 38:1459-65. [PMID: 23649215 DOI: 10.1097/brs.0b013e318299536a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Pain behavior and immunohistological analysis in intervertebral disc (IVD) injury model. OBJECTIVE To investigate pain behavior in a rat model of IVD injury using the CatWalk system. SUMMARY OF BACKGROUND DATA There are few reports examining low back pain behavior in animal models. The CatWalk is a computer-assisted gait analysis system that provides an automated way to assess gait function and pain-related alterations of this behavior. METHODS In the IVD injury group, L5-L6 IVDs were injured with a 24-gauge needle. Simultaneously, the neurotracer Fluoro-Gold (FG; Fluorochrome, Denver, CO) was injected into the L5-L6 IVDs. In the sham group, FG was injected into the L5-L6 IVDs only. Animals in the control group received no operation. One, 2, 3, and 4 weeks after surgery, the gait of rats in the 3 groups was investigated using the CatWalk system. One, 2, and 4 weeks after surgery, in IVD injury and sham groups, dorsal root ganglions from the L1 to L6 levels were resected. Dorsal root ganglions were immunostained for calcitonin gene-related peptide. RESULTS In the IVD injury group, the mean stands of hind paws and the mean duty cycle of front paws at some time points were significantly higher than those in the sham group. Furthermore, the mean stride length of the front and hind paws and the mean swing speed of the front and hind paws at some time points were significantly shorter than those in the sham group. The proportion of calcitonin gene-related peptide-immunoreactive, FG-labeled neurons among all FG-labeled dorsal root ganglion neurons in the IVD injury group was significantly higher than the corresponding proportion in the sham group. CONCLUSION These results suggest that IVD injury produced significant changes in rat gait, including longer stance phases and shorter strides. In the future, we may be able to apply the CatWalk system to the evaluation of behavior associated with pain in models of low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
32
|
Hiyama A, Sakai D, Mochida J. Cell signaling pathways related to pain receptors in the degenerated disk. Global Spine J 2013; 3:165-74. [PMID: 24436867 PMCID: PMC3856443 DOI: 10.1055/s-0033-1345036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Many of the causes of low back pain are still unknown; sufficient evidence indicates that both degenerative and mechanical change within the intervertebral disk (IVD) is a relevant factor. This article reviews intracellular signaling pathways related to pain receptors in the degenerated IVD. Several reports have demonstrated the number of nerve fibers in the IVD was increased in degenerated disks. In recent years, some groups have reported that an increase in nerve fibers is associated with the presence of inflammatory mediators and/or neurotrophins in the IVD. Cell signaling events, which are regulated by inflammatory mediators and neurotrophins, must be identified to clarify the mechanism underlying low back pain. Major intracellular signaling pathways (nuclear factor kappa β, mitogen-activated protein kinases, and Wnts) potentially play vital roles in mediating the molecular events responsible for the initiation and progression of IVD degeneration. These signaling pathways may represent therapeutic targets for the treatment of IVD degeneration and its associated back pain.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
33
|
Hush JM, Stanton TR, Siddall P, Marcuzzi A, Attal N. Untangling nociceptive, neuropathic and neuroplastic mechanisms underlying the biological domain of back pain. Pain Manag 2013; 3:223-36. [DOI: 10.2217/pmt.13.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SUMMARY Current clinical practice guidelines advocate a model of diagnostic triage for back pain, underpinned by the biopsychosocial paradigm. However, limitations of this clinical model have become apparent: it can be difficult to classify patients into the diagnostic triage categories; patients with ‘nonspecific back pain‘ are clearly not a homogenous group; and mean effects of treatments based on this approach are small. In this article, it is proposed that the biological domain of the biopsychosocial model needs to be reconceptualized using a neurobiological mechanism-based approach. Recent evidence about nociceptive and neuropathic contributors to back pain is outlined in the context of maladaptive neuroplastic changes of the somatosensory system. Implications for clinical practice and research are discussed.
Collapse
Affiliation(s)
- Julia M Hush
- Discipline of Physiotherapy, 75 Talavera Road, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Tasha R Stanton
- The Sansom Institute for Health Research, The University of South Australia, School of Health Sciences, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Philip Siddall
- Department of Pain Management, HammondCare, Greenwich Hospital, Greenwich, NSW 2065, Australia
- Sydney Medical School – Northern, University of Sydney, Sydney, NSW 2007, Australia
| | - Anna Marcuzzi
- Discipline of Physiotherapy, 75 Talavera Road, Macquarie University, North Ryde, NSW 2109, Australia
- Università di Pisa (Postgraduate Scholar), Lungarno Pacinotti, 43-56126, Italy
| | - Nadine Attal
- Inserm U 987 & Centre d‘Evaluation et de Traitement de la Douleur, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France
- Université Versailles Saint Quentin, Versailles F-78035, France
| |
Collapse
|
34
|
ISSLS prize winner: disc dynamic compression in rats produces long-lasting increases in inflammatory mediators in discs and induces long-lasting nerve injury and regeneration of the afferent fibers innervating discs: a pathomechanism for chronic discogenic low back pain. Spine (Phila Pa 1976) 2012; 37:1810-8. [PMID: 22366969 DOI: 10.1097/brs.0b013e31824ffac6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Animal model of intravertebral disc (IVD) degeneration. OBJECTIVE To examine production of inflammatory mediators in IVDs and neuropeptides in dorsal root ganglia (DRGs) in rat models of IVD compression and injury. SUMMARY OF BACKGROUND DATA Sensory nerve fibers in IVDs and inflammatory mediator responses have been verified in animal models of IVD injury. However, the IVD injury in animals incompletely models degenerated human IVDs causing discogenic low back pain, because human IVDs are also subject to compression. METHODS Experimental groups (controls, IVD injury, IVD compression, and their combination) of Sprague Dawley rats were prepared. Fluoro-Gold (FG; Fluorochrome, Denver, CO) was applied into coccygeal IVDs. Inflammatory mediators in IVDs, including nerve growth factor, tumor necrosis factor α, interleukin 1β, and interleukin 6, were quantified using enzyme-linked immunosorbent assays. DRGs were immunostained for calcitonin gene-related peptide, activating transcription factor 3, and growth-associated phosphoprotein 43. RESULTS The upregulation of inflammatory mediators was transient in the IVD injury group but delayed and long-lasting in the IVD compression group. When the IVD injury and compression were combined, the upregulation of inflammatory mediators was long-lasting through 8 weeks. The proportion of calcitonin gene-related peptide-immunoreactive neurons among Fluoro-Gold-labeled neurons remained significantly higher in the IVD injury, compression, and combination groups than in the controls. In contrast, increases in the proportions of activating transcription factor 3-immunoreactive or growth-associated phosphoprotein 43-immunoreactive neurons in the IVD injury group animals were transient but long-lasting in the compression and combination groups compared with controls. CONCLUSION Disc injury in rats produces persistent increases in neuropeptides in DRGs but only transient increases in inflammatory mediators in IVDs. On the contrary, disc compression in rats produces a long-lasting increase in inflammatory mediators in IVDs and neuropeptides in DRGs. Moreover, disc compression induces persistent nerve injury and regeneration of the afferent fibers innervating IVDs.
Collapse
|
35
|
Platelet-rich plasma combined with hydroxyapatite for lumbar interbody fusion promoted bone formation and decreased an inflammatory pain neuropeptide in rats. Spine (Phila Pa 1976) 2012; 37:1727-33. [PMID: 22433505 DOI: 10.1097/brs.0b013e31825567b7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective interventional trial, using a rat model of lumbar interbody fusion. OBJECTIVE To examine the potential efficacy of platelet-rich plasma (PRP) for lumbar interbody fusion, using hydroxyapatite (HA). SUMMARY OF BACKGROUND DATA PRP is an autologous product containing a high concentration of platelets in a small volume of plasma and has osteoinductive effects. HA has osteoconductive ability and has been used in combination with autogenous bone for spine fusion. However, reports using PRP with HA for spine fusion are very few. The purpose of this study was to examine the efficacy of PRP with HA for spinal interbody fusion and at the same time to estimate the change in immunoreactivity of the inflammatory neuropeptide, calcitonin gene-related peptide (CGRP), in dorsal root ganglion (DRG) neurons innervating spinal discs. METHODS A total of 35 Sprague-Dawley rats were used in this study. Twenty-one rats were used for conducting interbody fusion experiments, 7 rats were used as immunostaining controls, and 7 other rats were used as blood donors for making PRP. L5-L6 interbody fusion was performed on 21 rats using HA + PRP (n = 7), HA + platelet-poor plasma (n = 7), or HA + saline (n = 7). Simultaneously, Fluoro-Gold neurotracer was applied to the intervertebral space to detect DRG neurons innervating the discs. L5-L6 lumbar radiographs were obtained and lumbar DRGs were immunostained for CGRP. The rate of bone union and the change in CGRP immunoreactive DRG neurons innervating the discs were evaluated and compared among groups. RESULTS All L5-L6 lumbar discs were fused in the PRP + HA group (fused 7/total 7), whereas only 1 case was fused in the platelet-poor plasma group (1 of 7) and no cases in the HA-only group (0 of 7), which was a significant difference. Upon immunohistochemical analysis, CGRP-positive neurons innervated L5-L6 intervertebral discs in nonunion cases, and these were significantly increased compared with those in union cases. CONCLUSION Our study suggests that using PRP with HA was beneficial for spine fusion. This combination may promote bone union and also decrease inflammatory neuropeptide in sensory neurons innervating the discs.
Collapse
|
36
|
Millecamps M, Tajerian M, Naso L, Sage HE, Stone LS. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 2012; 153:1167-1179. [PMID: 22414871 DOI: 10.1016/j.pain.2012.01.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 12/09/2011] [Accepted: 01/26/2012] [Indexed: 01/20/2023]
Abstract
Chronic low back pain (LBP) is a complex, multifactorial disorder with unclear underlying mechanisms. In humans and rodents, decreased expression of secreted protein acidic rich in cysteine (SPARC) is associated with intervertebral disc (IVD) degeneration and signs of LBP. The current study investigates the hypothesis that IVD degeneration is a risk factor for chronic LBP. SPARC-null and age-matched control mice ranging from 6 to 78 weeks of age were evaluated in this study. X-ray and histologic analysis revealed reduced IVD height, increased wedging, and signs of degeneration (bulging and herniation). Cutaneous sensitivity to cold, heat, and mechanical stimuli were used as measures of referred (low back and tail) and radiating pain (hind paw). Region specificity was assessed by measuring icilin- and capsaicin-evoked behaviour after subcutaneous injection into the hind paw or upper lip. Axial discomfort was measured by the tail suspension and grip force assays. Motor impairment was determined by the accelerating rotarod. Physical function was evaluated by voluntary activity after axial strain or during ambulation with forced lateral flexion. SPARC-null mice developed (1) region-specific, age-dependent hypersensitivity to cold, icilin, and capsaicin (hind paw only), (2) axial discomfort, (3) motor impairment, and (4) reduced physical function. Morphine (6 mg/kg, i.p.) reduced cutaneous sensitivity and alleviated axial discomfort in SPARC-null mice. Ageing SPARC-null mice mirror many aspects of the complex and challenging nature of LBP in humans and incorporate both anatomic and functional components of the disease. The current study supports the hypothesis that IVD degeneration is a risk factor for chronic LBP.
Collapse
Affiliation(s)
- Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec, Canada Faculty of Dentistry, McGill University, Montreal, Quebec, Canada Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA Department of Anesthesiology, McGill University, Montreal, Quebec, Canada Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
37
|
Disk injury in rats produces persistent increases in pain-related neuropeptides in dorsal root ganglia and spinal cord glia but only transient increases in inflammatory mediators: pathomechanism of chronic diskogenic low back pain. Spine (Phila Pa 1976) 2011; 36:2260-6. [PMID: 21228748 DOI: 10.1097/brs.0b013e31820e68c7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistological analysis in an injured intervertebral disk (IVD) model. OBJECTIVE To elucidate and compare in rats the behavior of the sensory nervous system and inflammatory mediators in experimentally injured IVDs. SUMMARY OF BACKGROUND DATA Multiple human and animal studies have verified the presence of sensory nerve fibers in IVDs or investigated the behavior of inflammatory mediators in injured IVDs, but no in vivo study to date has examined the relationship between the 2. METHODS Eight-week-old female rats were used. In the disk-injured group, L5/L6 disks were injured with a 24-gauge needle; simultaneously, the neurotracer Fluoro-gold was injected into the L5/L6 IVD. The L5/L6 IVD dorsal root ganglia (DRGs) from the L1 to L6 levels, and the spinal cord was resected at several time points after surgery. Nerve growth factor, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in the IVDs were quantified using enzyme-linked immunosorbent assay. DRGs were immunostained for calcitonin gene-related peptide, and spinal cord sections were immunostained for ionized calcium-binding adaptor molecule-1 and glial fibrillary acidic protein. RESULTS Nerve growth factor, and TNF-α levels (through 1 week) and IL-6 levels (through 4 days) were significantly higher in the disk-injured group than in the noninjured group (P < 0.05). However, starting at 2 weeks (nerve growth factor and TNF-α) or 1 week (IL-6), the differences in inflammatory mediator levels between the 2 groups no longer were significant. In contrast, the percentage of calcitonin gene-related peptide-immunoreactive neurons among Fluoro-gold-labeled DRG neurons, and the numbers of ionized calcium-binding adaptor molecule-1-immunoreactive microglia and glial fibrillary acidic protein-immunoreactive astrocytes in the spinal dorsal horn remained significantly higher in the injured group than in the noninjured group at all-time points (P < 0.05). CONCLUSION Disk injury in rats produces persistent increases in neuropeptides in DRGs and glia in the spinal cord, but only transient increases in inflammatory mediators in IVDs.
Collapse
|
38
|
Abstract
STUDY DESIGN Gait analysis and immunohistological analysis in a rat model of myofascial inflammation in low back. OBJECTIVE To investigate gait in a rat model of myofascial inflammation using the CatWalk gait analysis system. SUMMARY OF BACKGROUND DATA There are few reports examining low back pain behavior in animal models. The CatWalk is a computer-assisted gait analysis system that provides an automated way to assess gait function and this behavior during pain. METHODS In a myofascial inflammation group, 0.5 mL of 4% paraformaldehyde buffer and 0.5 mL of 5% Fluoro-Gold (FG) buffer were injected into bilateral multifidus muscles of rats. In a control group, FG buffer alone was injected. Five days after surgery, the gait of rats in both groups was investigated using the CatWalk system. In the present study a total of 36 gait parameters were quantified and used to judge pain-related behavior. Bilateral dorsal root ganglia (DRGs) from L1 to L6 levels were resected, and immunostained for calcitonin gene-related peptide (CGRP). RESULTS In the myofascial inflammation group, the mean duty cycle (duration of paw contact divided by time between consecutive paw contacts) of each paws (front and hind) were significantly higher and mean stride length (the distance between successive placements of the same paw) of each paws were significantly shorter compared with the control group. Furthermore, mean minimum contact intensity of the complete paw and mean contact intensity of each paws in the myofascial inflammation group were significantly higher compared with the control group. The proportion of CGRP-immunoreactive FG-labeled neurons among all FG-labeled DRG neurons in the myofascial inflammation group was significantly higher than the proportion in the control group. CONCLUSION These results suggest that myofascial inflammation in low back caused the changes to the rat's gait, including long stands, short stride, and strong paw contact.
Collapse
|
39
|
Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M, Stone LS. DNA methylation of SPARC and chronic low back pain. Mol Pain 2011; 7:65. [PMID: 21867537 PMCID: PMC3182907 DOI: 10.1186/1744-8069-7-65] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine) has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP). In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy.
Collapse
Affiliation(s)
- Maral Tajerian
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr, Penfield Avenue, Montreal, Quebec, H3A 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Activation of satellite cells in the dorsal root ganglia in a disc-punctured rat model. J Orthop Sci 2011; 16:433-8. [PMID: 21614559 DOI: 10.1007/s00776-011-0064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/25/2011] [Indexed: 02/09/2023]
Abstract
BACKGROUND The neural mechanisms underlying discogenic low back pain caused by disc degeneration remain unclear. Previous studies demonstrated that satellite cells (SC) play an important role in neuropathic pain. METHODS Twenty adult female Sprague-Dawley rats were used. The rats were divided into two groups: a nucleus pulposus (NP) group whose discs were punctured to expose the NP (n = 10) and a sham-operated group whose annulus fibrosus surface was scratched superficially (n = 10). In this study, we investigated the expression and cellular distribution of glial fibrillary acidic protein (GFAP, a marker of SC activation) in the dorsal root ganglia (DRG) innervating the intervertebral discs using a retrograde tracing method and immunohistochemistry in a disc-punctured rat model. RESULTS In the sham-operated group, GFAP-immunoreactive (IR) SCs were not detected. In the NP group, GFAP-IR SC became evident, and 49 ± 13% of neurons innervating the punctured discs were surrounded by GFAP-positive SCs. CONCLUSIONS Our results were the first to provide evidence for a potential role of SCs in the neural mechanisms of discogenic low back pain caused by disc degeneration.
Collapse
|
41
|
Gautam S, Rastogi V, Jain A, Singh AP. Comparative Evaluation of Oxygen-Ozone Therapy and Combined Use of Oxygen-Ozone Therapy with Percutaneous Intradiscal Radiofrequency Thermocoagulation for the Treatment of Lumbar Disc Herniation. Pain Pract 2011; 11:160-6. [DOI: 10.1111/j.1533-2500.2010.00409.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Pharmacological inhibition of tumor necrosis factor may reduce pain behavior changes induced by experimental disc puncture in the rat: an experimental study in rats. Spine (Phila Pa 1976) 2011; 36:E232-6. [PMID: 21037531 DOI: 10.1097/brs.0b013e3181d8bef3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
STUDY DESIGN Pain behavior assessment in rats following disc puncture (DP) and simultaneous tumor necrosis factor (TNF) inhibition. OBJECTIVE To assess if treatment with TNF inhibition could reduce the pain behavior changes induced by DP in the rat. SUMMARY OF BACKGROUND DATA Anular tears with leakage of nucleus pulposus have been suggested to be one possible cause of low back pain (LBP). In an experimental model, it was recently shown that DP might induce specific pain behavior changes. The aim of the present study was to a study if inhibition of TNF might reduce such pain behavior changes. METHODS Sixty rats underwent facetectomy and puncture of the fourth lumbar disc. The rats were simultaneously treated with doxycycline locally at 0.3 and 3.0 mg/kg and systemically at 3.0 mg/kg, or infliximab locally at 0.5 and 5.0 mg/kg, and systemically at 5.0 mg/kg, (n ∇ 10 for each subseries). The rats were videotaped at 1, 3, 7, 14, and 21 days after surgery. The videos were analyzed regarding presence of wet-dog shakes (WDS). Data from a previous study with sham surgery and DP without treatment were included for comparison. RESULTS All groups treated with doxycycline resulted in a statistically significant reduction of WDS compared to the group without treatment (DP). In infliximab treated animals, WDS decreased with statistically significance compared to the nontreated DP group at all analyzed days except for the group with high dose local treatment where a statistically significant reduction was obtained only at days 14 and 21. CONCLUSION The present study showed that TNF inhibition induced a marked reduction of wet dog shakes. It is not fully understood if wet-dog shakes may relate to LBP, but in view of recent clinical findings one may consider clinical studies of TNF inhibition for the treatment of LBP.
Collapse
|
43
|
Iwatsuki K, Yoshimine T, Umegaki M, Yoshimura K, Ohnishi YI, Ishihara M, Moriwaki T. Percutaneous diode laser irradiation for lumbar discogenic pain: a clinical study. Photomed Laser Surg 2011; 29:459-63. [PMID: 21323427 DOI: 10.1089/pho.2010.2861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study evaluated the efficiency of laser irradiation for treating discogenic low back pain. Discogenic low back pain is believed to result from the degeneration and disruption of outer fibers of the intervertebral disc annulus, leading to a cycle of persistent inflammation, damage to the disc matrix, and sensitization of developed annular nociceptors. We selected 11 patients as subjects on the basis of clinical findings and the results of provocative disc blockade. The patients underwent percutaneous irradiation of affected lumbar discs with a diode laser. The mean total irradiation energy per disc was 740 ± 2.51 J, with a range of 610 to 960 J. The patients' responses were assessed with the Oswestry Disability Index (ODI) and a visual analogue scale (VAS) to determine the average level of pain. The patients' mean ODI scores at 1 day, 3 months, 6 months, 12 months, 18 months, and 24 months after laser irradiation were 18.63 ± 11.22, 13.6 ± 4.53, 12.5 ± 5.5, 11.8 ± 5.25, 10.5 ± 2.27, and 10.5 ± 2.27, respectively, versus a mean pre-treatment ODI score of 50.27 ± 9.35. Their mean VAS scores at the same post-treatment intervals were 3.09 ± 2.36, 2.4 ± 0.97, 2.7 ± 1.16, 2.1 ± 0.74, 2.1 ± 0.81, and 2.1 ± 0.88, respectively, versus a mean pre-treatment VAS score of 7.64 ± 1.21. The post- versus pre-treatment scores for both the ODI and VAS indicated a statistically significant clinical benefit across the full 24-month follow-up period after laser irradiation. The efficacy of laser irradiation in treating such pain may come from a thermal effect and reductions of intradiscal pressure, of the concentrations of irritant substances, and of the numbers of nociceptors in the affected region.
Collapse
Affiliation(s)
- Koichi Iwatsuki
- Department of Neurosurgery, Osaka University Medical School, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Horii M, Orita S, Nagata M, Takaso M, Yamauchi K, Yamashita M, Inoue G, Eguchi Y, Ochiai N, Kishida S, Aoki Y, Ishikawa T, Arai G, Miyagi M, Kamoda H, Kuniyoshi K, Suzuki M, Nakamura J, Toyone T, Takahashi K, Ohtori S. Direct application of the tumor necrosis factor-α inhibitor, etanercept, into a punctured intervertebral disc decreases calcitonin gene-related peptide expression in rat dorsal root ganglion neurons. Spine (Phila Pa 1976) 2011; 36:E80-5. [PMID: 21057386 DOI: 10.1097/brs.0b013e3181d4be3c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN retrograde neurotracing and immunohistochemistry were used to investigate the effect of the tumor necrosis factor (TNF)-α inhibitor, etanercept, on calcitonin gene-related peptide (CGRP) expression in dorsal root ganglion (DRG) neurons innervating intervertebral discs in rats. OBJECTIVE to clarify the action of a TNF-α inhibitor on a sensory neuropeptide in DRG neurons innervating intervertebral discs. SUMMARY OF BACKGROUND DATA degeneration of lumbar intervertebral discs is a cause of low back pain. TNF-α in the intervertebral disc is a major contributor to discogenie pain. Effects of TNF-α inhibition on CGRP expression in DRG neurons were evaluated. METHODS the neurotracer FluoroGold was applied to the surfaces of L4/5 discs to label their innervating DRG neurons (n = 30). Of 30 rats, 10 were in a nonpunctured disc sham surgery control group, whereas the other 20 were in experimental groups in which intervertebral discs were punctured with a 23-gauge needle. Etanercept or saline was applied into the punctured discs (n = 10 each treatment). After 14 days of surgery, DRGs from L1 to L6 were harvested, sectioned, and immunostained for CGRP. The proportion of FluoroGold-labeled CGRP-immunoreactive DRG neurons was evaluated in all groups. RESULTS FluoroGold-labeled neurons innervating the L4/5 disc were distributed throughout L1-L6 DRGs in all groups. Of the FluoroGold-labeled neurons, the proportion of CGRP-immunoreactive neurons was 21% ± 4% in the sham surgery control group, 32% ± 7% in the puncture + saline group, and 23% ± 4% in the puncture + etanercept group. The proportion of CGRP-immunoreactive neurons was significantly greater in the puncture + saline group compared with the sham control and puncture + etanercept groups (P < 0.01). CONCLUSION in this model, CGRP was upregulated in DRG neurons innervating damaged discs. However, direct intradiscal application of etanercept immediately after disc puncture suppressed CGRP expression in DRG neurons innervating injured discs. This finding may further elucidate the mechanism for the effectiveness of etanercept in upregulation of neuropeptide in DRG neurons innervating intervertebral discs.
Collapse
Affiliation(s)
- Manato Horii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Direct evidence for sensory innervation of the dorsal portion of the Co5/6 coccygeal intervertebral disc in rats. Spine (Phila Pa 1976) 2010; 35:1346-52. [PMID: 20354476 DOI: 10.1097/brs.0b013e3181c099b0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We examined the sensory innervation of the coccygeal (Co) 5/6 intervertebral disc in rats using a retrograde neurotracing method and immunohistochemistry. OBJECTIVE To investigate the properties of the sensory innervation of the rat coccygeal disc. SUMMARY OF BACKGROUND DATA Developing a rat disease model for degenerative intervertebral disc compression using lumbar discs is technically impractical because of their location. Coccygeal intervertebral discs are more readily accessible and several reports of morphologic evaluation of degenerative coccygeal intervertebral discs using compression devices exist. However, their sensory innervation and properties have not yet been characterized. METHODS FluoroGold neurotracer was applied to the Co5/6 intervertebral discs of intraperitoneally anesthetized Sprague Dawley rats (n = 10). Subsequently, the discs and the L1-S4 dorsal root ganglions (DRGs) were resected and sectioned. The discs were double-stained for immunoreactivity to the neuronal marker beta-tubulin (Tuj-1) and biotin-labeled isolectinB4 (IB4), a neuropathic pain marker, or Tuj-1 and calcitonin gene-related peptide (CGRP), an inflammatory pain marker. The DRGs were double-stained for IB4-binding and CGRP immunoreactivity (IR). The proportions of IB4-binding or CGRP-IR DRG neurons were assessed by cell counting and compared. RESULTS The disc immunohistochemistry showed evidence of sensory nerve fibers lying in the outermost layer of the anulus fibrosus. FluoroGold labeled DRG neurons mainly derived from S1 to S3 DRGs, especially S2 and S3. No labeled neurons were observed in the S4 DRG. The histochemistry of the DRGs showed a predominance of CGRP-IR DRG neurons (3.5 +/- 1.7% IB4-binding and 15.4 +/- 5.6% CGRP-IR on average). CONCLUSION This study showed evidence for nerve fibers in the discs and predominant innervation by CGRP-IR DRG neurons. The neurons innervating the discs mostly derived from S1 to S3 DRGs, especially S2 and S3. These findings may be useful in developing rat models of disease involving degenerative intervertebral disc compression.
Collapse
|
46
|
Hirose K, Iwakura N, Orita S, Yamashita M, Inoue G, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Nakamura J, Takaso M, Ishikawa T, Arai G, Miyagi M, Kamoda H, Aoki Y, Hiwatari R, Kakizaki J, Kunishi T, Kono M, Suzuki T, Toyone T, Takahashi K, Kuniyoshi K, Ohtori S. Evaluation of behavior and neuropeptide markers of pain in a simple, sciatic nerve-pinch pain model in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1746-52. [PMID: 20490875 DOI: 10.1007/s00586-010-1428-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/27/2010] [Accepted: 04/30/2010] [Indexed: 12/18/2022]
Abstract
Pathomechanisms of injured-nerve pain have not been fully elucidated. Radicular pain and chronic constriction injury models have been established; however, producing these models is complicated. A sciatic nerve-pinch injury is easy to produce but the reliability of this model for evaluating pain behavior has not been examined. The current study evaluated pain-related behavior and change in pain markers in the dorsal root ganglion (DRG) of rats in a simple, sciatic nerve-pinch injury model. In the model, the sciatic nerve was pinched for 2 s using forceps (n = 20), but not injured in sham-operated animals (n = 20). Mechanical and thermal hyperalgesia were measured every second day for 2 weeks using von Frey filaments and a Hargreaves device. Calcitonin gene-related peptide (CGRP), activating transcription factor-3 (ATF-3), phosphorylated p38 mitogen activated protein (Map) kinase (p-p38), and nuclear factor-kappa B (NF-κB; p65) expression in L5 DRGs were examined at 4 and 7 days after surgery using immunohistochemistry. The proportion of neurons immunoreactive for these markers was compared between the two groups. Mechanical (during 8 days) and thermal hyperalgesia (during 6 days) were found in the pinch group rats, but not in the sham-operated animals (p < 0.05); however, hyperalgesia was not significant from days 10 to 14. CGRP, ATF-3, p-p38, and NF-κB expression in L5 DRGs was upregulated in the nerve-injured rats compared with the sham-operated rats (p < 0.01). Our results indicate that a simple sciatic nerve pinch produced pain-related behavior. Upregulation of the pain-marker expression in the nerve-injury model suggested it could be used as a model of pain. However, it was not considered as suitable for long-term studies.
Collapse
Affiliation(s)
- Kazutoshi Hirose
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Use of Temporary Implantable Biomaterials to Reduce Leg Pain and Back Pain in Patients with Sciatica and Lumbar Disc Herniation. MATERIALS 2010. [PMCID: PMC5445914 DOI: 10.3390/ma3053331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The principle etiology of leg pain (sciatica) from lumbar disc herniation is mechanical compression of the nerve root. Sciatica is reduced by decompression of the herniated disc, i.e., removing mechanical compression of the nerve root. Decompression surgery typically reduces sciatica more than lumbar back pain (LBP). Decompression surgery reduces mechanical compression of the nerve root. However, decompression surgery does not directly reduce sensitization of the sensory nerves in the epidural space and disc. In addition, sensory nerves in the annulus fibrosus and epidural space are not protected from topical interaction with pain mediators induced by decompression surgery. The secondary etiology of sciatica from lumbar disc herniation is sensitization of the nerve root. Sensitization of the nerve root results from a) mechanical compression, b) exposure to cellular pain mediators, and/or c) exposure to biochemical pain mediators. Although decompression surgery reduces nerve root compression, sensory nerve sensitization often persists. These observations are consistent with continued exposure of tissue in the epidural space, including the nerve root, to increased cellular and biochemical pain mediators following surgery. A potential contributor to lumbar back pain (LBP) is stimulation of sensory nerves in the annulus fibrosus by a) cellular pain mediators and/or b) biochemical pain mediators that accompany annular tears or disruption. Sensory fibers located in the outer one-third of the annulus fibrosus increase in number and depth as a result of disc herniation. The nucleus pulposus is comprised of material that can produce an autoimmune stimulation of the sensory nerves located in the annulus and epidural space leading to LBP. The sensory nerves of the annulus fibrosus and epidural space may be sensitized by topical exposure to cellular and biochemical pain mediators induced by lumbar surgery. Annulotomy or annular rupture allows the nucleus pulposus topical access to sensory nerve fibers, thereby leading to LBP. Coverage of the annulus and adjacent structures in the epidural space by absorbable viscoelastic gels appears to reduce LBP following surgery by protecting sensory fibers from cellular and biochemical pain mediators.
Collapse
|
48
|
Feng G, Yang X, Shang H, Marks IW, Shen FH, Katz A, Arlet V, Laurencin CT, Li X. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am 2010; 92:675-85. [PMID: 20194326 PMCID: PMC6882534 DOI: 10.2106/jbjs.h.01672] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The existence of fibrocartilage, bone-like tissues, nerves, and blood vessels in the anulus fibrosus during intervertebral disc degeneration has been well documented. Migration of differentiated cells from outside the intervertebral disc has been hypothesized as a possible mechanism for the formation of these tissues. We hypothesized that the normal anulus fibrosus tissue contains multipotent progenitor cells, which are able to differentiate into cartilage and/or fibrocartilage cells, osteoblasts, neurons, and blood vessel cells. METHODS We isolated anulus fibrosus cells from the nondegenerative intervertebral discs of adolescent (thirteen to sixteen-year-old) patients with idiopathic scoliosis and cultured the cells in vitro in induction media containing different stimuli. Immunophenotypic analysis of cell surface markers was performed by flow cytometry. Expression of markers of adipogenesis, osteogenesis, chondrogenesis, neurogenesis, and differentiation into endothelial lineages was determined with use of immunostaining, cytohistological staining, and reverse transcription-polymerase chain reaction. RESULTS Anulus fibrosus cells expressed several of the cell surface antigens that are sometimes associated with mesenchymal stem cells, including CD29, CD49e, CD51, CD73, CD90, CD105, CD166, CD184, and Stro-1, and two neuronal stem cell markers, nestin and neuron-specific enolase. Furthermore, varying the stimulants added to the induction media determined whether anulus fibrosus cells differentiated into adipocytes, osteoblasts, chondrocytes, neurons, or endothelial cells. CONCLUSIONS Anulus fibrosus cells isolated from nondegenerative intervertebral discs can differentiate into adipocytes, osteoblasts, chondrocytes, neurons, and endothelial cells in vitro.
Collapse
Affiliation(s)
- Gang Feng
- Department of Orthopaedic Surgery, Nanchong Central Hospital, North Sichuan Medical College, Nanchong 637000, P.R. China
| | - Xinlin Yang
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Hulan Shang
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Ian W. Marks
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Francis H. Shen
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Adam Katz
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Vincent Arlet
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| | - Cato T. Laurencin
- Departments of Orthopaedic Surgery, and Chemical, Materials and Biomolecular Engineering, The University of Connecticut, Farmington, CT 06032
| | - Xudong Li
- Departments of Orthopaedic Surgery (X.Y., I.W.M., F.H.S., V.A., and X.L.) and Plastic Surgery (H.S. and A.K.), University of Virginia School of Medicine, P.O. Box 800374, Charlottesville, VA 22908. E-mail address for X. Li:
| |
Collapse
|
49
|
Kuh SU, Kwon YM, Chin DK, Kim KS, Jin BH, Cho YE. Different Expression of Extracellular Matrix Genes : Primary vs. Recurrent Disc Herniation. J Korean Neurosurg Soc 2010; 47:26-9. [PMID: 20157374 DOI: 10.3340/jkns.2010.47.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/08/2009] [Accepted: 12/26/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Recurrent lumbar disc herniation has been reported to occur in 5% to 15% of surgically treated primary lumbar disc herniation cases. We investigated the molecular biologic characteristics of primary herniated discs and recurrent discs to see whether the recurrent discs has the similar biological features with primary herniated discs. METHODS Primary herniated disc and recurrent disc cells were obtained by discectomy of lumbar disc patients and cells were isolated and then taken through monolayer cultures. We compared chondrogenic and osteogenic mRNA gene expression, and western blot between the two groups. RESULTS The mRNA gene expression of recurrent disc cells were increased 1.47* times for aggrecan, 1.38 times for type I collagen, 2.04 times for type II collagen, 1.22 times for both Sox-9 and osteocalcin, and 1.31 times for alkaline phosphatase, respectively, compared with the primary herniated lumbar disc cells (*indicates p < 0.05). Western blot results for each aggrecan, type I collagen, type II collagen, Sox-9, osteocalcin, and alkaline phosphatase were similar between the primary herniated disc cells and recurrent disc cells. CONCLUSION These results indicate that the recurrent disc cells have similar chondrogenic and osteogenic gene expression compared to primary herniated disc cells. Therefore, we assumed that the regeneration of remaining discs could fill the previous discectomy space and also it could be one of the factors for disc recurrence especially in the molecular biologic field.
Collapse
Affiliation(s)
- Sung-Uk Kuh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Direct single injection of p38 mitogen-activated protein kinase inhibitor does not affect calcitonin gene-related peptide expression in dorsal root ganglion neurons innervating punctured discs in rats. Spine (Phila Pa 1976) 2009; 34:2843-7. [PMID: 20010392 DOI: 10.1097/brs.0b013e3181b8db15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN.: Immunohistological analysis of punctured disc after application of a p38 MAP kinase inhibitor. OBJECTIVE.: To examine effect of direct application on dorsal root ganglion (DRG) neurons innervating damaged rat discs. SUMMARY OF BACKGROUND DATA.: Degeneration of lumbar discs is one cause of low back pain. Pathogenesis may involve sensory nerve ingrowth into disc inner layers; tumor necrosis factor-alpha (TNF-alpha) is thought to be a major inducer of ingrowth. Because p38 mitogen-activated protein kinase (p38) upregulates TNF-alpha expression and may play a crucial role in pain sensation, we investigated the effect of one injection of inhibitor on expression of the pain-related neuropeptide calcitonin gene-related peptide (CGRP). METHODS.: The neuro-tracer fluoro-gold was applied to the surfaces of L4/5 discs to label the innervating DRG neurons (n = 30). Of 30 rats, 10 were controls, whereas the other 20 were the experimental model (i.e., discs were punctured with 23-gauge needle). P38 specific inhibitor or saline was applied simultaneously (n = 10 each, Puncture + inhibitor and puncture + saline groups). Fourteen days postsurgery, DRGs from L1 to L6 were harvested, sectioned, and immunostained for CGRP. Proportion of CGRP-immunoreactive DRG neurons was evaluated in all groups. RESULTS.: Fluoro-gold-labeled neurons innervating the L4/5 disc were distributed throughout L1 to L6 DRGs in all groups. Proportions of labeled neurons positive for CGRP were 15.2% +/- 8% (controls), 27.2% +/- 10% (puncture + saline), and 25.2% +/- 8% (puncture + inhibitor). Proportion of immunoreactive neurons was significantly increased in the puncture groups compared with controls. However, there was no significant difference between the 2 puncture groups (P > 0.1). CONCLUSION.: In this model, CGRP was upregulated in DRG neurons innervating the damaged disc. However, a direct single application of p38 inhibitor did not suppress CGRP expression in innervating DRG neurons. Future research with p38 inhibitor in this model should evaluate multiple or systemic administration of inhibitor.
Collapse
|