Published online Jan 24, 2024. doi: 10.5306/wjco.v15.i1.115
Peer-review started: November 20, 2023
First decision: December 5, 2023
Revised: December 13, 2023
Accepted: January 2, 2024
Article in press: January 2, 2024
Published online: January 24, 2024
Processing time: 64 Days and 2 Hours
Multiple myeloma (MM) is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow. The translocation, (t)(4;14), results in high-risk MM with limited treatment alternatives. Thus, there is an urgent need for identification and validation of potential treatments for this MM subtype. Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.
To elucidate the molecular basis and search for potential effective drugs of t(4;14) MM subtype by employing a comprehensive approach.
The transcriptional signature of t(4;14) MM was sourced from the Gene Expression Omnibus. Two datasets, GSE16558 and GSE116294, which included 17 and 15 t(4;14) MM bone marrow samples, and five and four normal bone marrow samples, respectively. After the differentially expressed genes were identified, the Cytohubba tool was used to screen for hub genes. Then, the hub genes were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Using the STRING database and Cytoscape, protein–protein interaction networks and core targets were identified. Potential small-molecule drugs were identified and validated using the Connectivity Map database and molecular docking analysis, respectively.
In this study, a total of 258 differentially expressed genes with enriched functions in cancer pathways, namely cytokine receptor interactions, nuclear factor (NF)-κB signaling pathway, lipid metabolism, atherosclerosis, and Hippo signaling pathway, were identified. Ten hub genes (cd45, vcam1, ccl3, cd56, app, cd48, btk, ccr2, cybb, and cxcl12) were identified. Nine drugs, including ivermectin, deforolimus, and isoliquiritigenin, were predicted by the Connectivity Map database to have potential therapeutic effects on t (4;14) MM. In molecular docking, ivermectin showed strong binding affinity to all 10 identified targets, especially cd45 and cybb. Ivermectin inhibited t(4;14) MM cell growth via the NF-κB pathway and induced MM cell apoptosis in vitro. Furthermore, ivermectin increased reactive oxygen species accumulation and altered the mitochondrial membrane potential in t(4;14) MM cells.
Collectively, the findings offer valuable molecular insights for biomarker validation and potential drug deve
Core Tip: Multiple myeloma is a hematological malignancy with a significant impact on public health, and the t(4;14) subtype is particularly aggressive and resistant to existing treatments. Our study addresses the urgent need for new therapeutic approaches by employing a comprehensive approach that includes bioinformatics analysis, molecular docking, and experimental validation. We identified ten key genes associated with t(4;14) multiple myeloma (MM), shedding light on the molecular basis of this subtype. We explored the potential of ivermectin to assess whether it may be “repurposed” as a therapeutic agent for t(4;14) MM. Our findings indicate that ivermectin not only inhibits MM cell growth but also induces apoptosis via the nuclear factor-κB signaling pathway.