Published online Nov 24, 2023. doi: 10.5306/wjco.v14.i11.518
Peer-review started: August 2, 2023
First decision: August 16, 2023
Revised: September 14, 2023
Accepted: October 16, 2023
Article in press: October 16, 2023
Published online: November 24, 2023
Processing time: 111 Days and 21.8 Hours
The development of cancer is thought to involve the dynamic crosstalk between the tumor cells and the microenvironment they inhabit. Such crosstalk is thought to involve mechanotransduction, a process whereby the cells sense mechanical cues such as stiffness, and translate these into biochemical signals, which have an impact on the subsequent cellular activities. Bibliometric analysis is a statistical method that involves investigating different aspects (including authors’ names and affiliations, article keywords, journals and citations) of large volumes of literature. Despite an increase in mechanotransduction-related research in recent years, there are currently no bibliometric studies that describe the global status and trends of mechanotransduction-related research in the cancer field.
To investigate the global research status and trends of mechanotransduction in cancer from a bibliometric viewpoint.
Literature on mechanotransduction in cancer published from January 1, 1900 to December 31, 2022 was retrieved from the Web of Science Core Collection. Excel and GraphPad software carried out the statistical analysis of the relevant author, journal, organization, and country information. The co-authorship, keyword co-occurrence, and keyword burst analysis were visualized with VOSviewer and CiteSpace.
Of 597 publications from 745 institutions in 45 countries were published in 268 journals with 35510 citation times. With 270 articles, the United States is a well-established global leader in this field, and the University of California system, the most productive (n = 36) and influential institution (n = 4705 citations), is the most highly active in collaborating with other organizations. Cancers was the most frequent publisher with the highest H-index. The most productive researcher was Valerie M. Weaver, with 10 publications. The combined analysis of concurrent and burst keywords revealed that the future research hotspots of mechanotransduction in cancer were related to the plasma membrane, autophagy, piezo1/2, heterogeneity, cancer diagnosis, and post-transcriptional modifications.
Mechanotransduction-related cancer research remains a hot topic. The United States is in the leading position of global research on mechano-oncology after almost 30 years of investigations. Research group cooperations exist but remain largely domestic, lacking cross-national communications. The next big topic in this field is to explore how the plasma membrane and its localized mechanosensor can transduce mechanical force through post-transcriptional modifications and thereby participate in cellular activity regulations and cancer development.
Core Tip: Through bibliometric analysis, we found that mechanotransduction-related cancer research remains a hot topic, with approximately 100 papers and 5000 citations generated per year in the past three years. Additionally, the United States is a well-established global leader of this field, and the University of California system is the most influential organization in this field. We predict that investigating how the plasma membrane and its localized mechanosensors transduce mechanical forces via post-transcriptional modifications and thereby participate in the regulation of cellular activity will be the next big research topic in the cancer field.