Published online Apr 24, 2024. doi: 10.5306/wjco.v15.i4.523
Peer-review started: December 21, 2023
First decision: January 30, 2024
Revised: February 3, 2024
Accepted: March 22, 2024
Article in press: March 22, 2024
Published online: April 24, 2024
Processing time: 122 Days and 20.7 Hours
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc–HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
Core Tip: Natural compounds have settled in the development of novel drugs. Britanin is a sesquiterpene lactone whose effect on gastrointestinal tumors has not been summarized before. Our paper reviews the current state of knowledge and proposes novel research directions. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors via the regulation of proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. Future research should examine the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia. The compound holds promise as an anti-cancer agent and may overcome the paucity of treatment options or high mortality rate in gastrointestinal tumors.