1
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
3
|
Sarogni P, Mapanao AK, Gonnelli A, Ermini ML, Marchetti S, Kusmic C, Paiar F, Voliani V. Chorioallantoic membrane tumor models highlight the effects of cisplatin compounds in oral carcinoma treatment. iScience 2022; 25:103980. [PMID: 35310338 PMCID: PMC8924639 DOI: 10.1016/j.isci.2022.103980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) suggests the use of chemotherapy as neoadjuvant, adjuvant, and concomitant to surgery and radiotherapy for the treatment of oral carcinoma by depending on the cancer stage. The usual drug of choice belongs to the platinum compounds. In this context, the evaluation of the cancer behavior associated with the administration of standard or emerging cisplatin compounds supports the establishment of optimal cancer management. Here, we have assessed and compared the performance of cisplatin alone and contained in biodegradable nanocapsules on standardized chorioallantoic membrane (CAM) tumor models. The vascularized environment and optimized grafting procedure allowed the establishment of solid tumors. The treatments showed antitumor and anti-angiogenic activities together with deregulation of pivotal genes responsible of treatment resistance and tumor aggressiveness. This study further supports the significance of CAM tumor models in oncological research for the comprehension of the molecular mechanisms involved in tumor treatment response.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Sabrina Marchetti
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| |
Collapse
|
4
|
Yang J, Hong S, Zhang X, Liu J, Wang Y, Wang Z, Gao L, Hong L. Tumor Immune Microenvironment Related Gene-Based Model to Predict Prognosis and Response to Compounds in Ovarian Cancer. Front Oncol 2021; 11:807410. [PMID: 34966691 PMCID: PMC8710702 DOI: 10.3389/fonc.2021.807410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) has been recognized to be an imperative factor facilitating the acquisition of many cancer-related hallmarks and is a critical target for targeted biological therapy. This research intended to construct a risk score model premised on TIME-associated genes for prediction of survival and identification of potential drugs for ovarian cancer (OC) patients. METHODS AND RESULTS The stromal and immune scores were computed utilizing the ESTIMATE algorithm in OC patient samples from The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network and differentially expressed genes analyses were utilized to detect stromal-and immune-related genes. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was utilized for additional gene selection. The genes that were selected were utilized as the input for a stepwise regression to construct a TIME-related risk score (TIMErisk), which was then validated in Gene Expression Omnibus (GEO) database. For the evaluation of the protein expression levels of TIME regulators, the Human Protein Atlas (HPA) dataset was utilized, and for their biological functions, the TIMER and CIBERSORT algorithm, immunoreactivity, and Immune Cell Abundance Identifier (ImmuCellAI) were used. Possible OC medications were forecasted utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). TIMErisk was developed based on ALPK2, CPA3, PTGER3, CTHRC1, PLA2G2D, CXCL11, and ZNF683. High TIMErisk was recognized as a poor factor for survival in the GEO and TCGA databases; subgroup analysis with FIGO stage, grade, lymphatic and venous invasion, debulking, and tumor site also indicated similar results. Functional immune cells corresponded to more incisive immune reactions, including secretion of chemokines and interleukins, natural killer cell cytotoxicity, TNF signaling pathway, and infiltration of activated NK cells, eosinophils, and neutrophils in patients with low TIMErisk. Several small molecular medications which may enhance the prognosis of patients in the TIMErisk subgroup were identified. Lastly, an enhanced predictive performance nomogram was constructed by compounding TIMErisk with the FIGO stage and debulking. CONCLUSION These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for OC patients and may be a foundation for future mechanistic research of their association.
Collapse
|
5
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
6
|
The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget 2018; 9:34038-34055. [PMID: 30344920 PMCID: PMC6183343 DOI: 10.18632/oncotarget.25954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
In addition to suppressing cancer cell proliferation and tumor growth, cisplatin has been shown to inhibit tumor angiogenesis. However, the underlying mechanism remains a matter of debate. The present study addressed the impact of cisplatin on potential tumor-to-endothelial cell communication conferring an antiangiogenic effect. For this purpose, migration and tube formation of human umbilical vein endothelial cells (HUVECs) exposed to conditioned media (CM) from vehicle- or cisplatin-treated A549 and H358 lung cancer cells were quantified. Cancer cells were exposed to non-toxic concentrations of cisplatin to mimic low-dose treatment conditions. CM from cancer cells exposed to cisplatin at concentrations of 0.01 to 1 µM elicited a concentration-dependent decrease in HUVEC migration and tube formation as compared with CM from vehicle-treated cells. The viability of HUVECs was virtually unaltered under these conditions. siRNA approaches revealed cisplatin-induced expression and subsequent release of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) by lung cancer cells to be causally linked to a decrease in HUVEC migration and tube formation. Moreover, TIMP-1 upregulation and consequent inhibition of HUVEC migration by cisplatin was shown to be dependent on activation of p38 and p42/44 mitogen-activated protein kinases. Inhibition of angiogenic features was not observed when HUVECs were directly exposed to cisplatin. Similarly, antiangiogenic effects were not detectable in HUVECs exposed to CM from the cisplatin-challenged bronchial non-cancer cell line BEAS-2B. Collectively, the present data suggest a pivotal role of cisplatin-induced TIMP-1 release from lung cancer cells in tumor-to-endothelial cell communication resulting in a reduced cancer-associated angiogenic impact on endothelial cells.
Collapse
|
7
|
Wahiduzzaman M, Ota A, Karnan S, Hanamura I, Mizuno S, Kanasugi J, Rahman ML, Hyodo T, Konishi H, Tsuzuki S, Takami A, Hosokawa Y. Novel combined Ato-C treatment synergistically suppresses proliferation of Bcr-Abl-positive leukemic cells in vitro and in vivo. Cancer Lett 2018; 433:117-130. [PMID: 29944906 DOI: 10.1016/j.canlet.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
Chronic myelogenous leukemia (CML) accounts for 15-20% of all leukemias affecting adults. Despite recent advances in the development of specific Bcr-Abl tyrosine kinase inhibitors (TKIs), some CML patients suffer from relapse due to TKI resistance. Here, we assessed the efficacy of a novel combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment (Ato-C) in human Bcr-Abl-positive leukemic cells. Combination index analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in K562, KU-812, MEG-A2, and KCL-22 cells. Notably, Ato-C synergistically enhanced apoptosis and decreased the survival of both acquired TKI-resistant CML cells and the cells expressing mutant Bcr-AblT315I. In addition, Ato-C dramatically decreased the phosphorylation level of forkhead transcription factor FOXO1/3a and STAT5 as well as c-Myc protein level. Interestingly, results of gene set enrichment analysis showed that Ato-C significantly downregulates the expression of MYC- and/or E2F1-target genes. Furthermore, Ato-C significantly suppressed the proliferation of MEG-A2-derived tumor when compared with that following monotherapy in vivo. Collectively, these results suggest that combined Ato-C treatment could be a promising alternative to the current therapeutic regime in CML.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Jo Kanasugi
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
8
|
Sun X, Cui M, Wang D, Guo B, Zhang L. Tumor necrosis factor-related apoptosis inducing ligand overexpression and Taxol treatment suppresses the growth of cervical cancer cells in vitro and in vivo. Oncol Lett 2018; 15:5744-5750. [PMID: 29556305 PMCID: PMC5844141 DOI: 10.3892/ol.2018.8071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a member of tumor necrosis factor (TNF) superfamily and functions to promote apoptosis by binding to cell surface death receptor (DR)4 and DR5. Cancer cells are more sensitive than normal cells to TRAIL-induced apoptosis, and TRAIL-based therapeutic strategies have shown promise for the treatment of cancer. The present study investigated whether enforced overexpression of TRAIL in cervical cancer cells promoted cell death in the presence or absence of Taxol, an important first-line cancer chemotherapeutic drug. Hela human cervical cancer cells were transfected with a TRAIL expression plasmid, and the effects of the combination treatment with Taxol on apoptosis was investigated in vitro and in tumor xenografts in vivo. The results indicated that Taxol treatment and TRAIL overexpression enhanced apoptosis compared with either treatment alone. The present data indicate that Taxol may enhance the pro-apoptotic effects of TRAIL overexpression in HeLa cells by increasing cleaved caspase-3 and DR5 expression levels and decreasing Bcl-2 expression levels. Furthermore, the findings suggest a possible novel treatment option for cervical cancer and uncovers a potential mechanism of the enhancing effects of Taxol on TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Manhua Cui
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Ding Wang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021 P.R. China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021 P.R. China
| |
Collapse
|
9
|
Abstract
Objective Hepatopulmonary syndrome (HPS) is characterized by hypoxia in patients with chronic liver disease. The mechanism of HPS includes pulmonary vasodilatation, inflammation, and angiogenesis. Prostaglandins synthesized by cyclooxygenases (COX) participate in vascular responsiveness, inflammation and angiogenesis, which can be modulated by COX inhibitors. We therefore evaluated the impact of COX inhibition in rats with common bile duct ligation (CBDL)-induced liver cirrhosis and HPS. Methods Cirrhotic rats were randomly allocated to receive non-selective COX inhibitor (indomethacin), selective COX-1 inhibitor (SC-560), or COX-2 inhibitor (celecoxib) for 14 days. After that, hemodynamic parameters, severity of hypoxia and intrapulmonary shunts, liver and renal biochemistry parameters, histological finding and protein expressions were evaluated. Results Non-selective COX inhibition by indomethacin improved hepatic fibrosis and pulmonary inflammation in cirrhotic rats with HPS. It also decreased mean arterial blood pressure, portal pressure, and alleviated hypoxia and intrapulmonary shunts. However, indomethacin increased mortality rate. In contrast, selective COX inhibitors neither affected hemodynamics nor increased mortality rate. Hypoxia was improved by SC-560 and celecoxib. In addition, SC-560 decreased intrapulmonary shunts, attenuated pulmonary inflammation and angiogenesis through down-regulating COX-, NFκB- and VEGF-mediated pathways. Conclusion Selective COX-1 inhibitor ameliorated HPS by mitigating hypoxia and intrapulmonary shunts, which are related to anti-inflammation and anti-angiogenesis.
Collapse
|
10
|
Zhang P, Wang W, Wei Z, Xu LI, Yang X, DU Y. xCT expression modulates cisplatin resistance in Tca8113 tongue carcinoma cells. Oncol Lett 2016; 12:307-314. [PMID: 27347143 DOI: 10.3892/ol.2016.4571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/19/2016] [Indexed: 12/26/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC), which is a subtype of head and neck cancer, is the most common type of oral cancer. Due to its high recurrence rate and chemoresistance, the average survival rate for patients with TSCC remains unsatisfactory. At present, cisplatin (CDDP) is utilized as the first-line treatment for numerous solid neoplasms, including TSCC. CDDP resistance develops in the majority of patients; however, the mechanism of such resistance remains unknown. Therefore, the present study aimed to clarify the mechanism of CDDP resistance and attempted to reduce chemoresistance. The results indicated that CDDP significantly increased expression of xCT, which is the light chain and functional subunit of the glutamate/cysteine transporter system xc-, and a subsequent increase in glutathione (GSH) levels was observed. The present study demonstrated that the upregulation of xCT expression and intercellular GSH levels contributed to CDDP resistance in TSCC cells. Furthermore, xCT suppression, induced by small interfering RNA or pharmacological inhibitors, sensitized TSCC cells to CDDP treatment. In conclusion, the present study revealed that CDDP-induced xCT expression promotes CDDP chemoresistance, and xCT inhibition sensitizes TSCC cells to CDDP treatment. These results provide a novel insight into the molecular mechanisms involved in TSCC cell chemoresistance.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Wei Wang
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Zhenhui Wei
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - L I Xu
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xuanning Yang
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Yuanhong DU
- Department of Stomatology, No. 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
11
|
Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FWG, Arantes EC, Serezani CH, Zamboni DS, Faccioli LH. Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat Commun 2016; 7:10760. [PMID: 26907476 PMCID: PMC4766425 DOI: 10.1038/ncomms10760] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/16/2016] [Indexed: 01/12/2023] Open
Abstract
Tityus serrulatus sting causes thousands of deaths annually worldwide. T. serrulatus-envenomed victims exhibit local or systemic reaction that culminates in pulmonary oedema, potentially leading to death. However, the molecular mechanisms underlying T. serrulatus venom (TsV) activity remain unknown. Here we show that TsV triggers NLRP3 inflammasome activation via K(+) efflux. Mechanistically, TsV triggers lung-resident cells to release PGE2, which induces IL-1β production via E prostanoid receptor 2/4-cAMP-PKA-NFκB-dependent mechanisms. IL-1β/IL-1R actions account for oedema and neutrophil recruitment to the lungs, leading to TsV-induced mortality. Inflammasome activation triggers LTB4 production and further PGE2 via IL-1β/IL-1R signalling. Activation of LTB4-BLT1/2 pathway decreases cAMP generation, controlling TsV-induced inflammation. Exogenous administration confirms LTB4 anti-inflammatory activity and abrogates TsV-induced mortality. These results suggest that the balance between LTB4 and PGE2 determines the amount of IL-1β inflammasome-dependent release and the outcome of envenomation. We suggest COX1/2 inhibition as an effective therapeutic intervention for scorpion envenomation.
Collapse
Affiliation(s)
- Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo (FCFRP/USP), Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo (FCFRP/USP), Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Juliana I Hori
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Universidade de São Paulo (FMRP/USP), Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Francisco W G Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo (FCFRP/USP), Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Eliane C Arantes
- Departamento de Física e Química, Universidade de São Paulo (FCFRP/USP), Ribeirao Preto, Sao Paulo 14040-903, Brazil
| | - Carlos H Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Dario S Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Universidade de São Paulo (FMRP/USP), Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo (FCFRP/USP), Ribeirao Preto, Sao Paulo 14040-903, Brazil
| |
Collapse
|