Published online Apr 10, 2012. doi: 10.5306/wjco.v3.i4.48
Revised: November 21, 2011
Accepted: April 1, 2012
Published online: April 10, 2012
Archetypes of histone modifications associated with diverse chromosomal states that regulate access to DNA are leading the hypothesis of the histone code (or epigenetic code). However, it is still not evident how these post-translational modifications of histone tails lead to changes in chromatin structure. Histone modifications are able to activate and/or inactivate several genes and can be transmitted to next generation cells due to an epigenetic memory. The challenging issue is to identify or “decrypt” the code used to transmit these modifications to descent cells. Here, an attempt is made to describe how histone modifications operate as part of histone code that stipulates patterns of gene expression. This papers emphasizes particularly on the correlation between histone modifications and patterns of Hox gene expression in Caenorhabditis elegans. This work serves as an example to illustrate the power of the epigenetic machinery and its use in drug design and discovery.