1
|
Chen G, Zhou C, Xing L, Xing T. Study on the Effect of Chitosan Modification Technology on Antibacterial Properties of Textiles. Appl Biochem Biotechnol 2024; 196:1966-1976. [PMID: 37453027 DOI: 10.1007/s12010-023-04621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The chitosan is fixed in an amide group of activated carboxyl groups and biological primary amino groups of nonwoven PET for antibacterial properties. Uncoated materials have fewer wetting properties and are less biocompatible. The objectives of the study were to evaluate surface chemical compositions and biocompatibility, antibacterial, and hydrophilic properties of polyester fabrics grafted with chitosan oligomers and after being activated by atmospheric pressure plasmas. A 2% 14.8 mg/cm2 uncolored PET woven fabric was dissolved in chitosan solution. Atmospheric pressure plasmas were used to activate polyester fabrics grafted with chitosan oligomers on both sides. Cell proliferation assay was performed for the biocompatibility study. The American Association of Textile Chemists and Colorists method was used to measure the width of the antibacterial zone and the Japanese Industrial Standard was used to count the number of bacterial colonies. Chitosan-coated and -activated uncolored PET woven fabric showed fewer percentage free carbon (p < 0.0001), higher percentage free oxygen to free carbon ratio (p < 0.0001), higher percentage free nitrogen to free carbon ratio (p = 0.0453), and higher percentage free oxygen plus free nitrogen to free carbon ratio (p < 0.0001) than untreated PET woven fabric. The dynamic contact angle of a water droplet and the wicking time were shorter for chitosan-coated and -activated uncolored PET woven fabric than untreated PET weaved fabric (p < 0.0001 for all). Chitosan coating leads to PET woven fabric being higher biocompatible, wettable, and antibacterial than untreated PET woven fabric.
Collapse
Affiliation(s)
- Guoqiang Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.
| | - Chunxiao Zhou
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- School of Pharmaceutical and Environmental Engineering, Nantong Vocational University, Nantong, 226007, China
| | - Lili Xing
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Shi Y, He Y, Liu J, Tang X, Xu H, Liang J. High-efficacy antimicrobial acyclic N-halamine-grafted polyvinyl alcohol film. Polym Bull (Berl) 2022; 80:1-15. [PMID: 36530485 PMCID: PMC9734778 DOI: 10.1007/s00289-022-04614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
With N,N'-methylenebisacrylamide (MBA) and polyvinyl alcohol (PVA) as raw materials, a polymer (PVA-MBA) containing N-halamine precursor functional groups was obtained via grafting reaction between the active hydroxyl groups on PVA and α, β-unsaturated functional groups of MBA under the catalysis of sodium carbonate in an aqueous solution. An acyclic N-halamine precursor-grafted PVA (MBA-PVA) film was formed by simply spreading PVA-MBA aqueous solution in a glass dish and drying it. An antimicrobial acyclic N-halamine-grafted PVA (PVA-MBA-Cl) film was achieved by spraying the diluted sodium hypochlorite solution onto the surface of PVA-MBA film. The performance test of PVA-MBA-Cl film under the optimal preparation conditions showed that the tensile performance and the hydrophobicity were improved, compared to the PVA film. The storage stability test indicated that the oxidative chlorine content Cl+ (atoms/cm2) of the as-prepared PVA-MBA-Cl film only reduced by 14.3% after storage for 9 weeks, showing that the antibacterial N-halamine functional groups in PVA-MBA-Cl film has excellent storage stability under room temperature. Antibacterial test showed that the PVA-MBA-Cl film had very strong antibacterial efficacies and could completely kill 1.28 × 106 CFU/mL S. aureus and 1.89 × 106 CFU/mL E. coli within 1 min. Therefore, PVA-MBA-Cl film will have more potential applications in food package.
Collapse
Affiliation(s)
- Yuqing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| | - Yijing He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| | - Jiarun Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| | - Xuan Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| | - Haidong Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| | - Jie Liang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 People’s Republic of China
| |
Collapse
|
3
|
Salmi-Mani H, Aymes-Chodur C, Balthazar G, Atkins CJ, Terreros G, Barroca-Aubry N, Regeard C, Roger P. An eco-friendly process for the elaboration of poly(ethylene terephthalate) surfaces grafted with biobased network embedding silver nanoparticles with multiple antibacterial modes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Lewis G. Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review. World J Orthop 2022; 13:339-353. [PMID: 35582158 PMCID: PMC9048499 DOI: 10.5312/wjo.v13.i4.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Prosthetic joint infection (PJI) is the most serious complication following total joint arthroplasty, this being because it is associated with, among other things, high morbidity and low quality of life, is difficult to prevent, and is very challenging to treat/manage. The many shortcomings of antibiotic-loaded poly (methyl methacrylate) (PMMA) bone cement (ALBC) as an agent for preventing and treating/managing PJI are well-known. One is that microorganisms responsible for most PJI cases, such as methicillin-resistant S. aureus, have developed or are developing resistance to gentamicin sulfate, which is the antibiotic in the vast majority of approved ALBC brands. This has led to many research efforts to develop cements that do not contain gentamicin (or, for that matter, any antibiotic) but demonstrate excellent antimicrobial efficacy. There is a sizeable body of literature on these so-called "antibiotic-free antimicrobial" PMMA bone cements (AFAMBCs). The present work is a comprehensive and critical review of this body. In addition to summaries of key trends in results of characterization studies of AFAMBCs, the attractive features and shortcomings of the literature are highlighted. Shortcomings provide motivation for future work, with some ideas being formulation of a new generation of AFAMBCs by, example, adding a nanostructured material and/or an extract from a natural product to the powder and/or liquid of the basis cement, respectively.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
5
|
Deposition of Copper on Polyester Knitwear Fibers by a Magnetron Sputtering System. Physical Properties and Evaluation of Antimicrobial Response of New Multi-Functional Composite Materials. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, copper films were deposited by magnetron sputtering on poly(ethylene terephthalate) knitted textile to fabricate multi-functional, antimicrobial composite material. The modified knitted textile composites were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and antifungal tests against Chaetomium globosum fungal molds species. The prepared samples were characterized by UV/VIS transmittance, scanning electron microscopy (SEM), tensile and filtration parameters and the ability to block UV radiation. The performed works proved the possibility of manufacturing a new generation of antimicrobial textile composites with barrier properties against UV radiation, produced by a simple, zero-waste method. The specific advantages of using new poly(ethylene terephthalate)-copper composites are in biomedical applications areas.
Collapse
|
6
|
Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 2020; 152:681-702. [DOI: 10.1016/j.ijbiomac.2020.02.196] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
|
7
|
Niemczyk A, Goszczyńska A, Gołda-Cępa M, Kotarba A, Sobolewski P, El Fray M. Biofunctional catheter coatings based on chitosan-fatty acids derivatives. Carbohydr Polym 2019; 225:115263. [PMID: 31521311 DOI: 10.1016/j.carbpol.2019.115263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023]
Abstract
Multifunctional and biofunctional coatings for medical devices are an attractive strategy towards tailoring the interactions of the device with the body, thereby influencing the host response, and the susceptibility to microbial colonization. Here we describe the development of a coating process to yield amphiphilic, lubricious coatings, resistant to bacterial colonization, based on chitosan. Chitosan-fatty acid derivatives were obtained by simultaneous N,O-acylation of chitosan with either linoleic, α-linolenic, or dilinoleic acid. Chemical characterization of new materials was carried out using 1H NMR, FTIR, and XPS. Surface properties of coated polyester samples were studied using SEM and contact angle measurements, which indicated that the incorporation of hydrophobic constituents into chitosan macromolecules led to a decrease of both surface roughness and water contact angle. Importantly, tribological testing demonstrated that these new coatings decrease the coefficient of friction due to the self-organization of fatty acid (from 0.53 for the neat chitosan to 0.35 for chitosan-fatty acid derivative). Meanwhile, preliminary bacterial colonization tests indicated significant-over 80%-reduction in E. coli colonization following coating with chitosan-linoleic and chitosan-α-linolenic derivatives. Finally, cytotoxicity and hemocompatibility studies confirmed that all amphiphilic chitosan-fatty acid derivatives were non-toxic and non-hemolytic. Collectively, our results demonstrate the potential of the developed coating strategy, particularly the chitosan-linoleic and chitosan-α-linolenic acid derivatives, for applications as biofunctional catheter coatings.
Collapse
Affiliation(s)
- Agata Niemczyk
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland.
| | - Agata Goszczyńska
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Peter Sobolewski
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland
| | - Miroslawa El Fray
- Division of Functional Materials and Biomaterials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311, Szczecin, Poland.
| |
Collapse
|
8
|
Cao W, Wei D, Zheng A, Guan Y. Surface enrichment and nonleaching antimicrobial performance of polypropylene grafted poly(hexamethylene guanidine) (PP-g-PHMG) in poly(ethylene terephthalate)/PP-g-PHMG. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Solubility of lignin and chitin in ionic liquids and their biomedical applications. Int J Biol Macromol 2019; 132:265-277. [DOI: 10.1016/j.ijbiomac.2019.03.182] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 01/25/2023]
|
10
|
Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel) 2018; 10:polym10040462. [PMID: 30966497 PMCID: PMC6415442 DOI: 10.3390/polym10040462] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Chitosan is a biodegradable natural polymer with many advantages such as nontoxicity, biocompatibility, and biodegradability. It can be applied in many fields, especially in medicine. As a delivery carrier, it has great potential and cannot be compared with other polymers. Chitosan is extremely difficult to solubilize in water, but it can be solubilized in acidic solution. Its insolubility in water is a major limitation for its use in medical applications. Chitosan derivatives can be obtained by chemical modification using such techniques as acylation, alkylation, sulfation, hydroxylation, quaternization, esterification, graft copolymerization, and etherification. Modified chitosan has chemical properties superior to unmodified chitosan. For example, nanoparticles produced from chitosan derivatives can be used to deliver drugs due to their stability and biocompatibility. This review mainly focuses on the properties of chitosan, chitosan derivatives, and the origin of chitosan-based nanoparticles. In addition, applications of chitosan-based nanoparticles in drug delivery, vaccine delivery, antimicrobial applications, and callus and tissue regeneration are also presented. In summary, nanoparticles based on chitosan have great potential for research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Dongying Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Shuang Yu
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Beini Sun
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Shuang Gao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Sihan Guo
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
11
|
Hayder J, Chaouch MA, Amira N, Ben Mansour M, Majdoub H, Chaubet F, Maaroufi RM. Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: Characterization and antibiofilm activity. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1320664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jihane Hayder
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Mohamed Aymen Chaouch
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Noumi Amira
- University of Monastir, Laboratory of Contagious Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, Monastir, Tunisia
| | - Mohamed Ben Mansour
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Hatem Majdoub
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Frédéric Chaubet
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Raoui Mounir Maaroufi
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Mehdi M, Mahar FK, Qureshi UA, Khatri M, Khatri Z, Ahmed F, Kim IS. Preparation of colored recycled polyethylene terephthalate nanofibers from waste bottles: Physicochemical studies. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mujahid Mehdi
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
| | - Faraz Khan Mahar
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
| | - Umair Ahmed Qureshi
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
| | - Muzamil Khatri
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
- Nano Fusion Technology Research Lab; Division of Frontier Fibers; Institute for Fiber Engineering (IFES); Interdisciplinary Cluster for Cutting Edge Research (ICCER); Shinshu University; Ueda Nagano Prefecture Japan
| | - Zeeshan Khatri
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
- Nano Fusion Technology Research Lab; Division of Frontier Fibers; Institute for Fiber Engineering (IFES); Interdisciplinary Cluster for Cutting Edge Research (ICCER); Shinshu University; Ueda Nagano Prefecture Japan
| | - Farooq Ahmed
- Nanomaterials Research Lab; Department of Textile Engineering; Mehran University of Engineering and Technology; Jamshoro Pakistan
| | - Ick Soo Kim
- Nano Fusion Technology Research Lab; Division of Frontier Fibers; Institute for Fiber Engineering (IFES); Interdisciplinary Cluster for Cutting Edge Research (ICCER); Shinshu University; Ueda Nagano Prefecture Japan
| |
Collapse
|
13
|
Tsou CH, Yao WH, Hung WS, Suen MC, De Guzman M, Chen J, Tsou CY, Wang RY, Chen JC, Wu CS. Innovative Plasma Process of Grafting Methyl Diallyl Ammonium Salt onto Polypropylene to Impart Antibacterial and Hydrophilic Surface Properties. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04693] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi-Hui Tsou
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei-Hua Yao
- Department
of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan (R.O.C)
| | - Wei-Song Hung
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Maw-Cherng Suen
- Department
of Fashion Business Administration, Taishan, Lee-Ming Institute of Technology, New Taipei City 24305, Taiwan (R.O.C.)
| | - Manuel De Guzman
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jian Chen
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chih-Yuan Tsou
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Ruo Yao Wang
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Jui-Chin Chen
- Department
of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan (R.O.C)
| | - Chin-San Wu
- Department
of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan (R.O.C.)
| |
Collapse
|
14
|
Mahar FK, Mehdi M, Qureshi UA, Brohi KM, Zahid B, Ahmed F, Khatri Z. Dyeability of recycled electrospun polyethylene terephthalate (PET) nanofibers: Kinetics and thermodynamic study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Mitra D, Li M, Kang ET, Neoh KG. Transparent Copper-Loaded Chitosan/Silica Antibacterial Coatings with Long-Term Efficacy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29515-29525. [PMID: 28792197 DOI: 10.1021/acsami.7b07700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria-contaminated inanimate surfaces within hospitals and clinics result in transmission of pathogens via direct or indirect contact, leading to increased risk of healthcare-associated infections (HAI). The use of antibacterial coatings is a potential way of reducing the bacterial burden, but many surfaces such as instrument panels and monitors necessitate the coatings to be transparent while being highly antibacterial. In this work, silica nanoparticles (SiO2 NPs) were first grown over a layer of acrylated quaternized chitosan (AQCS) covalently immobilized on commercially available transparent poly(vinyl fluoride) (PVF) films. The SiO2 NPs then served as nanoreservoirs for adsorption of copper ions. The coated PVF films were transparent and reduced viable bacterial count by ∼99% and 100%, when incubated with a bacteria-loaded droplet for 60 and 120 min, respectively. The killing efficacy of these coatings, after wiping 100 times, with a deionized water-wetted cloth was reduced slightly to 97-98%. The stability of these coatings can be further improved with the deposition of another layer of cationic quaternized chitosan (QCS) over the negatively charged SiO2 NP layer, wherein the coatings maintained ∼99% killing efficacy even after 100 wipes. These coatings showed no significant toxicity to mammalian cells and, hence, can potentially be used in a clinical setting for reducing HAI.
Collapse
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| | - Min Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Kent Ridge, Singapore 117576
| |
Collapse
|
16
|
Lipatova IM, Moryganov AP. Functionalization of synthetic fibrous materials using nanosized polymer carriers. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217060408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The knowledge and recognition of the important role they play for promoting and maintaining human health and wellbeing is continuously increasing. This review describes some important polysaccharides (e.g. mucilages and gums, glycosamine glycans and chitin/chitosan) and their medical, cosmetic and pharmaceutical applications, with emphasis on the relationship between structure and function. Next, the use of polysaccharides as nutraceuticals and vaccines is discussed in more detail. An analysis of the trends and challenges in polysaccharide research concludes the paper.
Collapse
Affiliation(s)
- Jan E.G. van Dam
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
18
|
Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy. Biomaterials 2017; 129:83-97. [DOI: 10.1016/j.biomaterials.2017.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022]
|
19
|
Wu G, Deng H, Jiang T, Tu H, Chen J, Zhan Y, Wang Y, Ma X. Regulating the gaps between folds on the surface of silk fibroin membranes via LBL deposition for improving their biomedical properties. Colloids Surf B Biointerfaces 2017; 154:228-238. [PMID: 28347944 DOI: 10.1016/j.colsurfb.2017.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
Silk fibroin (SF) has become a promising biomaterial in guided bone regeneration (GBR). In an attempt to modify the size of the gaps on the surface of SF barrier membrane and improve its antibacterial activity, biological and mechanical properties, positively charged Lysozyme (LY)-Collagen Type-I (COL) composites and negatively charged SF were introduced to the negatively charged surface of SF substrates utilizing the electrostatic layer-by-layer (LBL) self-assembly technique. The morphology, chemical structures and element content of the LBL structured membranes were investigated. The results suggested that LY and COL were successfully assembled and the gaps between the folds on the surface of the membranes became smaller gradually with the increase of coated film numbers. Besides, the content of β-sheets of the membranes increased after deposition, which indicated the improvement of their mechanical properties. Moreover, the results of the measurement of immobilized LY and antibacterial assay not only revealed that the enzymatic catalysis and antibacterial activity of the samples enhanced with the increase of coated bilayer numbers but also implied that LBL modified membranes had better antibacterial activity when LY-COL was on the outermost layer. Furthermore, CCK-8 assay certified both SF membrane and LBL structured membranes could facilitate cell growth and proliferation, and the introduction of COL could further promote this ability. Finally, cell attachment and morphology examination provided intuitional evidence that SF membrane and LBL modified membranes have excellent biocompatibility.
Collapse
Affiliation(s)
- Guomin Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Tao Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hu Tu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Jiajia Chen
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yingfei Zhan
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Xiao Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
20
|
Mishra B, Lushnikova T, Golla RM, Wang X, Wang G. Design and surface immobilization of short anti-biofilm peptides. Acta Biomater 2017; 49:316-328. [PMID: 27915018 PMCID: PMC5253077 DOI: 10.1016/j.actbio.2016.11.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 11/27/2022]
Abstract
Short antimicrobial peptides are essential to keep us healthy and their lasting potency can inspire the design of new types of antibiotics. This study reports the design of a family of eight-residue tryptophan-rich peptides (TetraF2W) obtained by converting the four phenylalanines in temporin-SHf to tryptophans. The temporin-SHf template was identified from the antimicrobial peptide database (http://aps.unmc.edu/AP). Remarkably, the double arginine variant (TetraF2W-RR) was more effective in killing methicillin-resistant Staphylococcus aureus (MRSA) USA300, but less cytotoxic to human skin HaCat and kidney HEK293 cells, than the lysine-containing dibasic combinations (KR, RK and KK). Killing kinetics and fluorescence spectroscopy suggest membrane targeting of TetraF2W-RR, making it more difficult for bacteria to develop resistance. Because established biofilms on medical devices are difficult to remove, we chose to covalently immobilize TetraF2W-RR onto the polyethylene terephthalate (PET) surface to prevent biofilm formation. The successful surface coating of the peptide is supported by FT-IR and XPS spectroscopies, chemical quantification, and antibacterial assays. This peptide-coated surface indeed prevented S. aureus biofilm formation with no cytotoxicity to human cells. In conclusion, TetraF2W-RR is a short Trp-rich peptide with demonstrated antimicrobial and anti-biofilm potency against MRSA in both the free and immobilized forms. Because these short peptides can be synthesized cost effectively, they may be developed into new antimicrobial agents or used as surface coating compounds. STATEMENT OF SIGNIFICANCE It is stunning that the total deaths due to methicillin-resistant Staphylococcus aureus (MRSA) infection are comparable to AIDS/HIV-1, making it urgent to explore new possibilities. This study deals with this problem by two strategies. First, we have designed a family of novel antimicrobial peptides with merely eight amino acids, making it cost effective for chemical synthesis. These peptides are potent against MRSA USA300. Our study uncovers that the high potency of the tryptophan-rich short peptide is coupled with arginines, whereas these Trp- and Arg-rich peptides are less toxic to select human cells than the lysine-containing analogs. Such a combination generates a more selective peptide. As a second strategy, we also demonstrate successful covalent immobilization of this short peptide to the polyethylene terephthalate (PET) surface by first using a chitosan linker, which is easy to obtain. Because biofilms on medical devices are difficult to remove by traditional antibiotics, we also show that the peptide coated surface can prevent biofilm formation. Although rarely demonstrated, we provide evidence that both the free and immobilized peptides target bacterial membranes, rendering it difficult for bacteria to develop resistance. Collectively, the significance of our study is the design of novel antimicrobial peptides provides a useful template for developing novel antimicrobials against MRSA. In addition, orientation-specific immobilization of the same short peptide can prevent biofilm formation on the PET surface, which is widely used in making prosthetic heart valves cuffs and other bio devices.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha M Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; Department of Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
21
|
Neoh KG, Li M, Kang ET, Chiong E, Tambyah PA. Surface modification strategies for combating catheter-related complications: recent advances and challenges. J Mater Chem B 2017; 5:2045-2067. [DOI: 10.1039/c6tb03280j] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the progress made in addressing bacterial colonization and other surface-related complications arising from catheter use.
Collapse
Affiliation(s)
- Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119077
| | - Min Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119077
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119077
| | - Edmund Chiong
- Department of Surgery
- National University of Singapore
- Singapore 119077
| | | |
Collapse
|
22
|
Mitra D, Li M, Wang R, Tang Z, Kang ET, Neoh KG. Scalable Aqueous-Based Process for Coating Polymer and Metal Substrates with Stable Quaternized Chitosan Antibacterial Coatings. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Min Li
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Rong Wang
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Zhihao Tang
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Koon Gee Neoh
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
23
|
Kenawy ER, Abdel-Hay FI, El-Magd AA, Mahmoud Y. Biologically Active Polymers: Modification and Anti-microbial Activity of Chitosan Derivatives. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911505049655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The principal derivative of chitin is chitosan, which is obtained by deacetylation of chitin. Chemical modification of synthetic and natural polymers is a convenient way to obtain materials with unique chemical and physical properties. Chitosan has an amino group at C-2 which is important because amino groups are nucleophilic and readily react with electrophilic reagents. Chitosan modified under mild conditions often results in regioselectivity for the C-2 amino group. In the present work, this reactivity was exploited to attach biologically active moieties into the amino groups of chitosan to yield anti-microbial chitosans. Specifically, vanillin, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, anisaldehyde, methyl 4-hydroxybenzoate, methyl 2,4-dihydroxybenzoate, propyl 3,4,5-trihydroxybenzoate and 2-hydroxymethylbenzoate were attached. The anti-microbial activity of these modified chitosans was explored against fungi such as Candida albicans SC5314, Aspergillus flavus and Fusarium oxysporium. Also, they were tested against bacteria such as Bacillus subtilis, Escherichia coli and Staphylococcus aureus. These modified chitosans were found to be highly active toward fungi species more than bacterial species.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta, Egypt,
| | - F. Imam Abdel-Hay
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta, Egypt
| | - Ahmed Abou El-Magd
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta, Egypt
| | - Yehia Mahmoud
- Botany Department, Faculty of Science, University of Tanta, Tanta, Egypt
| |
Collapse
|
24
|
Yatvin J, Gao J, Locklin J. Durable defense: robust and varied attachment of non-leaching poly"-onium" bactericidal coatings to reactive and inert surfaces. Chem Commun (Camb) 2015; 50:9433-42. [PMID: 24882521 DOI: 10.1039/c4cc02803a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing antimicrobial coatings to eliminate biotic contamination is a critical need for all surfaces, including medical, industrial, and domestic materials. The wide variety of materials used in these fields, from natural polymers to metals, require coatings that not only are antimicrobial, but also contain different surface chemistries for covalent immobilization. Alkyl "-onium" salts are potent biocides that have defied bacterial resistance mechanisms when confined to an interface. In this feature article, we highlight the various methods used to covalently immobilize bactericidal polymers to different surfaces and further examine the mechanistic aspects of biocidal action with these surface bound poly"-onium" salts.
Collapse
Affiliation(s)
- Jeremy Yatvin
- Department of Chemistry, College of Engineering, and Nanoscale Science and Engineering Center, 220 Riverbend Rd., Athens, GA, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Chen J, Wang F, Liu Q, Du J. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun (Camb) 2014; 50:14482-93. [DOI: 10.1039/c4cc03001j] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A topical review on recent advances in the research and applications of antimicrobial polymeric nanostructures, such as silver-decorated polymeric nanostructures, and polymeric micelles and vesicles based on antimicrobial polymers and antimicrobial peptides.
Collapse
Affiliation(s)
- Jing Chen
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Fangyingkai Wang
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Qiuming Liu
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Jianzhong Du
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| |
Collapse
|
27
|
Černáková Ľ, Černák M, Tóth A, Mikulášová M, Tomašková M, Kováčik D. Chitosan immobilization to the polypropylene nonwoven after activation in atmospheric – pressure nitrogen plasma. OPEN CHEM 2014. [DOI: 10.1515/chem-2015-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAtmospheric-pressure air and nitrogen plasmas generated by surface dielectric barrier discharges have been used to incorporate new functionalities at the surface of polypropylene nonwoven fabric. The main goals were to activate the polymer surfaces for subsequent immobilization of chitosan from water solution without using any crosslinking and wetting agents. The samples were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The nitrogen plasma treatment resulted in relatively high oxygen incorporation, about 9 atomic % mainly in aliphatic C=O type bonds and about 4 at.% of nitrogen incorporation in amine and other nitrogen functionalities. Chitosan was immobilized on the fabric fibers surfaces very homogeneously in amount of 2 - 5 g m-2. The chitosan coated samples exhibited a good laundering durability and strong antimicrobial activity against Bacillus subtilis and Escherichia coli.
Collapse
|
28
|
Lee HS, Tomczyk N, Kandel J, Composto RJ, Eckmann DM. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing. J Mater Chem B 2013; 1:10.1039/C3TB21218A. [PMID: 24349719 PMCID: PMC3859438 DOI: 10.1039/c3tb21218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nancy Tomczyk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Wei X, Gong X, Ngai T. Investigating interactions between cationic particles and polyelectrolyte brushes with Total Internal Reflection Microscopy (TIRM). Polym Chem 2013. [DOI: 10.1039/c3py00512g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Huang W, Li X, Xue Y, Huang R, Deng H, Ma Z. Antibacterial multilayer films fabricated by LBL immobilizing lysozyme and HTCC on nanofibrous mats. Int J Biol Macromol 2012; 53:26-31. [PMID: 23123960 DOI: 10.1016/j.ijbiomac.2012.10.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 12/28/2022]
Abstract
Cellulose acetate nanofibrous mats were prepared by electrospunning technique. Positively charged and negatively charged composites were alternately deposited on negatively charged CA mats via layer-by-layer self-assembly technique. The morphology and inhibition rate of samples were investigated by regulating number of deposition bilayers and composition of outermost layer. Field emission scanning electron microscopy images indicated that the average diameter of fibers was increased with increasing the number of coating bilayers. Additionally, the catalytic activity of immobilized LY was measured and results showed "layer-by-layer alternative oscillation" phenomenon. The results of antibacterial assay indicated that (LY-HTCC/ALG)(10.5) films coating had the best inhibitory effect.
Collapse
Affiliation(s)
- Weijuan Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
31
|
Huang W, Xu H, Xue Y, Huang R, Deng H, Pan S. Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.06.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
El-Ola SMA. Recent Developments in Finishing of Synthetic Fibers for Medical Applications. Des Monomers Polym 2012. [DOI: 10.1163/156855508x363816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- S. M. Abo El-Ola
- a Textile Research Division, National Research Center, El Behoos Street, Dokki, Cairo, Egypt
| |
Collapse
|
33
|
Gozzelino G, Tobar DER, Chaitiemwong N, Hazeleger W, Beumer R. Antibacterial activity of reactive quaternary ammonium compounds in solution and in nonleachable coatings. J Food Prot 2011; 74:2107-12. [PMID: 22186051 DOI: 10.4315/0362-028x.jfp-11-220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibacterial polymers suitable for coating applications without leaching of the biocidal component have been obtained by UV copolymerization of acrylic resins with acrylic monomers containing quaternary ammonium moieties. Suitable reactive biocides, based on quaternary ammonium monomers (QAMs), endowed with undecylacryloyl group and alkyl chains with 2 (QAM-C2), 8 (QAM-C8), and 16 (QAM-C16) carbon atoms have been synthesized. Aqueous solutions of QAMs showed biocidal activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains both in suspension and adhered to stainless steel surfaces. QAM-C16 and QAM-C8 evidenced higher activity toward bacteria in suspension and on stainless steel, respectively. The QAMs have shown sufficient reactivity to be copolymerized, by UV irradiation, with a commercial urethane acrylic resin for coating. Bioactivity tests, performed on free films of crosslinked coatings containing 1% of copolymerized QAM, have shown an increasing inactivation effect in the order of magnitude L. monocytogenes, E. coli, S. aureus with a maximum activity of the QAM-C8.
Collapse
Affiliation(s)
- G Gozzelino
- Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | | | | | | | | |
Collapse
|
34
|
Švorčík V, Kolská Z, Kvítek O, Siegel J, Řezníčková A, Řezanka P, Záruba K. "Soft and rigid" dithiols and Au nanoparticles grafting on plasma-treated polyethyleneterephthalate. NANOSCALE RESEARCH LETTERS 2011; 6:607. [PMID: 22117780 PMCID: PMC3240945 DOI: 10.1186/1556-276x-6-607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/25/2011] [Indexed: 05/11/2023]
Abstract
Surface of polyethyleneterephthalate (PET) was modified by plasma discharge and subsequently grafted with dithiols (1, 2-ethanedithiol (ED) or 4, 4'-biphenyldithiol) to create the thiol (-SH) groups on polymer surface. This "short" dithiols are expected to be fixed via one of -SH groups to radicals created by the plasma treatment on the PET surface. "Free" -SH groups are allowed to interact with Au nanoparticles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrokinetic analysis (EA, zeta potential) were used for the characterization of surface chemistry of the modified PET. Surface morphology and roughness of the modified PET were studied by atomic force microscopy (AFM). The results from XPS, FTIR, EA and AFM show that the Au nanoparticles are grafted on the modified surface only in the case of biphenyldithiol pretreatment. The possible explanation is that the "flexible" molecule of ethanedithiol is bounded to the activated PET surface with both -SH groups. On the contrary, the "rigid" molecule of biphenyldithiol is bounded via only one -SH group to the modified PET surface and the second one remains "free" for the consecutive chemical reaction with Au nanoparticle. The gold nanoparticles are distributed relatively homogenously over the polymer surface.
Collapse
Affiliation(s)
- Václav Švorčík
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| | - Zdeňka Kolská
- Department of Chemistry, J. E. Purkyně University, 40096 Ústí nad Labem, Czech Republic
| | - Ondřej Kvítek
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| | - Jakub Siegel
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| | - Alena Řezníčková
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| | - Pavel Řezanka
- Department of Analytical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic
| | - Kamil Záruba
- Department of Analytical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
35
|
Lee HS, Eckmann DM, Lee D, Hickok NJ, Composto RJ. Symmetric pH-dependent swelling and antibacterial properties of chitosan brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12458-65. [PMID: 21894981 PMCID: PMC3191253 DOI: 10.1021/la202616u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Charged polymer brushes grafted to surfaces are of great interest for antibacterial, biosensor, nanofluidic, and drug delivery applications. In this paper, chitosans with quaternary ammonium salts, CH-Q, were immobilized on silicon oxide and characterized by in situ quartz-crystal microbalance with dissipation, QCM-D, and in situ spectroscopic ellipsometry, SE. Both methods showed that the hydrated film exhibited a minimum thickness of ~40 nm near pH 5 that increased strongly (up to ~80 nm) at lower and higher pH. This symmetric swelling is surprising because CH-Q is a cationic polymer. The CH-Q grafted layer was stable for pH values from 3 to 8 and exhibited rapid, reversible swelling and contraction upon varying pH. The CH-Q layer also reduced S. aureus colonization by a factor of ~30× compared to bare silicon oxide and an amine terminated silane grafted to silicon oxide. This antibacterial characteristic of CH-Q is attributed to the quaternary ammonium salts and the flexible polymer brush.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David M. Eckmann
- Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery and Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Russell J. Composto
- Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Wu S, Liu X, Yeung A, Yeung KWK, Kao RYT, Wu G, Hu T, Xu Z, Chu PK. Plasma-modified biomaterials for self-antimicrobial applications. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2851-2860. [PMID: 21668027 DOI: 10.1021/am2003944] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The surface compatibility and antibacterial properties of biomaterials are crucial to tissue engineering and other medical applications, and plasma-assisted technologies have been employed to enhance these characteristics with good success. Herein, we describe and review the recent developments made by our interdisciplinary team on self-antimicrobial biomaterials with emphasis on plasma-based surface modification. Our results indicate that a self-antibacterial surface can be produced on various types of materials including polymers, metals, and ceramics by plasma treatment. Surface characteristics such as roughness, microstructure, chemistry, electronegativity, free energy, hydrophilicity, and interfacial physiochemistry are important factors and can be tailored by using the appropriate plasma-assisted processing parameters. In particular, mechanistic studies reveal that the interfacial physiochemical processes, biocidal agents, and surface free energy are predominantly responsible for the antibacterial effects of plasma-modified biomaterials.
Collapse
Affiliation(s)
- Shuilin Wu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ping X, Wang M, Xuewu G. Surface modification of poly(ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly(acrylic acid) and its application in antibacterial hybrid film. Radiat Phys Chem Oxf Engl 1993 2011. [DOI: 10.1016/j.radphyschem.2010.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
|
39
|
Kardas I, Lipp-Symonowicz B, Sztajnowski S. The influence of enzymatic treatment on the surface modification of PET fibers. J Appl Polym Sci 2010. [DOI: 10.1002/app.31724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Rawlinson LAB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ. Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules 2010; 11:443-53. [PMID: 20025269 DOI: 10.1021/bm901166y] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial coatings can reduce the occurrence of medical device-related bacterial infections. Poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is one such polymer that is being researched in this regard. The aims of this study were to (1) elucidate pDMAEMA's antimicrobial activity against a range of Gram-positive and Gram-negative bacteria and (2) to investigate its antimicrobial mode of action. The methods used include determination of minimum inhibitory concentration (MIC) values against various bacteria and the effect of pH and temperature on antimicrobial activity. The ability of pDMAEMA to permeabilise bacterial membranes was determined using the dyes 1-N-phenyl-naphthylamine and calcein-AM. Flow cytometry was used to investigate pDMAEMA's capacity to be internalized by bacteria and to determine effects on bacterial cell cycling. pDMAEMA was bacteriostatic against Gram-negative bacteria with MIC values between 0.1-1 mg/mL. MIC values against Gram-positive bacteria were variable. pDMAEMA was active against Gram-positive bacteria around its pK(a) and at lower pH values, while it was active against Gram-negative bacteria around its pK(a) and at higher pH values. pDMAEMA inhibited bacterial growth by binding to the outside of the bacteria, permeabilizing the outer membrane and disrupting the cytoplasmic membrane. By incorporating pDMAEMA with erythromycin, it was found that the efficacy of the latter was increased against Gram-negative bacteria. Together, the results illustrate that pDMAEMA acts in a similar fashion to other cationic biocides.
Collapse
|
41
|
Inphonlek S, Pimpha N, Sunintaboon P. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids Surf B Biointerfaces 2010; 77:219-26. [PMID: 20189779 DOI: 10.1016/j.colsurfb.2010.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/18/2009] [Accepted: 01/28/2010] [Indexed: 02/05/2023]
Abstract
The core-shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5g), while the amount of PEI was varied from 0.1 to 0.5g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle-bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents.
Collapse
Affiliation(s)
- Supharat Inphonlek
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
42
|
Asadinezhad A, Novák I, Lehocký M, Bílek F, Vesel A, Junkar I, Sáha P, Popelka A. Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion. Molecules 2010; 15:1007-27. [PMID: 20335959 PMCID: PMC6263189 DOI: 10.3390/molecules15021007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/16/2022] Open
Abstract
Medical-grade polyvinyl chloride was coated by polysaccharides through a novel physicochemical approach. An initial surface activation was performed foremost via diffuse coplanar surface barrier discharge plasma in air at ambient temperature and pressure. Then, radical graft copolymerization of acrylic acid through grafting-from pathway was directed to render a well-defined brush of high density, and finally a chitosan monolayer and chitosan/pectin alternating multilayer were bound onto the functionalized surfaces. Surface characteristics were systematically investigated using several probe techniques. In vitro bacterial adhesion and biofilm formation assays indicated that a single chitosan layer was incapable of hindering the adhesion of a Staphylococcus aureus bacterial strain, while up to 30% reduction was achieved by the chitosan/pectin layered assembly. On the other hand, chitosan and chitosan/pectin multilayer could retard Escherichia coli adhesion by 50% and 20%, respectively. Furthermore, plasma treated and graft copolymerized samples were also found effective to diminish the degree of adherence of Escherichia coli.
Collapse
Affiliation(s)
- Ahmad Asadinezhad
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, T.G.M Sq. 275, 762 72 Zlín, Czech Republic
| | - Igor Novák
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovakia
| | - Marián Lehocký
- Tomas Bata University in Zlín, T.G.M. Sq. 5555, 760 01 Zlín, Czech Republic
- Author to whom correspondence should be addressed: ; Tel.: +420 608616048; Fax: +420 576031444
| | - František Bílek
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, T.G.M Sq. 275, 762 72 Zlín, Czech Republic
| | - Alenka Vesel
- Plasma Laboratory, Department of Surface Engineering, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ita Junkar
- Plasma Laboratory, Department of Surface Engineering, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Petr Sáha
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, T.G.M Sq. 275, 762 72 Zlín, Czech Republic
| | - Anton Popelka
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovakia
| |
Collapse
|
43
|
Asadinezhad A, Novák I, Lehocký M, Sedlarík V, Vesel A, Junkar I, Sáha P, Chodák I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf B Biointerfaces 2010; 77:246-56. [PMID: 20189783 DOI: 10.1016/j.colsurfb.2010.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 02/01/2023]
Abstract
Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli.
Collapse
Affiliation(s)
- Ahmad Asadinezhad
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, T.G.M. Sq. 275, 762 72 Zlín, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jayakumar R, Prabaharan M, Nair S, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28:142-50. [DOI: 10.1016/j.biotechadv.2009.11.001] [Citation(s) in RCA: 739] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
|
45
|
Lawson MC, Shoemaker R, Hoth KB, Bowman CN, Anseth KS. Polymerizable vancomycin derivatives for bactericidal biomaterial surface modification: structure-function evaluation. Biomacromolecules 2009; 10:2221-34. [PMID: 19606854 PMCID: PMC2936007 DOI: 10.1021/bm900410a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Surface modification of implantable biomaterials with biologically active functionalities, including antimicrobials, has wide potential for addressing implant-related design problems. Here, four polymerizable vancomycin derivatives bearing either acrylamide or poly(ethylene glycol) (PEG)-acrylate were synthesized and then polymerized through a surface-mediated reaction. Functionalization of vancomycin at either the V3 or the X1 position decreased monomeric activity by 6−75-fold depending on the modification site and the nature of the adduct (P < 0.08 for all comparisons). A 5000 Da PEG chain showed an order of magnitude decrease in activity relative to a 3400 Da counterpart. Molecular dynamics computational simulations were used to explore the mechanisms of this decreased activity. Assays were also conducted to demonstrate the utility of a living radical photopolymerization to create functional, polymeric surfaces with these monomers and to demonstrate surface-based activity against Staphylococcus epidermidis. In particular, the vancomycin−PEG-acrylate derivatives demonstrated a 7−8 log reduction in bacterial colony forming units (CFU) with respect to nonfunctionalized control surfaces.
Collapse
Affiliation(s)
- McKinley C Lawson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
46
|
Bratskaya SY, Simon F, Zschoche S, Synytska A, Marinin DV. Covalent immobilization of chitosan on surfaces with anchoring layers of poly(glycidyl methacrylate) and maleic anhydride copolymers. POLYMER SCIENCE SERIES B 2009. [DOI: 10.1134/s1560090409090140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zhang HZ, He ZC, Liu GH, Qiao YZ. Properties of different chitosan/low-density polyethylene antibacterial plastics. J Appl Polym Sci 2009. [DOI: 10.1002/app.30299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Keong LC, Halim AS. In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int J Mol Sci 2009; 10:1300-1313. [PMID: 19399250 PMCID: PMC2672031 DOI: 10.3390/ijms10031300] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022] Open
Abstract
One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (beta-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.
Collapse
Affiliation(s)
| | - Ahmad Sukari Halim
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +609-7663141; Fax: +6 09-7653370
| |
Collapse
|
49
|
Lim TY, Wang W, Shi Z, Poh CK, Neoh KG. Human bone marrow-derived mesenchymal stem cells and osteoblast differentiation on titanium with surface-grafted chitosan and immobilized bone morphogenetic protein-2. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1-10. [PMID: 18651113 DOI: 10.1007/s10856-008-3528-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/25/2008] [Indexed: 05/26/2023]
Abstract
Circulating progenitor cells are known to home to various organs to repair injured tissues or to routinely replace old cells and maintain tissue integrity. Similarly, circulating progenitor bone cells can possibly home to a bone implant, differentiate, and eventually osteointegrate with the prosthesis. Osteointegration of bone cells with the prosthesis can help to reduce the risk of implant failure due to constant movement between bone tissue and implant surface. In this study, we aim to investigate if immobilized bone morphogenetic protein-2 (BMP2) on chitosan-grafted titanium substrate (Ti-CS-BMP2) will enhance bone marrow-derived mesenchymal stem cell (BMMSC) adhesion onto the substrate surface and further induce their differentiation into osteoblasts. The results show that our Ti-CS-BMP2 substrate is able to retain adsorbed BMP2, and is capable of slow release of this growth factor. Despite the lesser number of BMMSCs initially attached onto the Ti-CS-BMP2 substrates and consequently the lower level of cell proliferation, Ti-CS-BMP2 cells had the highest level of ALP activity. RT-PCR results show that Ti-CS-BMP2 cells had a relatively higher level of transcription activity of Runx2, compared with that of bone cell-derived osteoblasts (BC-OB), an indication that the BMMSCs were actively differentiating into osteoblasts. Finally, alizarin red staining reveals the presence of calcium deposits in the differentiated cells. Hence our Ti-CS-BMP2 substrates possess an osteoconductive effect and can possibly be used to fabricate bone implants that can osteointegrate with host bone tissue.
Collapse
Affiliation(s)
- Tee Yong Lim
- Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore, 119260, Singapore.
| | | | | | | | | |
Collapse
|
50
|
Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res A 2008; 86:865-72. [DOI: 10.1002/jbm.a.31648] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|