1
|
Miyamoto T. Osteoporosis and Rheumatoid Arthritis: Mechanisms Underlying Osteoclast Differentiation and Activation or Factors Associated with Hip Fractures. J Clin Med 2025; 14:1138. [PMID: 40004668 PMCID: PMC11856638 DOI: 10.3390/jcm14041138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoporosis is defined as a condition of increased risk of fracture due to decreased bone strength. In developed countries, the number of patients with osteoporosis and fragility fractures has been increasing in recent years due to the growing elderly population, posing a social challenge not only to fracture patients and their families but also to the social healthcare economy. Osteoporosis can be divided into two categories: primary osteoporosis caused by aging or menopause and secondary osteoporosis caused by metabolic or inflammatory diseases or drugs such as glucocorticoids. The majority of patients have primary osteoporosis, and the pathogenesis of postmenopausal osteoporosis and factors associated with fragility fractures in the elderly have been elucidated. On the other hand, rheumatoid arthritis (RA) is one of the causes of secondary osteoporosis. RA is a chronic inflammatory disease characterized by joint swelling and destruction. Most often, treatment focuses on suppressing these symptoms. However, physicians should be aware of the risk of osteoporosis in RA patients, because (1) RA is a chronic inflammatory disease, which itself can be a risk factor for osteoporosis; (2) glucocorticoids, which are sometimes administered to treat RA, can be a risk factor for osteoporosis; and (3) patients with RA are becoming older, and aging is an osteoporosis risk factor. A comprehensive understanding of the pathogenesis of osteoporosis and its fragility fractures requires elucidating the mechanisms underlying osteoclast activation, which drives their development. Furthermore, identifying the factors associated with fragility fractures is essential. This review summarizes the pathogenesis of osteoporosis, the factors associated with fragility fractures, and the associations between RA and osteoporosis development.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Koga A, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Fujii W, Ariyoshi W. Molecular Mechanisms of Curdlan-Induced Suppression of NFATc1 Expression in Osteoclasts. J Cell Biochem 2025; 126:e30682. [PMID: 39606840 DOI: 10.1002/jcb.30682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Osteoclasts derived from hematopoietic stem cells express immunoreceptors on their cell surface. Previously, we showed that the β-glucan curdlan suppressed osteoclastogenesis via binding to dectin-1, a pattern recognition receptor. Curdlan negatively regulates osteoclast differentiation and bone resorption capacity by suppressing the expression of nuclear factor of activated T cells 1 (NFATc1), a master factor for osteoclast differentiation, in a dectin-1-dependent manner; however, the mechanism involved in this process has not yet been fully elucidated. In this study, we aimed to elucidate the molecular mechanism involved in the suppression of RANKL-induced osteoclast differentiation by curdlan. Real-time RT-qPCR results showed that curdlan suppressed the expression of NFATc1 in cells of the osteoclast progenitor cell line RAW264.7 overexpressing dectin-1 (d-RAW cells), without altering the expression of negative regulators. Therefore, we examined the effect of curdlan on the NF-κB pathway, which is important for the induction of NFATc1 expression. Western blot analysis results showed that curdlan addition suppressed RANKL-induced NF-κB activation in the vector control line (c-RAW) cells with low expression of dectin-1, in d-RAW cells, and the parental RAW264.7 (RAW) cells. The results of tartrate-resistant alkaline phosphatase staining and real-time RT-qPCR showed that curdlan addition suppressed osteoclast differentiation in RAW cells, suggesting the presence of a dectin-1-independent modification system. Finally, we focused on the complement receptor 3 (CR3), which binds β-glucan, and revealed that blocking the binding of β-glucan to the CD11b molecule, a component of CR3, by neutralizing antibody, recovered the suppression of IκBα degradation by curdlan. These results suggest that the suppression of osteoclast differentiation by curdlan involves not only the dectin-1-dependent pathway but also the negative regulation of NFATc1 via modification of the NF-κB pathway via CR3 recognition. The results of this study may aid to establish treatment methods for metabolic bone diseases and inflammatory bone destruction and to clarify their pathogenesis.
Collapse
Affiliation(s)
- Ayaka Koga
- Department of Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Producst, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Wataru Fujii
- Unit of Interdisciplinary Promotion, School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
3
|
Gu DR, Yang H, Kim SC, Lee SJ, Ha H. Water Extract of Pulsatilla koreana Nakai Inhibits Osteoclast Differentiation and Alleviates Ovariectomy-Induced Bone Loss. Int J Mol Sci 2024; 25:11616. [PMID: 39519166 PMCID: PMC11547052 DOI: 10.3390/ijms252111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Pulsatilla koreana Nakai (P. koreana) is a perennial herb traditionally used to treat malaria and fever. Although the pharmacological properties of P. koreana have been explored in various contexts, its effects on bone diseases, such as osteoporosis, remain poorly studied. In this study, we investigated the effects of water extracts of P. koreana (WEPK) on osteoclasts, which play a crucial role in bone remodeling, and an ovariectomized (OVX) mouse model, which mimics osteoporosis. Phytochemical profiling of WEPK revealed several compounds that regulate bone or fat metabolism. WEPK suppressed osteoclast differentiation by downregulating the expression of receptor activator of nuclear factor-κB ligand (RANKL), a cytokine that induces osteoclastogenesis. Additionally, WEPK directly inhibited RANKL-induced differentiation of osteoclast precursors by downregulating nuclear factor of activated T cells 1 (NFATc1), the master transcription factor for osteoclastogenesis, by modulating its upstream regulators. In vivo, oral administration of WEPK suppressed bone loss, reduced weight gain, and mitigated fat accumulation in the liver and gonadal tissues of OVX mice. Given its positive impact on bone and fat accumulation under estrogen deficiency, WEPK may serve as a promising alternative therapy for postmenopausal osteoporosis, especially when accompanied by other metabolic disorders, such as obesity and fatty liver.
Collapse
Affiliation(s)
| | | | | | | | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.); (H.Y.); (S.C.K.); (S.-J.L.)
| |
Collapse
|
4
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. Nodal negatively regulates osteoclast differentiation by inducing STAT1 phosphorylation. J Cell Physiol 2024; 239:e31268. [PMID: 38577903 DOI: 10.1002/jcp.31268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Several members of the transforming growth factor beta (TGF-β) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-β superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, South Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Henning P, Westerlund A, Horkeby K, Lionikaite V, Nilsson KH, Movérare-Skrtic S, Conaway HH, Lerner UH. Vitamin A enhanced periosteal osteoclastogenesis is associated with increased number of tissue-derived macrophages/osteoclast progenitors. J Biol Chem 2024; 300:107308. [PMID: 38657862 PMCID: PMC11163173 DOI: 10.1016/j.jbc.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
A deleterious effect of elevated levels of vitamin A on bone health has been reported in clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine receptor activator of nuclear factor kappa B-ligand (RANKL), on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (half-maximal stimulation ∼3 nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as macrophage colony-stimulating factor receptor, receptor activator of nuclear factor kappa B, F4/80, and CD11b, as well as by flow cytometry (FACS) analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased macrophage colony-stimulating factor or interleukin-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - H Herschel Conaway
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Chang X, Deng J, Zhou F, Geng Z, Li X, Wang S. D-alanine suppressed osteoclastogenesis derived from bone marrow macrophages and downregulated ERK/p38 signalling pathways. Arch Oral Biol 2024; 161:105912. [PMID: 38382164 DOI: 10.1016/j.archoralbio.2024.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.
Collapse
Affiliation(s)
- Xiaochi Chang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Deng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China
| | - Fengyi Zhou
- School of Stomatology of Qingdao University, Qingdao, China; Department of Stomatology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Zhihao Geng
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China; Institute of Stomatological Research, Shenzhen University, Shenzhen, China.
| | - Shuai Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, China; School of Stomatology of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Clark R, Park SY, Bradley EW, Mansky K, Tasca A. Mouse mandibular-derived osteoclast progenitors have differences in intrinsic properties compared with femoral-derived progenitors. JBMR Plus 2024; 8:ziae029. [PMID: 38606149 PMCID: PMC11008737 DOI: 10.1093/jbmrpl/ziae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Craniofacial osteoclasts are essential for site-specific processes such as alveolar bone resorption, tooth eruption, and orthodontic tooth movement. Much of the current understanding of osteoclast development and function comes from studies using long bone-derived cells. Minimal investigation has been done to explore skeletal site differences. The overall goal of this study was to determine if mandibular- and femoral-derived osteoclasts represent distinct populations. To test this hypothesis, bone marrow cells were initially analyzed from the mandible and femur of 2-month-old mice. It was shown that mandibular-derived osteoclasts have enhanced size (mm2) compared with femoral-derived osteoclasts. Since bone marrow macrophages are a heterogenous population, we additionally selected for monocytes and demonstrated that mandibular-derived monocytes also form osteoclasts with increased size compared with femoral-derived monocytes. Osteoclast precursor populations from both skeletal sites were analyzed by flow cytometry. A newly described Ly6CHigh+ population as well as the Ly6Cint population was increased in the mandibular-derived cells. The difference in differentiation potential between monocyte cultures suggests that the increase in the Ly6CHigh+ population may explain the enhanced differentiation potential in mandibular-derived cells. Monocyte genes such as Pu.1, C/ebp-a, and Prdm1 are increased in expression in mandibular-derived monocytes compared with femoral-derived monocytes. As expected with enhanced differentiation, osteoclast genes including Nfatc1, Dc-stamp, Ctsk, and Rank are upregulated in mandibular-derived osteoclast precursors. Future studies will determine how changes in the environment of the mandible lead to changes in percentages of osteoclast progenitors and their differentiation potential.
Collapse
Affiliation(s)
- Rachel Clark
- Department of Developmental and Surgical Sciences, Oral Biology Graduate Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - Soo Y Park
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kim Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry Minneapolis, Minneapolis, MN 55455, United States
| | - Amy Tasca
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry Minneapolis, Minneapolis, MN 55455, United States
| |
Collapse
|
9
|
Kim H, Oh J, Kim MK, Lee KH, Jeong D. Selenoprotein W engages in overactive osteoclast differentiation in multiple myeloma. Mol Biol Rep 2024; 51:587. [PMID: 38683225 PMCID: PMC11058866 DOI: 10.1007/s11033-024-09517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Patients with multiple myeloma exhibit malignant osteolytic bone disease due to excessive osteoclast formation and function. We recently identified that osteoclastogenic stimulator selenoprotein W (SELENOW) is upregulated via ERK signaling and downregulated via p38 signaling during receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation. In the intrinsic physiological process, RANKL-induced downregulation of SELENOW maintains proper osteoclast differentiation; in contrast, forced overexpression of SELENOW leads to overactive osteoclast formation and function. METHODS AND RESULTS We observed that SELENOW is highly expressed in multiple myeloma-derived peripheral blood mononuclear cells (PBMCs) and mature osteoclasts when compared to healthy controls. Also, the level of tumor necrosis factor alpha (TNFα), a pathological osteoclastogenic factor, is increased in the PBMCs and serum of patients with multiple myeloma. ERK activation by TNFα was more marked and sustained than that by RANKL, allowing SELENOW upregulation. Excessive expression of SELENOW in osteoclast progenitors and mature osteoclasts derived from multiple myeloma facilitated efficient nuclear translocation of osteoclastogenic transcription factors NF-κB and NFATc1, which are favorable for osteoclast formation. CONCLUSION Our findings suggest a possibility that feedforward signaling of osteoclastogenic SELENOW by TNFα derived from multiple myeloma induces overactive osteoclast differentiation, leading to bone loss during multiple myeloma.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415, Korea
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Jiin Oh
- Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415, Korea
| | - Min Kyoung Kim
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, 42415, Korea
| | - Kyung Hee Lee
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, 42415, Korea
| | - Daewon Jeong
- Laboratory of Bone Metabolism and Control, Department of Microbiology, Yeungnam University College of Medicine, Daegu, 42415, Korea.
- Company of The Bone Science, Yeungnam University College of Medicine, Daegu, 42415, Korea.
| |
Collapse
|
10
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
11
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. MCP-5 suppresses osteoclast differentiation through Ccr5 upregulation. J Cell Physiol 2024; 239:e31171. [PMID: 38214098 DOI: 10.1002/jcp.31171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Canalis E, Schilling L, Yu J, Denker E. NOTCH2 promotes osteoclast maturation and metabolism and modulates the transcriptome profile during osteoclastogenesis. J Biol Chem 2024; 300:105613. [PMID: 38159855 PMCID: PMC10837628 DOI: 10.1016/j.jbc.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Notch signaling plays a key regulatory role in bone remodeling and NOTCH2 enhances osteoclastogenesis, an effect that is mostly mediated by its target gene Hes1. In the present study, we explored mechanisms responsible for the enhanced osteoclastogenesis in bone marrow-derived macrophages (BMM) from Notch2tm1.1Ecan, harboring a NOTCH2 gain-of-function mutation, and control mice. Notch2tm1.1Ecan mice are osteopenic and have enhanced osteoclastogenesis. Bulk RNA-Seq and gene set enrichment analysis of Notch2tm1.1Ecan BMMs cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand revealed enrichment of genes associated with enhanced cell metabolism, aerobic respiration, and mitochondrial function, all associated with osteoclastogenesis. These pathways were not enhanced in the context of a Hes1 inactivation. Analysis of single cell RNA-Seq data of pooled control and Notch2tm1.1Ecan BMMs treated with M-CSF or M-CSF and receptor activator of NF-κB ligand for 3 days identified 11 well-defined cellular clusters. Pseudotime trajectory analysis indicated a trajectory of clusters expressing genes associated with osteoclast progenitors, osteoclast precursors, and mature cells. There were an increased number of cells expressing gene markers associated with the osteoclast and with an unknown, albeit related, cluster in Notch2tm1.1Ecan than in control BMMs as well as enhanced expression of genes associated with osteoclast progenitors and precursors in Notch2tm1.1Ecan cells. In conclusion, BMM cultures display cellular heterogeneity, and NOTCH2 enhances osteoclastogenesis, increases mitochondrial and metabolic activity of osteoclasts, and affects cell cluster allocation in BMMs.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
13
|
Sasaki Y, Nakatsuka R, Inoue A, Inouchi T, Masutani M, Nozaki T. Dysfunction of poly (ADP-ribose) glycohydrolase suppresses osteoclast differentiation in RANKL-stimulated RAW264 cells. Biochem Biophys Res Commun 2024; 692:149309. [PMID: 38048727 DOI: 10.1016/j.bbrc.2023.149309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Poly (ADP-ribose) glycohydrolase (PARG) is an enzyme that mainly degrades poly (ADP-ribose) (PAR) synthesized by poly (ADP-ribose) polymerase (PARP) family proteins. Although PARG is involved in many biological phenomena, including DNA repair, cell differentiation, and cell death, little is known about the relationship between osteoclast differentiation and PARG. It has also not been clarified whether PARG is a valuable target for therapeutic agents in the excessive activity of osteoclast-related bone diseases such as osteoporosis. In the present study, we examined the effects of PARG inhibitor PDD00017273 on osteoclast differentiation in RANKL-induced RAW264 cells. PDD00017273 induced the accumulation of intracellular PAR and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. PDD00017273 also downregulated osteoclast differentiation marker genes such as Trap, cathepsin K (Ctsk), and dendrocyte expressed seven transmembrane protein (Dcstamp) and protein expression of nuclear factor of activated T cells 1 (NFATc1), a master regulator of osteoclast differentiation. Taken together, our findings suggest that dysfunction of PARG suppresses osteoclast differentiation via the PAR accumulation and partial inactivation of the NFATc1.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan; Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Ryusuke Nakatsuka
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Amane Inoue
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Takuma Inouchi
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Tadashige Nozaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121, Japan.
| |
Collapse
|
14
|
Lee SJ, Yang H, Kim SC, Gu DR, Ryuk JA, Jang SA, Ha H. Ethanol Extract of Radix Asteris Suppresses Osteoclast Differentiation and Alleviates Osteoporosis. Int J Mol Sci 2023; 24:16526. [PMID: 38003715 PMCID: PMC10671772 DOI: 10.3390/ijms242216526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Radix Asteris, the root of Aster tataricus L. f., is historically significant in East Asian medicine for treating respiratory conditions. Yet, its implications on bone health remain uncharted. This research investigated the impact of an aqueous ethanol extract of Radix Asteris (EERA) on osteoclast differentiation and its prospective contribution to osteoporosis management. We discerned that EERA retards osteoclast differentiation by inhibiting receptor activator of nuclear factor kappa-B ligand (RANKL) expression and obstructing RANKL-induced osteoclastogenesis. EERA markedly suppressed RANKL-induced expression of NFATc1, a pivotal osteoclastogenic factor, via modulating early RANK signaling. EERA's therapeutic potential was underscored by its defense against trabecular bone degradation and its counteraction to increased body and perigonadal fat in ovariectomized mice, mirroring postmenopausal physiological changes. In the phytochemical analysis of EERA, we identified several constituents recognized for their roles in regulating bone and fat metabolism. Collectively, our findings emphasize the potential of EERA in osteoclast differentiation modulation and in the management of osteoporosis and associated metabolic changes following estrogen depletion, suggesting its suitability as an alternative therapeutic strategy for postmenopausal osteoporosis intertwined with metabolic imbalances.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea;
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| |
Collapse
|
15
|
Kim JA, Lim S, Ihn HJ, Kim JE, Yea K, Moon J, Choi H, Park EK. Britanin inhibits titanium wear particle‑induced osteolysis and osteoclastogenesis. Mol Med Rep 2023; 28:205. [PMID: 37732549 PMCID: PMC10539997 DOI: 10.3892/mmr.2023.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Wear particle‑induced osteolysis is a serious complication that occurs in individuals with titanium (Ti)‑based implants following long‑term usage due to loosening of the implants. The control of excessive osteoclast differentiation and inflammation is essential for protecting against wear particle‑induced osteolysis. The present study evaluated the effect of britanin, a pseudoguaianolide sesquiterpene isolated from Inula japonica, on osteoclastogenesis in vitro and Ti particle‑induced osteolysis in vivo. The effect of britanin was examined in the osteoclastogenesis of mouse bone marrow‑derived macrophages (BMMs) using TRAP staining, RT‑PCR, western blotting and immunocytochemistry. The protective effect of britanin was examined in a mouse calvarial osteolysis model and evaluated using micro‑CT and histomorphometry. Britanin inhibited osteoclast differentiation and F‑actin ring formation in the presence of macrophage colony‑stimulating factor and receptor activator of nuclear factor kB ligand in BMMs. The expression of osteoclast‑specific marker genes, including tartrate‑resistant acid phosphatase, cathepsin K, dendritic cell‑specific transmembrane protein, matrix metallopeptidase 9 and nuclear factor of activated T‑cells cytoplasmic 1, in the BMMs was significantly reduced by britanin. In addition, britanin reduced the expression of B lymphocyte‑induced maturation protein‑1, which is a transcriptional repressor of negative osteoclastogenesis regulators, including interferon regulatory factor‑8 and B‑cell lymphoma 6. Conversely, britanin increased the expression levels of anti‑oxidative stress genes, namely nuclear factor erythroid‑2‑related factor 2, NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 in the BMMs. Furthermore, the administration of britanin significantly reduced osteolysis in a Ti particle‑induced calvarial osteolysis mouse model. Based on these findings, it is suggested that britanin may be a potential therapeutic agent for wear particle‑induced osteolysis and osteoclast‑associated disease.
Collapse
Affiliation(s)
- Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jimin Moon
- College of Pharmacy, Research Institution of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Research Institution of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio‑tooth Regeneration, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
16
|
Omata Y, Tachibana H, Aizaki Y, Mimura T, Sato K. Essentiality of Nfatc1 short isoform in osteoclast differentiation and its self-regulation. Sci Rep 2023; 13:18797. [PMID: 37914750 PMCID: PMC10620225 DOI: 10.1038/s41598-023-45909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
During osteoclast differentiation, the expression of the transcription factor nuclear factor of activated T cell 1 (Nfatc1) increases in an autoproliferative manner. Nfatc1 isoforms are of three sizes, and only the short isoform increases during osteoclast differentiation. Genetic ablation of the whole Nfatc1 gene demonstrated that it is essential for osteoclastogenesis; however, the specific role of the Nfatc1 short form (Nfatc1/αA) remains unknown. In this study, we engineered Nfatc1 short form-specific knockout mice and found that these mice died in utero by day 13.5. We developed a novel osteoclast culture system in which hematopoietic stem cells were cultured, proliferated, and then differentiated into osteoclasts in vitro. Using this system, we show that the Nfatc1/αA isoform is essential for osteoclastogenesis and is responsible for the expression of various osteoclast markers, the Nfatc1 short form itself, and Nfatc1 regulators.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Tachibana
- Department of Rheumatology, Akiru Municipal Medical Center, 78-1 Hikita, Akiruno, Tokyo, 197-0834, Japan
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Kojiro Sato
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
17
|
Kim SC, Gu DR, Yang H, Lee SJ, Ryuk JA, Ha H. Isolation and Characterization of an Anti-Osteoporotic Compound from Melia toosendan Fructus. Pharmaceutics 2023; 15:2454. [PMID: 37896213 PMCID: PMC10609846 DOI: 10.3390/pharmaceutics15102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Melia toosendan fructus, traditionally employed in traditional Chinese and Korean herbal medicine, exhibits diverse biological properties encompassing anti-tumor, anti-inflammatory, and anti-viral effects. However, its influence on bone metabolism remains largely unexplored. In this study, we investigated the impact of an ethanolic extract of Melia toosendan fructus (MTE) on osteoclast differentiation and characterized its principal active constituent in osteoclast differentiation and function, as well as its effects on bone protection. Our findings demonstrate that MTE effectively inhibits the differentiation of osteoclast precursors induced by receptor activator of nuclear factor κB ligand (RANKL). Utilizing a bioassay-guided fractionation approach coupled with UHPLC-MS/MS analysis, we isolated and identified the triterpenoid compound toosendanin (TSN) as the active constituent responsible for MTE's anti-osteoclastogenic activity. TSN treatment downregulated the expression of nuclear factor of activated T cells c1, a pivotal osteoclastogenic transcription factor, along with molecules implicated in osteoclast-mediated bone resorption, including tumor necrosis factor receptor-associated factor 6, carbonic anhydrase II, integrin beta-3, and cathepsin K. Furthermore, treatment of mature osteoclasts with TSN impaired actin ring formation, acidification, and resorptive function. Consistent with our in vitro findings, TSN administration mitigated trabecular bone loss and reduced serum levels of the bone resorption marker, C-terminal cross-linked telopeptides of type I collagen, in a mouse bone loss model induced by intraperitoneal injections of RANKL. These results suggest that TSN, as the principal active constituent of MTE with inhibitory effects on osteoclastogenesis, exhibits bone-protective properties by suppressing both osteoclast differentiation and function. These findings imply the potential utility of TSN in the treatment of diseases characterized by excessive bone resorption.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
18
|
Zhou Q, Zhao C, Yang Z, Qu R, Li Y, Fan Y, Tang J, Xie T, Wen Z. Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish. Cell Rep 2023; 42:112793. [PMID: 37453064 DOI: 10.1016/j.celrep.2023.112793] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Tissue-resident macrophages (TRMs) and dendritic cells (DCs) are highly heterogeneous and essential for immunity, tissue regeneration, and homeostasis maintenance. Here, we comprehensively profile the heterogeneity of TRMs and DCs across adult zebrafish organs via single-cell RNA sequencing. We identify two macrophage subsets: pro-inflammatory macrophages with potent phagocytosis signatures and pro-remodeling macrophages with tissue regeneration signatures in barrier tissues, liver, and heart. In parallel, one conventional dendritic cell (cDC) population with prominent antigen presentation capacity and plasmacytoid dendritic cells (pDCs) featured by anti-virus properties are also observed in these organs. Remarkably, in addition to a single macrophage/microglia population with potent phagocytosis capacity, a pDC population and two distinct cDC populations are identified in the brain. Finally, we generate specific reporter lines for in vivo tracking of macrophage and DC subsets. Our study depicts the landscape of TRMs and DCs and creates valuable tools for in-depth study of these cells in zebrafish.
Collapse
Affiliation(s)
- Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhiyong Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Rui Qu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yining Fan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinlin Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Lee SJ, Jang SA, Kim SC, Ryuk JA, Ha H. Lophatherum gracile Bronghiart Suppresses Receptor Activator of Nuclear Factor Kappa-B Ligand-Stimulated Osteoclastogenesis and Prevents Ovariectomy-Induced Osteoporosis. Int J Mol Sci 2022; 23:ijms232213942. [PMID: 36430416 PMCID: PMC9699449 DOI: 10.3390/ijms232213942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lophatherum gracile Bronghiart, used in traditional herbal medicine, has many biological properties including antiviral, antipyretic, antitumor, vasorelaxation, and neutrophilic inflammatory effects. However, its modulatory effects on bone metabolism have not been investigated previously. In this study, we examined the effects of a water extract of the leaves of L. gracile (WELG) on osteoclast differentiation and bone loss, and explored its underlying mechanisms. We found that WELG inhibits osteoclastogenesis by suppressing both receptor activator of nuclear factor-κB ligand (RANKL)-induced early activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB)- and RANKL-induced modulation of the positive and negative regulators of osteoclastogenesis in osteoclast precursors. In vivo study demonstrated that WELG protects against bone loss, weight gain, and fat accumulation without affecting uterine atrophy in an ovariectomy-induced postmenopausal osteoporosis mice model. In addition, photochemical analysis of WELG identified active constituents known to have bone-protective effects. Overall, the results of this study suggest that WELG can be a potential candidate for therapy and prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea
- Correspondence: ; Tel.: +82-42-868-9367
| |
Collapse
|
20
|
Nishikawa K, Takegami H, Sesaki H. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000650. [PMID: 36320616 PMCID: PMC9618030 DOI: 10.17912/micropub.biology.000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Opatic atrophy 1 (Opa1) is a mitochondrial GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. Osteoclasts are mitochondrial rich-cells. However, the role of Opa1 in osteoclasts remains unclear. Here, we demonstrate that Opa1- deficient osteoclast precursor cells do not undergo efficient osteoclast differentiation and exhibit abnormal cristae morphology. Thus, Opa1 is a key factor in osteoclast differentiation through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University
,
Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University
,
Graduate School of Medicine/Frontier Biosciences, Osaka University
,
Correspondence to: Keizo Nishikawa (
)
| | - Hina Takegami
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine
| |
Collapse
|
21
|
Fang K, Murakami Y, Kanda S, Shimono T, Dang AT, Ono M, Nishiyama T. Unkeito Suppresses RANKL-Mediated Osteoclastogenesis via the Blimp1-Bcl6 and NF-κB Signaling Pathways and Enhancing Osteoclast Apoptosis. Int J Mol Sci 2022; 23:ijms23147814. [PMID: 35887169 PMCID: PMC9323376 DOI: 10.3390/ijms23147814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1–Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2403
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| |
Collapse
|
22
|
de Souza PPC, Henning P, Lerner UH. Stimulation of Osteoclast Formation by Oncostatin M and the Role of WNT16 as a Negative Feedback Regulator. Int J Mol Sci 2022; 23:3287. [PMID: 35328707 PMCID: PMC8953253 DOI: 10.3390/ijms23063287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.
Collapse
Affiliation(s)
- Pedro P. C. de Souza
- The Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| |
Collapse
|
23
|
Watanabe H, Okada H, Hirose J, Omata Y, Matsumoto T, Matsumoto M, Nakamura M, Saito T, Miyamoto T, Tanaka S. Transcription factor Hhex negatively regulates osteoclast differentiation by controlling cyclin‐dependent kinase inhibitors. JBMR Plus 2022; 6:e10608. [PMID: 35434453 PMCID: PMC9009129 DOI: 10.1002/jbm4.10608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
We investigated the role of hematopoietically expressed homeobox protein (Hhex) in osteoclast development. Trimethylation of lysine 27 of histone H3 at the cis‐regulatory element of Hhex was maintained and that of lysine 4 was reduced during receptor activator of nuclear factor κB ligand (RANKL)‐induced osteoclastogenesis, which was associated with a reduction of Hhex expression. Overexpression of Hhex in bone marrow–derived macrophages inhibited, whereas Hhex suppression promoted, RANKL‐induced osteoclastogenesis in vitro. Conditional deletion of Hhex in osteoclast‐lineage cells promoted osteoclastogenesis and reduced cancellous bone volume in mice, confirming the negative regulatory role of Hhex in osteoclast differentiation. Expression of cyclin‐dependent kinase inhibitors such as Cdkn2a and Cdkn1b in osteoclast precursors was negatively regulated by Hhex, and Hhex deletion increased the ratio of cells at the G1 phase of the cell cycle. In conclusion, Hhex is an inhibitor of osteoclast differentiation that is regulated in an epigenetic manner and regulates the cell cycle of osteoclast precursors and the skeletal homeostasis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hisato Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Jun Hirose
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery Kumamoto University Kumamoto Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| |
Collapse
|
24
|
Zhang Y, Wang J, Jing C, Zhou MX, Jin W, Yan X, Hou H, Shi K, Sun WC, Sun L. Purple Tea Water Extract Blocks RANKL-induced Osteoclastogenesis through Modulation of Akt/GSK3β and Blimp1-Irf8 Pathways. Food Funct 2022; 13:8850-8859. [DOI: 10.1039/d2fo00780k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of studies demonstrated that some tea extracts exert inhibitory effects on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). However, the effect of purple tea,...
Collapse
|
25
|
Han J, Yang K, An J, Jiang N, Fu S, Tang X. The Role of NRF2 in Bone Metabolism - Friend or Foe? Front Endocrinol (Lausanne) 2022; 13:813057. [PMID: 35282459 PMCID: PMC8906930 DOI: 10.3389/fendo.2022.813057] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Bone metabolism is closely related to oxidative stress. As one of the core regulatory factors of oxidative stress, NRF2 itself and its regulation of oxidative stress are both involved in bone metabolism. NRF2 plays an important and controversial role in the regulation of bone homeostasis in osteoblasts, osteoclasts and other bone cells. The role of NRF2 in bone is complex and affected by several factors, such as its expression levels, age, sex, the presence of various physiological and pathological conditions, as well as its interaction with certains transcription factors that maintain the normal physiological function of the bone tissue. The properties of NRF2 agonists have protective effects on the survival of osteogenic cells, including osteoblasts, osteocytes and stem cells. Activation of NRF2 directly inhibits osteoclast differentiation by resisting oxidative stress. The effects of NRF2 inhibition and hyperactivation on animal skeleton are still controversial, the majority of the studies suggest that the presence of NRF2 is indispensable for the acquisition and maintenance of bone mass, as well as the protection of bone mass under various stress conditions. More studies show that hyperactivation of NRF2 may cause damage to bone formation, while moderate activation of NRF2 promotes increased bone mass. In addition, the effects of NRF2 on the bone phenotype are characterized by sexual dimorphism. The efficacy of NRF2-activated drugs for bone protection and maintenance has been verified in a large number of in vivo and in vitro studies. Additional research on the role of NRF2 in bone metabolism will provide novel targets for the etiology and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jie Han
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kuan Yang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Jinyang An
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Na Jiang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xulei Tang,
| |
Collapse
|
26
|
Ishizuka K. Calcitonin Gene-related Peptide Inhibits Osteoclast Differentiation by Inducing the Negative Regulators <i>MafB</i> and <i>Bcl6</i>. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kyoko Ishizuka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
27
|
Yu J, Schilling L, Eller T, Canalis E. Hairy and enhancer of split 1 is a primary effector of NOTCH2 signaling and induces osteoclast differentiation and function. J Biol Chem 2021; 297:101376. [PMID: 34742737 PMCID: PMC8633688 DOI: 10.1016/j.jbc.2021.101376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Notch2tm1.1Ecan mice, which harbor a mutation replicating that found in Hajdu–Cheney syndrome, exhibit marked osteopenia because of increased osteoclast number and bone resorption. Hairy and enhancer of split 1 (HES1) is a Notch target gene and a transcriptional modulator that determines osteoclast cell fate decisions. Transcript levels of Hes1 increase in Notch2tm1.1Ecan bone marrow–derived macrophages (BMMs) as they mature into osteoclasts, suggesting a role in osteoclastogenesis. To determine whether HES1 is responsible for the phenotype of Notch2tm1.1Ecan mice and the skeletal manifestations of Hajdu–Cheney syndrome, Hes1 was inactivated in Ctsk-expressing cells from Notch2tm1.1Ecan mice. Ctsk encodes the protease cathepsin K, which is expressed preferentially by osteoclasts. We found that the osteopenia of Notch2tm1.1Ecan mice was ameliorated, and the enhanced osteoclastogenesis was reversed in the context of the Hes1 inactivation. Microcomputed tomography revealed that the downregulation of Hes1 in Ctsk-expressing cells led to increased bone volume/total volume in female mice. In addition, cultures of BMMs from CtskCre/WT;Hes1Δ/Δ mice displayed a decrease in osteoclast number and size and decreased bone-resorbing capacity. Moreover, activation of HES1 in Ctsk-expressing cells led to osteopenia and enhanced osteoclast number, size, and bone resorptive capacity in BMM cultures. Osteoclast phenotypes and RNA-Seq of cells in which HES1 was activated revealed that HES1 modulates cell–cell fusion and bone-resorbing capacity by supporting sealing zone formation. In conclusion, we demonstrate that HES1 is mechanistically relevant to the skeletal manifestation of Notch2tm1.1Ecan mice and is a novel determinant of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
28
|
Nishikawa K, Seno S, Yoshihara T, Narazaki A, Sugiura Y, Shimizu R, Kikuta J, Sakaguchi R, Suzuki N, Takeda N, Semba H, Yamamoto M, Okuzaki D, Motooka D, Kobayashi Y, Suematsu M, Koseki H, Matsuda H, Yamamoto M, Tobita S, Mori Y, Ishii M. Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Rep 2021; 22:e53035. [PMID: 34661337 PMCID: PMC8647016 DOI: 10.15252/embr.202153035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two‐photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia‐inducible factor activity. We observe that hypoxia decreases ten‐eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen‐dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Ayako Narazaki
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University, Tokyo, Japan
| | - Reito Shimizu
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Reiko Sakaguchi
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Semba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cardiovascular Medicine/Basic Research, The Cardiovascular Institute, Tokyo, Japan
| | - Masamichi Yamamoto
- Department of Artificial Kidneys, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | | | - Haruhiko Koseki
- Developmental Genetics Group, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Yasuo Mori
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
29
|
Maternal High-Fat Diet Promotes Abdominal Aortic Aneurysm Expansion in Adult Offspring by Epigenetic Regulation of IRF8-Mediated Osteoclast-like Macrophage Differentiation. Cells 2021; 10:cells10092224. [PMID: 34571873 PMCID: PMC8466477 DOI: 10.3390/cells10092224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal high-fat diet (HFD) modulates vascular remodeling in adult offspring. Here, we investigated the impact of maternal HFD on abdominal aortic aneurysm (AAA) development. Female wild-type mice were fed an HFD or normal diet (ND). AAA was induced in eight-week-old pups using calcium chloride. Male offspring of HFD-fed dams (O-HFD) showed a significant enlargement in AAA compared with the offspring of ND-fed dams (O-ND). Positive-staining cells for tartrate-resistant acid phosphate (TRAP) and matrix metalloproteinase (MMP) activity were significantly increased in O-HFD. The pharmacological inhibition of osteoclastogenesis abolished the exaggerated AAA development in O-HFD. The in vitro tumor necrosis factor-α-induced osteoclast-like differentiation of bone marrow-derived macrophages showed a higher number of TRAP-positive cells and osteoclast-specific gene expressions in O-HFD. Consistent with an increased expression of nuclear factor of activated T cells 1 (NFATc1) in O-HFD, the nuclear protein expression of interferon regulatory factor 8 (IRF8), a transcriptional repressor, were much lower, with significantly increased H3K27me3 marks at the promoter region. The enhancer of zeste homolog 2 inhibitor treatment restored IRF8 expression, resulting in no difference in NFATc1 and TRAP expressions between the two groups. Our findings demonstrate that maternal HFD augments AAA expansion, accompanied by exaggerated osteoclast-like macrophage accumulation, suggesting the possibility of macrophage skewing via epigenetic reprogramming.
Collapse
|
30
|
Kim M, Kim JH, Hong S, Kwon B, Kim EY, Jung HS, Sohn Y. Effects of Melandrium firmum Rohrbach on RANKL‑induced osteoclast differentiation and OVX rats. Mol Med Rep 2021; 24:610. [PMID: 34184080 PMCID: PMC8258467 DOI: 10.3892/mmr.2021.12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease characterized by reduced bone mineral density (BMD), which results in an increased risk of fracture. Melandrium firmum (Siebold & Zucc.) Rohrbach (MFR), 'Wangbulryuhaeng' in Korean, is the dried aerial portion of Melandrii Herba Rohrbach, which is a member of the Caryophyllaceae family and has been used to treat several gynecological conditions as a traditional medicine. However, to the best of our knowledge, the effect of MFR on osteoclast differentiation and osteoporosis has not been assessed. To evaluate the effects of MFR on osteoclast differentiation, tartrate‑resistant acid phosphatase staining, actin ring formation and bone resorption assays were used. Additionally, receptor activator of nuclear factor‑κB ligand‑induced expression of nuclear factor of activated T cell, cytoplasmic 1 (NFATc1) and c‑Fos were measured using western blotting and reverse transcription‑PCR. The expression levels of osteoclast‑related genes were also examined. To further investigate the anti‑osteoporotic effects of MFR in vivo, an ovariectomized (OVX) rat model of menopausal osteoporosis was established. Subsequently, the femoral head was scanned using micro‑computed tomography. The results revealed that MFR suppressed osteoclast differentiation, formation and function. Specifically, MFR reduced the expression levels of osteoclast‑related genes by downregulating transcription factors, such as NFATc1 and c‑Fos. Consistent with the in vitro results, administration of MFR water extract to OVX rats reduced BMD loss, and reduced the expression levels of NFATc1 and cathepsin K in the femoral head. In conclusion, MFR may contribute to alleviate osteoporosis‑like symptoms. These results suggested that MFR may exhibit potential for the prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Boguen Kwon
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Chen H, Gao F, Bao Y, Zheng J, Sun L, Tang W, Zou J, Shi Y. Blimp-1 inhibits Th9 cell differentiation and attenuates diabetic coronary heart disease. Int Immunopharmacol 2021; 95:107510. [PMID: 33706054 DOI: 10.1016/j.intimp.2021.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Diabetic coronary heart disease (DM-CHD) poses a major threat to the world. The newly described T cell subset-Th9 cells and related cytokine interleukin (IL)-9 play important roles in the pathogenesis of diabetes and atherosclerosis. B lymphocyte-induced maturation protein 1 (Blimp-1) has been indicated to negatively regulate Th9 development in allergic asthma, but its role in DM-CHD remains unclear. Hence, this study was designed to investigate the role of Blimp-1 in DM-CHD and to elucidate whether the mechanism was associated with regulation of Th9 cell differentiation. Our results showed that serum Blimp-1 mRNA level was decreased whereas proportion of Th9 cells (IL-9+ CD4+ T cells) and serum level of Th9-related IL-9 were increased in DM-CHD patients. Furthermore, serum Blimp-1 mRNA level was negatively correlated with IL-9 level in DM-CHD patients. Importantly, administration of lentiviruses expressing Blimp-1 (LV-Blimp-1) significantly inhibited Th9 cell differentiation and alleviated the severity of atherosclerotic lesions in the aorta and coronary artery, dyslipidemia, inflammation, vascular endothelial dysfunction, and oxidative stress in DM-CHD model rats. Collectively, Blimp-1 exerts a protective effect in DM-CHD rats and the mechanism might involve inhibition of Th9 cell differentiation.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fangyuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yi Bao
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiaoyang Zheng
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Tang
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Junjie Zou
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
32
|
Nishikawa K, Ishii M. Novel method for gain-of-function analyses in primary osteoclasts using a non-viral gene delivery system. J Bone Miner Metab 2021; 39:353-359. [PMID: 33106978 DOI: 10.1007/s00774-020-01161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Overexpression studies have been commonly used to yield significant advances in cell biology. In vitro osteoclast culturing involves the differentiation of bone marrow-derived monocyte macrophage precursors (BMMs) in medium supplemented with macrophage colony-stimulating factor and receptor activator of nuclear factor-kB ligand (RANKL) into mature osteoclasts. Retroviral vectors are the gold standards for efficient gene delivery into BMMs. While this strategy is effective in BMMs that are in the early stages of differentiation, it is ineffective in RANKL-treated BMMs such as mono- and multinucleated osteoclasts. This study attempted to enhance gene delivery into differentiated BMMs using liposome-mediated RNA transfection. MATERIAL AND METHODS BMMs were transfected with an EYFP overexpression plasmid or EYFP RNA by lipofection, or transduced with a retroviral vector expressing EYFP. EYFP expression was assessed by flow cytometry. RESULTS We performed overexpression analyses using enhanced yellow fluorescent protein (EYFP). Although EYFP expression was observed 24 h after infection of BMMs with a recombinant retrovirus containing EYFP, expression of EYFP was observed within 3 h of transfection with EYFP RNA. Moreover, the efficiency of EYFP RNA for gene delivery into BMMs was comparable to that of retroviral transduction of EYFP. In contrast, while very few BMMs stimulated by RANKL for two days expressed EYFP after retroviral infection, more than half of the cells expressed EYFP after transfection with EYFP RNA. CONCLUSION RNA-mediated gene delivery is quick and easy method for performing gain-of-function analyses in primary osteoclast precursors and mature osteoclasts.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan.
- Department of Immunology and Cell Biology, Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Kim H, Lee K, Kim JM, Kim MY, Kim JR, Lee HW, Chung YW, Shin HI, Kim T, Park ES, Rho J, Lee SH, Kim N, Lee SY, Choi Y, Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun 2021; 12:2258. [PMID: 33859201 PMCID: PMC8050258 DOI: 10.1038/s41467-021-22565-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism. Selenoproteins containing selenium have a variety of physiological functions including redox homeostasis and thyroid hormone metabolism. Here, the authors show that RANKL-dependent repression of selenoprotein W regulates cell fusion during osteoclast differentiation and bone remodelling in mice.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.,Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Eui-Soon Park
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Jaerang Rho
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, Wonkwang University School of Dentistry, Iksan, Korea
| | - Nacksung Kim
- National Research Laboratory for Regulation of Bone Metabolism and Disease, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Young Lee
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Center for Cell Signaling & Drug Discovery Research, College of Natural Sciences, Ewha Womans University, Seoul, Korea
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
34
|
Deng C, Zhang Q, He P, Zhou B, He K, Sun X, Lei G, Gong T, Zhang Z. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun 2021; 12:2174. [PMID: 33846342 PMCID: PMC8042091 DOI: 10.1038/s41467-021-22454-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient apoptosis of inflammatory macrophages and osteoclasts (OCs) in rheumatoid arthritis (RA) joints contributes toward the persistent progression of joint inflammation and destruction. Here, we deliver celastrol (CEL) to selectively induce apoptosis of OCs and macrophages in arthritic joints, with enzyme-responsive nanoparticles (termed PRNPs) composed of RGD modified nanoparticles (termed RNPs) covered with cleavable PEG chains. CEL-loaded PRNPs (CEL-PRNPs) dually target OCs and inflammatory macrophages derived from patients with RA via an RGD-αvβ3 integrin interaction after PEG cleavage by matrix metalloprotease 9, leading to increased apoptosis of these cells. In an adjuvant-induced arthritis rat model, PRNPs have an arthritic joint-specific distribution and CEL-PRNPs efficiently reduce the number of OCs and inflammatory macrophages within these joints. Additionally, rats with advanced arthritis go into inflammatory remission with bone erosion repair and negligible side effects after CEL-PRNPs treatment. These findings indicate potential for targeting chemotherapy-induced apoptosis in the treatment of advanced inflammatory arthritis.
Collapse
Affiliation(s)
- Caifeng Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, 610500, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Bin Zhou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
| | - Ke He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
35
|
Yu J, Kim S, Lee N, Jeon H, Lee J, Takami M, Rho J. Pax5 Negatively Regulates Osteoclastogenesis through Downregulation of Blimp1. Int J Mol Sci 2021; 22:ijms22042097. [PMID: 33672551 PMCID: PMC7923754 DOI: 10.3390/ijms22042097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
Paired box protein 5 (Pax5) is a crucial transcription factor responsible for B-cell lineage specification and commitment. In this study, we identified a negative role of Pax5 in osteoclastogenesis. The expression of Pax5 was time-dependently downregulated by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) stimulation in osteoclastogenesis. Osteoclast (OC) differentiation and bone resorption were inhibited (68.9% and 48% reductions, respectively) by forced expression of Pax5 in OC lineage cells. Pax5 led to the induction of antiosteoclastogenic factors through downregulation of B lymphocyte-induced maturation protein 1 (Blimp1). To examine the negative role of Pax5 in vivo, we generated Pax5 transgenic (Pax5Tg) mice expressing the human Pax5 transgene under the control of the tartrate-resistant acid phosphatase (TRAP) promoter, which is expressed mainly in OC lineage cells. OC differentiation and bone resorption were inhibited (54.2–76.9% and 24.0–26.2% reductions, respectively) in Pax5Tg mice, thereby contributing to the osteopetrotic-like bone phenotype characterized by increased bone mineral density (13.0–13.6% higher), trabecular bone volume fraction (32.5–38.1% higher), trabecular thickness (8.4–9.0% higher), and trabecular number (25.5–26.7% higher) and decreased trabecular spacing (9.3–10.4% lower) compared to wild-type control mice. Furthermore, the number of OCs was decreased (48.8–65.3% reduction) in Pax5Tg mice. These findings indicate that Pax5 plays a negative role in OC lineage specification and commitment through Blimp1 downregulation. Thus, our data suggest that the Pax5–Blimp1 axis is crucial for the regulation of RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Jiyeon Yu
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Nari Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, College of Dentistry, Wonkwang University, Iksan 54538, Korea;
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawaku 142-8555, Japan;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
36
|
Caputo VS, Trasanidis N, Xiao X, Robinson ME, Katsarou A, Ponnusamy K, Prinjha RK, Smithers N, Chaidos A, Auner HW, Karadimitris A. Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro. iScience 2021; 24:101989. [PMID: 33490899 PMCID: PMC7807155 DOI: 10.1016/j.isci.2020.101989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Osteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation.
Collapse
Affiliation(s)
- Valentina S. Caputo
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nikolaos Trasanidis
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Xiaolin Xiao
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Mark E. Robinson
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Alexia Katsarou
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Kanagaraju Ponnusamy
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rab K. Prinjha
- Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | | | - Aristeidis Chaidos
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Holger W. Auner
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Anastasios Karadimitris
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Cao J, Wang S, Wei C, Lin H, Zhang C, Gao Y, Xu Z, Cheng Z, Sun WC, Wang HB. Agrimophol suppresses RANKL-mediated osteoclastogenesis through Blimp1-Bcl6 axis and prevents inflammatory bone loss in mice. Int Immunopharmacol 2021; 90:107137. [PMID: 33199235 DOI: 10.1016/j.intimp.2020.107137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Excessive activity of osteoclasts causes many bone-related diseases, such as rheumatoid arthritis and osteoporosis. Agrimophol (AGR), a phenolic compound, originated from Agrimonia pilosa Ledeb. In prior studies, AGR is reported to possess schistosomicidal and mycobactericidal activities. However, no reports covered its anti-osteoclastogenesis characteristic. In this study, we found that AGR inhibited RANKL-induced osteoclastogenesis, bone-resorption, F-actin ring formation, and the mRNA expression of osteoclast-associated genes such as CTSK, TRAP, MMP-9, and ATP6v0d2 in vitro. In addition, AGR suppressed RANKL-induced expression of c-Fos and NFATc1. However, AGR treatment did not affect NF-κB activation and MAPKs phosphorylation in RANKL-stimulated BMMs, which implicated that AGR might not influence the initial expression of NFATc1 mediated by NF-κB and MAPKs signaling. Our results further indicated that AGR did not alter phosphorylation levels of GSK3β and the expression of calcineurin, which implicated that AGR treatment might not interfere with phosphorylation and de-phosphorylation of NFATc1 mediated by GSK3β and calcineurin, respectively. B-lymphocyte-induced maturation protein-1 (Blimp1), which was regarded as a transcriptional repressor of negative regulators of osteoclastogenesis, was markedly attenuated in the presence of AGR, leading to the enhanced expression of B-cell lymphoma 6 (Bcl-6). Meanwhile, Blimp1 knockdown in BMMs by siRNA strongly enhanced the expression of Bcl6 and reduced NFATc1 induction by RANKL. These findings suggested that AGR inhibited RANKL-induced osteoclast differentiation through Blimp1-Bcl-6 signaling mediated modulation of NFATc1 and its target genes. Consistent with these in vitro results, AGR exhibited a protective influence in an in vivo mouse model of LPS-induced bone loss by suppressing excessive osteoclast activity and attenuating LPS-induced bone destruction. Hence, these results identified that AGR could be considered as a potential therapeutic agent against bone lysis disease.
Collapse
Affiliation(s)
- Jinjin Cao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoming Wang
- Department of Endocrinology, Changchun People's Hospital, Changchun, China
| | - Congmin Wei
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongru Lin
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Zhang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yehui Gao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zixian Xu
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhou Cheng
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wan-Chun Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Hong-Bing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
38
|
Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab 2021; 39:13-18. [PMID: 33385253 DOI: 10.1007/s00774-020-01191-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
RANKL, the essential cue for osteoclast differentiation, is the membrane-bound factor expressed by osteoclastogenesis-supporting cells such as osteoblasts and osteocytes. In vivo evidence indicates that RANKL functions as the indispensable and irreplaceable in the program of osteoclast differentiation. The reason why RANKL plays a critical role in osteoclastogenesis is discussed from the viewpoint of the distinct signaling pathways mediated by co-stimulatory receptors and the key transcription factor NFATc1.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Hara S, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Fujita Y, Watanabe K, Maki K, Nishihara T, Ariyoshi W. Dectin-1-mediated suppression of RANKL-induced osteoclastogenesis by glucan from baker's yeast. J Cell Physiol 2020; 236:5098-5107. [PMID: 33305824 DOI: 10.1002/jcp.30217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022]
Abstract
Immunoreceptors expressed on osteoclast precursor cells modify osteoclast differentiation and bone resorption activity. Dectin-1 is a lectin receptor of β-glucan and is specifically expressed in osteoclast precursor cells. In this study, we evaluated the bioactivity of β-glucan on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and observed that glucan from baker's yeast inhibited this process in mouse bone marrow cells and dectin-1-overexpressing RAW264.7 (d-RAW) cells. In conjunction, RANKL-induced nuclear factor of activated T cell c1 expression was suppressed, subsequently downregulating TRAP and Oc-stamp. Additionally, nuclear factor-kappa B activation and the expression of c-fos and Blimp1 were reduced in d-RAW cells. Furthermore, glucan from baker's yeast induced the degradation of Syk protein, essential factor for osteoclastogenesis. These results suggest that glucan from baker's yeast suppresses RANKL-induced osteoclastogenesis and can be applied as a new treatment strategy for bone-related diseases.
Collapse
Affiliation(s)
- Shiika Hara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan.,Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuko Fujita
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Kouji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | | | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
40
|
Tsukasaki M, Huynh NCN, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T, Kiyonari H, Okamura T, Sakai M, Matsukawa T, Matsumoto M, Kobayashi Y, Penninger JM, Takayanagi H. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 2020; 2:1382-1390. [PMID: 33288951 DOI: 10.1038/s42255-020-00318-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Osteoclasts are the exclusive bone-resorbing cells, playing a central role in bone metabolism, as well as the bone damage that occurs under pathological conditions1,2. In postnatal life, haematopoietic stem-cell-derived precursors give rise to osteoclasts in response to stimulation with macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, both of which are produced by osteoclastogenesis-supporting cells such as osteoblasts and osteocytes1-3. However, the precise mechanisms underlying cell fate specification during osteoclast differentiation remain unclear. Here, we report the transcriptional profiling of 7,228 murine cells undergoing in vitro osteoclastogenesis, describing the stepwise events that take place during the osteoclast fate decision process. Based on our single-cell transcriptomic dataset, we find that osteoclast precursor cells transiently express CD11c, and deletion of receptor activator of nuclear factor-κB specifically in CD11c-expressing cells inhibited osteoclast formation in vivo and in vitro. Furthermore, we identify Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2) as the molecular switch triggering terminal differentiation of osteoclasts, and deletion of Cited2 in osteoclast precursors in vivo resulted in a failure to commit to osteoclast fate. Together, the results of this study provide a detailed molecular road map of the osteoclast differentiation process, refining and expanding our understanding of the molecular mechanisms underlying osteoclastogenesis.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Toshiya Matsukawa
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Life Science Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
41
|
Park R, Madhavaram S, Ji JD. The Role of Aryl-Hydrocarbon Receptor (AhR) in Osteoclast Differentiation and Function. Cells 2020; 9:cells9102294. [PMID: 33066667 PMCID: PMC7602422 DOI: 10.3390/cells9102294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a crucial role in bone remodeling through altering the interplay between bone-forming osteoblasts and bone-resorbing osteoclasts. While effects of AhR signaling in osteoblasts are well understood, the role and mechanism of AhR signaling in regulating osteoclastogenesis is not widely understood. AhR, when binding with exogenous ligands (environmental pollutants such as polycylic aryl hydrocarbon (PAH), dioxins) or endogenous ligand indoxyl-sulfate (IS), has dual functions that are mediated by the nature of the binding ligand, binding time, and specific pathways of distinct ligands. In this review, AhR is discussed with a focus on (i) the role of AhR in osteoclast differentiation and function and (ii) the mechanisms of AhR signaling in inhibiting or promoting osteoclastogenesis. These findings facilitate an understanding of the role of AhR in the functional regulation of osteoclasts and in osteoclast-induced bone destructive conditions such as rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- Robin Park
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Shreya Madhavaram
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence:
| |
Collapse
|
42
|
Ulmert I, Henriques-Oliveira L, Pereira CF, Lahl K. Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease. Immunology 2020; 161:303-313. [PMID: 32799350 PMCID: PMC7692253 DOI: 10.1111/imm.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/04/2023] Open
Abstract
B lymphocyte‐induced maturation protein‐1 (Blimp‐1), the transcription factor encoded by the gene Prdm1, plays a number of crucial roles in the adaptive immune system, which result in the maintenance of key effector functions of B‐ and T‐cells. Emerging clinical data, as well as mechanistic evidence from mouse studies, have additionally identified critical functions of Blimp‐1 in the maintenance of immune homeostasis by the mononuclear phagocyte (MNP) system. Blimp‐1 regulation of gene expression affects various aspects of MNP biology, including developmental programmes such as fate decisions of monocytes entering peripheral tissue, and functional programmes such as activation, antigen presentation and secretion of soluble inflammatory mediators. The highly tissue‐, subset‐ and state‐specific regulation of Blimp‐1 expression in MNPs suggests that Blimp‐1 is a dynamic regulator of immune activation, integrating environmental cues to fine‐tune the function of innate cells. In this review, we will discuss the current knowledge regarding Blimp‐1 regulation and function in macrophages and dendritic cells.
Collapse
Affiliation(s)
- Isabel Ulmert
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Carlos-Filipe Pereira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Katharina Lahl
- Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.,Immunology Section, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Kurotaki D, Yoshida H, Tamura T. Epigenetic and transcriptional regulation of osteoclast differentiation. Bone 2020; 138:115471. [PMID: 32526404 DOI: 10.1016/j.bone.2020.115471] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023]
Abstract
Osteoclasts are derived from mononuclear phagocyte lineage cells and are indispensable for bone resorption. Recent findings suggest that fetal yolk sac macrophage progenitors give rise to neonatal osteoclasts, while hematopoietic stem cell-derived cells, such as monocytes, contribute to maintaining osteoclast syncytia in vivo. Osteoclast differentiation is dependent on macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) signaling that mediates global epigenetic and transcriptional changes. PU.1 is a transcription factor that establishes cell type-specific enhancer landscapes in osteoclast precursors and mature osteoclasts by collaborating with interferon regulatory factor-8 (IRF8) and nuclear factor of activated T-cells (NFATc1), respectively. Irf8 and Nfatc1 genes are tightly controlled by epigenetic mechanisms such as DNA methylation and histone modifications during osteoclastogenesis. Thus, key transcription factors orchestrate osteoclast-specific transcription regulatory networks through epigenetic modifications. In this review, we discuss recent advances in our understanding of the molecular mechanisms involved in osteoclast development.
Collapse
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Haruka Yoshida
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
44
|
Yu J, Canalis E. Notch and the regulation of osteoclast differentiation and function. Bone 2020; 138:115474. [PMID: 32526405 PMCID: PMC7423683 DOI: 10.1016/j.bone.2020.115474] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
Notch 1 through 4 are transmembrane receptors that play a pivotal role in cell differentiation and function; this review addresses the role of Notch signaling in osteoclastogenesis and bone resorption. Notch receptors are activated following interactions with their ligands of the Jagged and Delta-like families. In the skeleton, Notch signaling controls osteoclast differentiation and bone-resorbing activity either directly acting on osteoclast precursors, or indirectly acting on cells of the osteoblast lineage and cells of the immune system. NOTCH1 inhibits osteoclastogenesis, whereas NOTCH2 enhances osteoclast differentiation and function by direct and indirect mechanisms. NOTCH3 induces the expression of RANKL in osteoblasts and osteocytes and as a result induces osteoclast differentiation. There is limited expression of NOTCH4 in skeletal cells. Selected congenital disorders and skeletal malignancies are associated with dysregulated Notch signaling and enhanced bone resorption. In conclusion, Notch signaling is a critical pathway that controls osteoblast and osteoclast differentiation and function and regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- Jungeun Yu
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; Medicine, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
45
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
46
|
Jeong E, Kim J, Go M, Lee SY. Early estrogen-induced gene 1 facilitates osteoclast formation through the inhibition of interferon regulatory factor 8 expression. FASEB J 2020; 34:12894-12906. [PMID: 32741026 DOI: 10.1096/fj.202001197r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/11/2022]
Abstract
Osteoclast-mediated inflammatory bone resorption is a major cause of many inflammatory bone disorders, including rheumatoid arthritis and periodontitis. However, the mechanisms regulating osteoclast differentiation in inflammatory settings are not well understood. We demonstrate here that early estrogen-induced gene 1 (EEIG1)-deficient mice are protected from inflammatory bone loss as determined with the use of models of lipopolysaccharide (LPS)-induced bone destruction. EEIG1-deficient macrophages markedly decreased RANKL- and TNFα-mediated osteoclastogenesis due to the downregulation of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which is an essential transcription factor for osteoclast formation. In contrast, expression of interferon regulatory factor 8 (IRF8), a transcriptional repressor that blocks osteoclast differentiation, is elevated in EEIG1-deficient macrophages relative to wild-type cells. We found that reduced expression of B lymphocyte-induced maturation protein-1 (Blimp1) by siRNA downregulated RANKL-induced EEIG1 levels, whereas overexpression of Blimp1 potentiated EEIG1 levels. Mechanistic studies revealed that EEIG1 forms a complex with Blimp1 to negatively regulate the expression of the anti-osteoclastogenic gene, Irf8. We elucidated a novel mechanism by which EEIG1 restricts IRF8 expression and function, thereby enhancing the osteoclast formation by contributing to Blimp1-mediated IRF8 regulation. Together, these findings identify EEIG1 as a key regulator of osteoclastogenesis and a possible therapeutic target for pathological bone destruction.
Collapse
Affiliation(s)
- Eutteum Jeong
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Győri DS, Mócsai A. Osteoclast Signal Transduction During Bone Metastasis Formation. Front Cell Dev Biol 2020; 8:507. [PMID: 32637413 PMCID: PMC7317091 DOI: 10.3389/fcell.2020.00507] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts are myeloid lineage-derived bone-resorbing cells of hematopoietic origin. They differentiate from myeloid precursors through a complex regulation process where the differentiation of preosteoclasts is followed by intercellular fusion to generate large multinucleated cells. Under physiological conditions, osteoclastogenesis is primarily directed by interactions between CSF-1R and macrophage colony-stimulating factor (M-CSF, CSF-1), receptor activator of nuclear factor NF-κB (RANK) and RANK ligand (RANKL), as well as adhesion receptors (e.g., integrins) and their ligands. Osteoclasts play a central role in physiological and pathological bone resorption and are also required for excessive bone loss during osteoporosis, inflammatory bone and joint diseases (such as rheumatoid arthritis) and cancer cell-induced osteolysis. Due to the major role of osteoclasts in these diseases the better understanding of their intracellular signaling pathways can lead to the identification of potential novel therapeutic targets. Non-receptor tyrosine kinases and lipid kinases play major roles in osteoclasts and small-molecule kinase inhibitors are emerging new therapeutics in diseases with pathological bone loss. During the last few years, we and others have shown that certain lipid (such as phosphoinositide 3-kinases PI3Kβ and PI3Kδ) and tyrosine (Src-family and Syk) kinases play a critical role in osteoclast differentiation and function in humans and mice. Some of these signaling pathways shows similarity to immunoreceptor-like receptor signaling and involves important other enzymes (e.g., PLCγ2) and adapter proteins (such as the ITAM-bearing adapters DAP12 and the Fc-receptor γ-chain). Here, we review recently identified osteoclast signaling pathways and their role in osteoclast differentiation and function as well as pathological bone loss associated with osteolytic tumors of the bone. A better understanding of osteoclast signaling may facilitate the design of novel and more efficient therapies for pathological bone resorption and osteolytic skeletal metastasis formation.
Collapse
Affiliation(s)
- Dávid S. Győri
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
48
|
Yoshiko Y, Minamizaki T. Emerging roles of microRNAs as extracellular vesicle cargo secreted from osteoblasts. J Oral Biosci 2020; 62:228-234. [PMID: 32535286 DOI: 10.1016/j.job.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have come into the spotlight as messengers, delivering cargo for cell-cell communication. Concomitantly, increasing attention has been focused on microRNAs (miRNAs) as EV cargo. Besides their well-known role in extracellular matrix mineralization, whether matrix vesicles (MVs) - which are in a broad sense a class of EV - also deliver miRNAs to regulate the function of recipient cells remains unclear. HIGHLIGHT We recently found that MVs budding from osteoblasts contain many miRNAs that can be transferred to the bone matrix. Of these, miR-125b was released into the bone marrow microenvironment during bone resorption, where it targeted the transcriptional repressor Prdm1 in osteoclast precursors, resulting in increased expression of anti-osteoclastogenic factors and suppression of osteoclastogenesis, thereby increasing bone mass in mice. CONCLUSION Beyond their well-established action in bone mineralization, MVs play a role in the transport of miRNAs from osteoblasts into the bone matrix. Similar to the miR-125b axis in osteoclastogenesis, it seems likely that other miRNAs that accumulate in bone via MV transport may also act as mediators of cell-cell communication in the skeletal system.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
49
|
Hou H, Peng Q, Wang S, Zhang Y, Cao J, Deng Y, Wang Y, Sun WC, Wang HB. Anemonin Attenuates RANKL-Induced Osteoclastogenesis and Ameliorates LPS-Induced Inflammatory Bone Loss in Mice via Modulation of NFATc1. Front Pharmacol 2020; 10:1696. [PMID: 32116686 PMCID: PMC7025528 DOI: 10.3389/fphar.2019.01696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by insufficient osteoblastic function and/or excessive osteoclastic activity. One promising strategy for treating osteoporosis is inhibiting excessive osteoclast resorbing activity. Previous studies have revealed that anemonin (ANE), isolated from various types of Chinese natural herbs, has anti-inflammatory and anti-oxidative properties. However, whether ANE regulates osteoclastogenesis is unknown. This study aimed to investigate the potential effect of ANE on osteoclastogenesis and inflammatory bone loss in mice. In in vitro studies, ANE suppressed RANKL-stimulated osteoclast differentiation and function by downregulating the expression of osteoclast master transcriptor NFATc1, as well as its upstream transcriptor c-Fos, by decreasing NF-κB and ERK1/2 signaling. Interestingly, ANE did not change the phosphorylation and degradation of IκB-α and activation of JNK and p38 MAPKs. However, ANE repressed the phosphorylation of MSK-1 which is the downstream target of ERK1/2 and p38 MAPK and can phosphorylate NF-κB p65 subunit. These results implicated that ANE might suppress NF-κB activity via modulation of ERK1/2 mediated NF-κB phosphorylation. In addition, ANE directly suppressed NFATc1 transcription by inhibiting Blimp-1 expression, and the subsequent enhancement of the expression of NFATc1 negative regulators, Bcl-6 and IRF-8. Moreover, in vivo studies were conducted using an LPS-induced inflammatory bone loss mice model. Micro-CT and histology analysis showed that ANE treatment significantly improved trabecular bone parameters and bone destruction. These data indicate that ANE can attenuate RANKL-induced osteoclastogenesis and ameliorate LPS-induced inflammatory bone loss in mice through modulation of NFATc1 via ERK1/2-mediated NF-κB phosphorylation and Blimp1 signal pathways. ANE may provide new treatment options for osteoclast-related diseases.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shaoming Wang
- Department of Endocrinology, Changchun People's Hospital, Changchun, China
| | - Yuxin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinjin Cao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingjian Wang
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wan-Chun Sun
- Key Laboratory of Zoonosis, Ministry of Education, Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hong-Bing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
50
|
The matrix vesicle cargo miR-125b accumulates in the bone matrix, inhibiting bone resorption in mice. Commun Biol 2020; 3:30. [PMID: 31949279 PMCID: PMC6965124 DOI: 10.1038/s42003-020-0754-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Communication between osteoblasts and osteoclasts plays a key role in bone metabolism. We describe here an unexpected role for matrix vesicles (MVs), which bud from bone-forming osteoblasts and have a well-established role in initiation of bone mineralization, in osteoclastogenesis. We show that the MV cargo miR-125b accumulates in the bone matrix, with increased accumulation in transgenic (Tg) mice overexpressing miR-125b in osteoblasts. Bone formation and osteoblasts in Tg mice are normal, but the number of bone-resorbing osteoclasts is reduced, leading to higher trabecular bone mass. miR-125b in the bone matrix targets and degrades Prdm1, a transcriptional repressor of anti-osteoclastogenic factors, in osteoclast precursors. Overexpressing miR-125b in osteoblasts abrogates bone loss in different mouse models. Our results show that the MV cargo miR-125b is a regulatory element of osteoblast-osteoclast communication, and that bone matrix provides extracellular storage of miR-125b that is functionally active in bone resorption.
Collapse
|