Published online Jun 24, 2019. doi: 10.5306/wjco.v10.i6.222
Peer-review started: September 7, 2018
First decision: October 26, 2018
Revised: March 14, 2019
Accepted: March 27, 2019
Article in press: March 28, 2019
Published online: June 24, 2019
Processing time: 291 Days and 17.2 Hours
The expression of Notch, Interleukin-1 (IL-1) and leptin outcome (NILCO) molecules (mRNAs and proteins) was previously detected in breast cancer and endometrial cancer (EmCa) from African-American and Chinese patients. Although, obesity status of Chinese patients was unknown, it looked like that NILCO was higher expressed in obese patients. However, NILCO molecules were expressed higher in type II EmCa, regardless of ethnic background or obesity status of patients. Leptin levels are high in obese patients that may suggest this adipokine is involved in the progression of the more aggressive EmCa phenotype (type II) and chemore-sistance.
EmCa is the most frequent gynecological malignancy of the female reproductive tract and is the fourth most commonly diagnosed new cancer among women in the United States. Hormone nonresponsive breast cancer and type II EmCa have no targeted therapies, are mainly treated with chemotherapeutics and eventually develop drug resistance. Because leptin is a known inducer of NILCO in breast cancer and has been related to chemoresistance, it was hypothesized that comparable leptin’s actions could occur in EmCa. The validation of this hypothesis may suggest that NILCO plays essential roles in tumor progression and chemoresistance, and thus, may represent a new EmCa target, particularly for type II EmCa.
To investigate whether leptin mediates the expression of NILCO signaling components, and impairs paclitaxel cytotoxic effects, and whether leptin’s proliferative, invasion and chemo-resistant actions are more prominent in type II EmCa cells.
Two representative type I and type II (more aggressive and estrogen independent) EmCa cell lines were investigated for the potential leptin regulation of NILCO mRNA and proteins [Notch receptors, ligands and downstream effectors, and leptin (OB-R) and IL-1 (IL-1R tI) receptors] via Real-time PCR and Western blot analysis. Leptin’s proliferative and invasion effects were assessed by cytometric analysis (Cellometer Vision CBA system), and MTT and Matrigel-based invasion assays. NILCO inhibitors included nanoparticle-bound leptin peptide receptor antagonist-2 (IONP-LPrA2), anti-IL-1R tI antibody and Notch siRNA. The CCK8 assay was used to investigate leptin-mediated Paclitaxel drug resistance. Additionally, apoptotic and viable Paclitaxel-treated EmCa cells were determined by the Annexin V FITC/PI Assay (Nexcelom).
Leptin increased at least two-fold mRNA and protein levels of Notch receptors, ligands and downstream targets, and almost four-fold protein levels of OB-R and IL-1R tI in a dose dependent manner, mainly in type II EmCa cells. Leptin stimulated higher the progression of cell cycle, and the proliferation and invasion of type II EmCa cells, which were Notch-signaling dependent. The inhibition of IL-1R tI impaired the effects of leptin on Notch. Abrogation of Notch signaling via siRNA negatively affected leptin-induced EmCa invasiveness. Additionally, leptin acted as a survival factor for EmCa cells by significantly reducing the cytotoxic effects on Paclitaxel, which was more prominent in type II EmCa cells. The inhibition of OB-R via IONP-LPrA2 allowed the resensitization of EmCa cells to Paclitaxel. Thus, IONP-LPrA2 has a potential as a novel neo-adjuvant that may allow reducing Paclitaxel dosage and its undesirable side effects.
For the first time, it was found that leptin is an inducer of Notch and targets in EmCa. Leptin-induced NILCO could be specifically related to the progression, invasiveness and drug resistance of type II EmCa. Moreover, obesity could increase the progression of EmCa and the development of chemoresistance via leptin signaling and NILCO, which may be greater for type II EmCa. Leptin-induces NILCO, which could be a common signaling crosstalk that stimulates the progression and chemoresistance of several obesity-related cancers. Present data suggest that NILCO plays essential roles in tumor progression and chemoresistance, and thus, may represent a new EmCa target, particularly for type II EmCa.
In vitro data suggest that EmCa requires leptin signaling and NILCO for proliferation and invasion, and to increase drug resistance and survival. Future research should investigate the role of NILCO in EmCa progression and chemoresistance using animal models. Spontaneous, syngeneic, xenograft and PDX EmCa-mouse models should be used to validate the hypothesis tested in the present paper.