Published online Mar 24, 2020. doi: 10.5306/wjco.v11.i3.121
Peer-review started: September 20, 2019
First decision: December 6, 2019
Revised: January 2, 2020
Accepted: March 1, 2020
Article in press: March 1, 2020
Published online: March 24, 2020
Processing time: 178 Days and 9.5 Hours
Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cell’s ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors.
Core tip: Cell fusion is a normal biological process involved in organ formation and tissue repair. Through cell fusion, somatic cells undergo nuclear reprogramming and epigenetic modifications to form hybrid cells with new properties. Fusion of cancer cells with macrophages plays a major role in cancer metastasis and results in resistance to chemo- and radiation therapy. Cell fusion might be a potential target for the development of new antitumor therapies through macrophage depletion in tumour stroma and prevention of cell fusion and post-hybridization events involving chemotaxis and cell migration to lymph nodes and distant metastases.