Nteli P, Bajwa DE, Politakis D, Michalopoulos C, Kefala-Narin A, Efstathopoulos EP, Gazouli M. Nanomedicine approaches for treatment of hematologic and oncologic malignancies. World J Clin Oncol 2022; 13(7): 553-566 [PMID: 36157164 DOI: 10.5306/wjco.v13.i7.553]
Corresponding Author of This Article
Maria Gazouli, PhD, Professor, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, Athens 11527, Greece. mgazouli@med.uoa.gr
Research Domain of This Article
Hematology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Clin Oncol. Jul 24, 2022; 13(7): 553-566 Published online Jul 24, 2022. doi: 10.5306/wjco.v13.i7.553
Nanomedicine approaches for treatment of hematologic and oncologic malignancies
Polyxeni Nteli, Danae Efremia Bajwa, Dimitrios Politakis, Charalampos Michalopoulos, Anastasia Kefala-Narin, Efstathios P Efstathopoulos, Maria Gazouli
Polyxeni Nteli, Danae Efremia Bajwa, Dimitrios Politakis, Charalampos Michalopoulos, Anastasia Kefala-Narin, Maria Gazouli, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
Efstathios P Efstathopoulos, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, General University Hospital Attikon, Athens12462, Greece
Author contributions: Nteli P designed the outline, performed the writing, prepared a table and coordinated the writing of the paper; Bajwa D performed the writing and prepared a table; Politakis D performed the writing and prepared a table and a figure; Michalopoulos C performed the writing; Efstathopoulos EP and Gazouli M made critical revisions and provided approval of the final version of the manuscript to be published.
Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors who contributed their efforts in this manuscript.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Maria Gazouli, PhD, Professor, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, Athens 11527, Greece. mgazouli@med.uoa.gr
Received: March 9, 2022 Peer-review started: March 9, 2022 First decision: April 17, 2022 Revised: May 10, 2022 Accepted: June 27, 2022 Article in press: June 27, 2022 Published online: July 24, 2022 Processing time: 134 Days and 22.6 Hours
Core Tip
Core Tip: Despite many years of fundamental and clinical examination and preliminaries of promising new treatments, cancer stays a significant reason for dreariness and mortality. Ongoing investigations propose that nanomedicine gives benefits over conventional treatments for cancer therapy. Immunotherapeutic strategies, such as cancer vaccines, immunomodulatory agents, immune checkpoint inhibitors, natural killer cells, peptides, nucleic acids, and chimeric antigen receptor T-cells, have augmented the development of this treatment either by stimulating cells or blocking the so-called immune checkpoint pathways. The efficacy of nanomedicine treatments and the examination of the advancement in the synergistic plan of immune-targeting combination therapies reviewed in this manuscript have been validated in clinical trials. The field of nanomedicine, therefore, generates new approaches regarding oncologic malignancies.