1
|
Bao Y, Zhu H. Prognostic value of miR-378c in hepatocellular carcinoma and its regulatory effect on tumor progression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-15. [PMID: 40139203 DOI: 10.1080/15257770.2025.2481950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This study aimed to explore the diagnostic and prognostic value of miR-378c in hepatocellular carcinoma (HCC) patients. METHODS This study included 97 HCC patients, 84 cirrhosis patients and 80 healthy volunteers. Serum miR-378c of all subjects and HCC cell lines was detected by qRT-PCR, and ROC curves were plotted to assess the clinical diagnostic value of miR-378c for HCC. The prognostic performance of miR-378c in HCC was assessed using the Kaplan-Meyer method and COX regression analysis. CCK-8 test for proliferation of HCC cell lines. The migration and invasion of HCC cell lines were measured by Transwell assay. Bioinformatics analysis was employed to analyze the possible target genes of miR-378c. RESULTS Serum miR-378c were remarkably lower in HCC patients than in cirrhosis patients and healthy controls (p < 0.001). ROC curves indicated that serum miR-378c could effectively distinguish HCC patients from healthy controls and cirrhotic patients. Among HCC patients, those with high miR-378c expression had higher cumulative survival (p = 0.001), and COX analysis identified miR-378c as an independent prognostic biomarker for HCC. Overexpression of miR-378c significantly inhibited the proliferation, migration and invasion of MHCC97H and HepG2 cells (p < 0.01). Bioinformatics analysis of miR-378c target genes revealed that miR-378c target genes were enriched in tumor-associated pathways. CONCLUSION Serum miR-378c expression is decreased in HCC patients and strongly connected with poor prognosis. As a potential diagnostic and prognostic biomarker for HCC patients, it may provide new insights into the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yuanjie Bao
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Haoxiang Zhu
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Mi C, Liu S, Chen Z. Redefining hepatocellular carcinoma treatment: nanotechnology meets tumor immune microenvironment. J Drug Target 2025:1-20. [PMID: 40079845 DOI: 10.1080/1061186x.2025.2479757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, characterised by its complex pathogenesis and poor therapeutic outcomes. Despite recent advances in targeted molecular therapies, immune checkpoint inhibitors (ICIs), radiotherapy and conventional chemotherapy, the 5-year survival rate for this neoplasm remains dismally low. The progress in nanotechnology has revolutionised cancer treatment in recent years. These advances provide unprecedented opportunities to overcome the current limitations of different therapeutic modalities. This review provides a comprehensive analysis of how nanotechnology interfaces with the tumour immune microenvironment (TIME) in HCC and can present a new frontier in therapeutic interventions for HCC. We critically overview the latest developments in nanoparticle-based delivery systems for various drugs and also other antitumor agents like thermal therapy and radiotherapy. We also highlight the unique ability of nanoparticles to modulate the immunosuppressive tumour microenvironment (TME) and enhance therapeutic efficacy. Furthermore, we analyse emerging strategies that exploit nanoformulations to overcome biological barriers and enhance drug bioavailability in HCC treatment.
Collapse
Affiliation(s)
- Chuanliang Mi
- Shandong Aimeng Biotechnology Co., Ltd, Jinan, Shandong, China
| | - Sai Liu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhida Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Zhou Y, Wang Y, Zhao J, Kang L, Li Z. Clinical efficacy and safety of transarterial chemoembolization combined with targeted therapy and PD1 inhibitors in patients with advanced liver cancer. Pak J Med Sci 2025; 41:821-826. [PMID: 40103872 PMCID: PMC11911737 DOI: 10.12669/pjms.41.3.9799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/21/2024] [Accepted: 01/15/2025] [Indexed: 03/20/2025] Open
Abstract
Objective To investigate the clinical efficacy and safety of transarterial chemoembolization(TACE) combined with targeted therapy and PD1 inhibitors in patients with advanced liver cancer. Methods This was a retrospective study. A total of 120 patients with advanced primary liver cancer admitted to Affiliated Hospital of Hebei University were randomly divided into two groups, with 60 patients in each group from May 2020 to May 2023. Patients in the control group received conventional TACE, and those in the experimental group received 200 mg camrelizumab once every 21 days and oral lenvatinib mesylate capsules once daily in addition to TACE. Compared the clinical efficacy, levels of tumor markers, T lymphocyte subsets, and adverse drug reactions after treatment and the improvement of quality of life(QOL) before and after treatment between the two groups of patients. Results The overall response rate(ORR) was 80% in the experimental group and 62% in the control group, and the difference was statistically significant(p=0.03); the incidence of adverse reactions was 28% in the experimental group and 25% in the control group, with no significant difference between the two groups(p=0.68); the improvement rate of QOL score was significantly increased(p=0.03) and the deterioration rate was significantly decreased(p=0.01) in the experimental group compared with those in the control group, respectively. Conclusion TACE combined with targeted therapy and PD1 inhibitors is significantly effective to improve the cellular immune function with no significant increase in the incidence of adverse reactions, making it an effective and safe treatment option for patients with liver cancer.
Collapse
Affiliation(s)
- Yuanlong Zhou
- Yuanlong Zhou, Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Yuan Wang
- Yuan Wang. Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jisen Zhao
- Jisen Zhao, Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Linwei Kang
- Linwei Kang, Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Zan Li
- Zan Lim, Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| |
Collapse
|
4
|
Liu L, Zheng Z, Huang Y, Su H, Wu G, Deng Z, Li Y, Xie G, Li J, Zou F, Chen X. HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. Autophagy 2025; 21:639-663. [PMID: 39461872 PMCID: PMC11849932 DOI: 10.1080/15548627.2024.2421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.Abbreviation: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaling Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairou Su
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guibing Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuemei Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Nephew LD, Moore C, Garcia N, Parks L, McKay A, Strauss AT, Wiehe S, Chalasani N, Hughes-Wegner AT, Rawl SM. Information overload, financial constraints, and psychological burdens are among the barriers faced by marginalized groups seeking curative treatments for HCC. Hepatol Commun 2025; 9:e0660. [PMID: 40008878 PMCID: PMC11868430 DOI: 10.1097/hc9.0000000000000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Patients with HCC face numerous barriers to curative therapies, particularly Black patients and those impacted by adverse social determinants of health (SDOH). This study aimed to identify patient-reported barriers and facilitators to curative therapies, to inform interventions that improve equitable access to care. METHODS We conducted 2 qualitative sessions with Black participants and participants experiencing adverse SDOH with HCC referred for liver transplant (LT) or resection. We also conducted one-on-one interviews with participants from sessions that underwent LT (n=2). Human-centered design methods, including journey mapping and group ideation, were used to identify challenges and solutions at various stages in the care pathway. Data were analyzed to identify key themes and to compare the experiences of Black patients with those experiencing adverse SDOH. RESULTS Both groups faced significant barriers, particularly related to information overload, communication gaps with health care providers, and the complexity of navigating the LT pathway. However, Black patients reported additional challenges related to the psychological burden of the diagnosis and distrust in the health care system, while those with adverse SDOH frequently cited financial instability, lack of social support, and challenges in coordinating care between multiple health systems. Despite these differences, common facilitators included compassionate health care teams and strong personal support networks. Both groups suggested solutions such as improvements in education timing and delivery, better communication pathways, and peer support groups to improve preparedness for treatment and recovery. CONCLUSIONS While Black patients and those with adverse SDOH experience unique barriers, common threads-such as information gaps and desire for peer support suggest shared opportunities for interventions.
Collapse
Affiliation(s)
- Lauren D. Nephew
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Courtney Moore
- Department of Community Health Partnerships, Research Jam, Community Health Partnerships, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicole Garcia
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Lisa Parks
- Department of Community Health Partnerships, Research Jam, Community Health Partnerships, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison McKay
- Department of Community Health Partnerships, Research Jam, Community Health Partnerships, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexandra T. Strauss
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sara Wiehe
- Department of Community Health Partnerships, Research Jam, Community Health Partnerships, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Alexandra T. Hughes-Wegner
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Susan M. Rawl
- Department is Science of Nursing Care, Indiana University School of Nursing, Indiana University Simon Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
You LW, Wang J, Yin D, Hu BJ, Cheng Y, Wang XF, Li H, Guo J. Metabolomics Analysis of Functional Activity Changes in Residual Tumour Cells After IOCS Treatment. J Cell Mol Med 2025; 29:e70452. [PMID: 40111872 PMCID: PMC11925126 DOI: 10.1111/jcmm.70452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious and often lethal cancer, particularly in patients with chronic liver disease. Currently, no specific treatment has been utilised to prevent HCC. The detailed mechanism of HCC is still elusive, and this study aims to identify and characterise the functional activity changes in residual tumour cells following intraoperative cell salvage (IOCS) treatment during HCC surgery. This research is a retrospective case-control study, involving the selection of 60 patients with HCC who underwent radical surgery; then blood and tumour tissue were collected for further testing. GC-MS assay, immunofluorescence, Western blot and qRT-PCR techniques were employed. Our study found comparable demographic and baseline clinical characteristics between the experimental group (n = 30), which received IOCS treatment during surgery, and the control group (n = 30), which did not receive IOCS treatment, validating subsequent analyses. Metabolomic analysis revealed six key metabolites differing between groups, indicating improvement in liver tumours in the experimental group. TP53 expression was significantly upregulated, potentially mediating therapeutic effects. The intervention reduced HCC cell migration and apoptosis, decreased E2F1 and MDM2 protein and mRNA levels, and increased TP53 and CTNNB1 levels. These findings support the potential clinical application of the intervention in improving treatment outcomes for HCC patients, warranting further investigation to elucidate the underlying mechanisms and optimise therapeutic strategies.
Collapse
Affiliation(s)
- Lai-Wei You
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Jinhuo Wang
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Dan Yin
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bao-Ji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yong Cheng
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xue-Fei Wang
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hao Li
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Jianrong Guo
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
7
|
Qin K, Xiong DD, Qin Z, Li MJ, Li Q, Huang ZG, Tang YX, Li JD, Zhan YT, He RQ, Luo J, Wang HQ, Zhang SQ, Chen G, Wei DM, Dang YW. Overexpression and clinicopathological significance of zinc finger protein 71 in hepatocellular carcinoma. World J Hepatol 2025; 17:101914. [PMID: 40027564 PMCID: PMC11866156 DOI: 10.4254/wjh.v17.i2.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive forms of liver cancer, with high morbidity and poor prognosis due to late diagnosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective biomarkers for early detection and targeted therapy remain scarce. Zinc finger protein 71 (ZNF71), a zinc-finger protein, has been implicated in various cancers, yet its role in HCC remains largely unexplored. This gap in knowledge underscores the need for further investigation into the ZNF71 of potential as a diagnostic or therapeutic target in HCC. AIM To explore the expression levels, clinical relevance, and molecular mechanisms of ZNF71 in the progression of HCC. METHODS The study evaluated ZNF71 expression in 235 HCC specimens and 13 noncancerous liver tissue samples using immunohistochemistry. High-throughput datasets were employed to assess the differential expression of ZNF71 in HCC and its association with clinical and pathological features. The impact of ZNF71 on HCC cell line growth was examined through clustered regularly interspaced short palindromic repeat knockout screens. Co-expressed genes were identified and analyzed for enrichment using LinkedOmics and Sangerbox 3.0, focusing on significant correlations (P < 0.01, correlation coefficient ≥ 0.3). Furthermore, the relationship between ZNF71 expression and immune cell infiltration was quantified using TIMER2.0. RESULTS ZNF71 showed higher expression in HCC tissues vs non-tumorous tissues, with a significant statistical difference (P < 0.05). Data from the UALCAN platform indicated increased ZNF71 levels across early to mid-stage HCC, correlating with disease severity (P < 0.05). High-throughput analysis presented a standardized mean difference in ZNF71 expression of 0.55 (95% confidence interval [CI]: 0.34-0.75). The efficiency of ZNF71 mRNA was evaluated, yielding an area under the curve of 0.78 (95%CI: 0.75-0.82), a sensitivity of 0.63 (95%CI: 0.53-0.72), and a specificity of 0.82 (95%CI: 0.73-0.89). Diagnostic likelihood ratios were positive at 3.61 (95%CI: 2.41-5.41) and negative at 0.45 (95%CI: 0.36-0.56). LinkedOmics analysis identified strong positive correlations of ZNF71 with genes such as ZNF470, ZNF256, and ZNF285. Pathway enrichment analyses highlighted associations with herpes simplex virus type 1 infection, the cell cycle, and DNA replication. Negative correlations involved metabolic pathways, peroxisomes, and fatty acid degradation. TIMER2.0 analysis demonstrated positive correlations of high ZNF71 expression with various immune cell types, including CD4+ T cells, B cells, regulatory T cells, monocytes, macrophages, and myeloid dendritic cells. CONCLUSION ZNF71 is significantly upregulated in HCC, correlating with the disease's clinical and pathological stages. It appears to promote HCC progression through mechanisms involving the cell cycle and metabolism and is associated with immune cell infiltration. These findings suggest that ZNF71 could be a novel target for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Kai Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ming-Jie Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jie Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Qi Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Zhou SS, Ye YP, Chen Y, Zeng DT, Zheng GC, He RQ, Chi BT, Wang L, Lin Q, Su QY, Dang YW, Chen G, Wei JL. Overexpression pattern, function, and clinical value of proteasome 26S subunit non-ATPase 6 in hepatocellular carcinoma. World J Clin Oncol 2025; 16:99839. [PMID: 39995557 PMCID: PMC11686554 DOI: 10.5306/wjco.v16.i2.99839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND In recent years, many studies have shown that proteasome 26S subunit non-ATPase 6 (PSMD6) plays an important role in the occurrence and development of malignant tumours. Unfortunately, there are no reports on the evaluation of the potential role of PSMD6 in hepatocellular carcinoma (HCC). AIM To comprehensively evaluate the overexpression pattern and clinical significance of PSMD6 in HCC tissues. METHODS This study integrated PSMD6 mRNA expression profiles from 4672 HCC and 3667 non-HCC tissues, along with immunohistochemical scores from 383 HCC and adjacent tissues, to assess PSMD6 overexpression in HCC. Clustered regularly interspaced short palindromic repeats knockout technology evaluated PSMD6's essential role in HCC cell growth. Functional enrichment analysis explored the molecular mechanism of PSMD6 abnormalities in HCC. Drug sensitivity analysis and molecular docking analysed the effect of abnormal expression of PSMD6 on the drug sensitivity of HCC cells. RESULTS The results of 41 external and two internal datasets showed that PSMD6 mRNA (SMD = 0.26, 95%CI: 0.09-0.42, P < 0.05) and protein (SMD = 2.85, 95%CI: 1.19-4.50, P < 0.05) were significantly overexpressed in HCC tissues. The integrated analysis results showed that PSMD6 had a significant overexpression pattern in HCC tissues (SMD = 0.40, 95%CI: 0.15-0.66, P < 0.05). PSMD6 knockout inhibited HCC cell growth (chronos scores < -1). Functional enrichment implicated ribosome biogenesis and RNA splicing. Significant enrichment of signalling pathways such as RNA degradation, ribosomes, and chemical carcinogenesis-reactive oxygen species. Drug sensitivity analysis and a molecular docking model showed that high expression of PSMD6 was associated with the tolerance of HCC cells to drugs such as ML323, sepantronium bromide, and GDC0810. Overexpressed PSMD6 effectively distinguished HCC tissues (AUC = 0.75, 95%CI: 0.71-0.79). CONCLUSION This study was the first to discover that PSMD6 was overexpressed in HCC tissues. PSMD6 is essential for the growth of HCC cells and may be involved in ribosome biogenesis and RNA splicing.
Collapse
Affiliation(s)
- Sheng-Sheng Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Ping Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin City, Yulin 537000, Guangxi Zhuang Autonomous Region, China
| | - Guang-Cai Zheng
- Department of Surgery, Redcross Hospital of Yulin City, Yulin 537000, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lei Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qian Lin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Yan Su
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia-Liang Wei
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Zhao L, Qi H, Liu W, Lv H, Li P, Liu W, Sun R, Wang Q, Wang X. Isoacteoside alleviates hepatocellular carcinoma progression by inhibiting PDHB-mediated reprogramming of glucose metabolism. Commun Biol 2025; 8:205. [PMID: 39922943 PMCID: PMC11807089 DOI: 10.1038/s42003-025-07622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Pyruvate dehydrogenase B (PDHB) is an important component of the pyruvate dehydrogenase complex and is implicated in altering tumor metabolism and promoting malignancy. However, the specific impact of PDHB on hepatocellular carcinoma (HCC) metabolic reprogramming and its role in tumor progression remain to be elucidated. In our investigation, we have discerned a pronounced elevation in PDHB expression within HCC, intricately linked to delayed tumor staging, heightened tumor grading, and diminished prognostic outcomes. PDHB overexpression drives tumor growth and metastasis in vitro and in vivo. Mechanistically, PDHB mediates metabolic reprogramming by binding to the promoter regions of SLC2A1, GPI, and PKM2, promoting glycolysis-related gene transcription, contributes to HCC sorafenib resistance. In addition, Isoacteoside is a targeted inhibitor of PDHB and exert antitumor effects on HCC. In the mouse xenograft model, the combination of isoacteoside and sorafenib shows significantly better effects than sorafenib alone. In summary, our study validates PDHB as an oncogenic drug resistance-related gene capable of predicting HCC tumor progression. PDHB and Isoacteoside could be potential avenues for targeted and combination therapies in liver cancer.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Weiting Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Huiying Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Peixian Li
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenyue Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Qiongzi Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan Province, China.
| |
Collapse
|
10
|
Dong L, Dong C, Yu Y, Jiao X, Zhang X, Zhang X, Li Z. Transcriptomic analysis of Paraoxonase 1 expression in hepatocellular carcinoma and its potential impact on tumor immunity. Clin Transl Oncol 2025; 27:612-629. [PMID: 39031295 DOI: 10.1007/s12094-024-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Linhuan Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Changjun Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Yunlin Yu
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xin Jiao
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiangwei Zhang
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xianlin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
| | - Zheng Li
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
11
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
12
|
Guo H, Wang M, Ni C, Yang C, Fu C, Zhang X, Chen X, Wu X, Hou J, Wang L. TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma. J Exp Clin Cancer Res 2025; 44:20. [PMID: 39838454 PMCID: PMC11748316 DOI: 10.1186/s13046-025-03287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2), a surface receptor predominantly expressed on myeloid cells, is a major hub gene in pathology-induced immune signaling. However, its function in hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the role of TREM2 in the tumor microenvironment in the context of HCC progression. METHODS HCC was experimentally induced in wild-type (WT) and Trem2-deficient (Trem2-/-) mice, and clinical sample analysis and in vitro studies on macrophages were conducted. HCC cells were treated with conditioned medium from WT or Trem2-/- macrophages, and their malignant phenotypes and underlying mechanisms were analyzed. RESULTS TREM2 deficiency reduced liver tumor burden in orthotopic and subcutaneous HCC models by altering CD8+ T cell infiltration. Trem2-deficient macrophages presented increased chemokine secretion. TGF-β1 was found to be positively correlated with TREM2 expression in HCC, and TGF-β blockade reversed TREM2 induction. On the other hand, TREM2+ macrophages were found to be associated with glycolysis and PKM2 expression in HCC cells; this association may be related to the secretion of IL-1β, which enhances the malignant phenotypes of HCC cells. CONCLUSIONS These results reveal that TREM2+ macrophages play a driving role in HCC progression by suppressing CD8+ T cell infiltration and promoting tumor cell glycolysis, providing a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hanrui Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meiling Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caiya Ni
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Affiliated Tianfu Hospital of Southwest Medical University (Meishan Tianfu New Area People's Hospital), Meishan, Sichuan, China
| | - Chunxue Fu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaoman Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
13
|
Wu X, Chen Y, He W, Yao Y, Liu Y, Xia P, Zhang H, Li X, Guo Y, Chen X, Ma W, Yuan Y. UBE2Q2 promotes tumor progression and glycolysis of hepatocellular carcinoma through NF-κB/HIF1α signal pathway. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01037-w. [PMID: 39833608 DOI: 10.1007/s13402-025-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC. METHODS Bioinformatics analysis, western blot and qPCR were used to detect the expression of UBE2Q2. Functional experiments, proteomics analysis and subcutaneous tumors were constructed to find the biological function of UBE2Q2 in HCC. Co-immunoprecipitation, western blot and ubiquitination assays were used to identify the mechanisms involved. RESULTS We found a significant association between high UBE2Q2 expression and poor prognosis in HCC patients. Functionally, UBE2Q2 was shown to advance tumor progression in HCC through both in vitro assays and in vivo assessments. Proteomics analysis and glycolysis stress tests corroborated an increase in glycolytic activity due to UBE2Q2. Our findings reveal that UBE2Q2 augments glycolysis by boosting the transcription levels of hypoxia-inducible factor 1α (HIF1α), primarily through the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. At the molecular level, UBE2Q2 interaction with baculoviral IAP repeat-containing 2 (cIAP1) orchestrates the K63-linked ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1), which in turn, activates the NF-κB signaling pathway. CONCLUSIONS Our investigation reveals that UBE2Q2 regulates the glycolysis in HCC through modulation of the NF-κB/HIF1α signaling pathway, pinpointing UBE2Q2 as a promising therapeutic target for the disease.
Collapse
Affiliation(s)
- Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wenzhi He
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Xiaomian Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Yonghua Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China.
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, PR China.
| |
Collapse
|
14
|
PANG HAIYING, WU FENGBO, ZHANG YU, ZHANG NAN, WANG CHUNTING, LI QIU, HE GU, ZHANG PENG. EMP2 promotes hepatocellular carcinoma proliferation and invasion by activating cellular autophagy. Oncol Res 2025; 33:443-464. [PMID: 39866225 PMCID: PMC11754002 DOI: 10.32604/or.2024.043948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/13/2024] [Indexed: 01/28/2025] Open
Abstract
Background EMP2 is a tumor-associated membrane protein belonging to the GAS-3/PMP22 gene family. EMP2 expression demonstrates significant tissue specificity and heterogeneity in various human tissues and tumor tissues, where it may play a role in either promoting or inhibiting tumor growth. This study aimed to investigate the expression level, biological functions, and molecular mechanisms of EMP2 in liver cancer. Methods we analyzed the mRNA expression levels of EMPs family genes in hepatocellular carcinoma (HCC) tissues and normal liver tissues based on the TCGA database and immunohistochemical analysis of tissue microarrays. Subsequently, we constructed HCC cell lines with either knockdown or overexpression of EMP2 to examine the biological functions and molecular mechanisms of EMP2 in tumorigenesis in vivo and in vitro. Results Bioinformatic and immunohistochemical analysis of tissue microarrays have confirmed the significant upregulation of EMP2 in HCC tissues. In vitro and in vivo studies have shown that downregulation of EMP2 results in a moderate reduction in the proliferation and invasive capacity of HCC cells. Conversely, overexpression of EMP2 enhances the invasive capacity of HCC cells and induces autophagy. Initial investigations into the molecular mechanisms underlying EMP2-mediated enhancement of HCC cell invasion have revealed the dual regulation of EMP2-induced autophagy and the integrin pathway, which synergistically influence the invasive and metastatic potential of HCC cells. Conclusion EMP2 holds promise as a diagnostic marker for HCC metastasis and a potential target for targeted therapy.
Collapse
Affiliation(s)
- HAIYING PANG
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - FENGBO WU
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - YU ZHANG
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - NAN ZHANG
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - CHUNTING WANG
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QIU LI
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - GU HE
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - PENG ZHANG
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
15
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
16
|
Guarneri V, Loggi E, Ramacieri G, Serra C, Vukotic R, Vitale G, Scuteri A, Cursaro C, Margotti M, Galli S, Caracausi M, Brodosi L, Gabrielli F, Andreone P. Diagnostic Performance of PIVKA-II in Italian Patients with Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:167. [PMID: 39857948 PMCID: PMC11763969 DOI: 10.3390/cancers17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) represents the second leading cause of cancer deaths worldwide. Six-month imaging along with alpha-fetoprotein (AFP) serum levels detection are the current gold standard to exclude HCC. Protein induced by vitamin K absence (PIVKA-II) has been proposed as a potential screening biomarker for HCC. This study was designed to evaluate the role of PIVKA-II as diagnostic HCC marker, and the correlation between PIVKA-II levels and HCC stage. METHODS PIVKA-II levels were assessed on serum samples of Italian patients. The study population included 80 patients with HCC, 111 with liver cirrhosis (LC), and 111 with chronic hepatitis C (CHC). RESULTS PIVKA-II serum levels progressively increase from patients with CHC to patients with HCC. In the HCC group, PIVKA-II values are higher in the more advanced stages of the disease, assessed by the Barcelona Clinic Liver Cancer (BCLC) staging system (BCLC-B vs. BCLC-A vs. BCLC-0). Youden's index analysis identified a value >37 mAU/mL as the optimal threshold for the best combination of sensitivity and specificity (80% and 76%, respectively) and, at the best cut-off of 5.2 ng/mL, AFP yielded 53% specificity and 78% sensitivity. The combination of PIVKA-II and AFP reached positive and negative predictive values of 73.9% and 94.2%, respectively. CONCLUSIONS PIVKA-II levels are increased in the HCC patients, compared to control groups. The increase is more evident in patients with advanced HCC. The diagnostic performance of PIVKA-II seems more sensitive than AFP while the combination of PIVKA-II and AFP resulted in the best diagnostic accuracy, reaching 73.9% positive predictive value and 94.2% negative predictive value, thus improving the diagnostic capability of the single marker.
Collapse
Affiliation(s)
- Valeria Guarneri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (V.G.); (G.R.); (A.S.)
| | - Elisabetta Loggi
- Operational Unit of Clinical Pathology, ASUR4, 63900 Fermo, Italy;
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (V.G.); (G.R.); (A.S.)
| | - Carla Serra
- Interventional, Diagnostic and Therapeutic Ultrasound Unit, IRCCS AOUBO, 40138 Bologna, Italy;
| | - Ranka Vukotic
- Department of Emergency and Acceptance, General Medicine IV, University Hospital of Pisa, 56124 Pisa, Italy;
| | - Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS AOUBO, 40138 Bologna, Italy;
| | - Alessandra Scuteri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (V.G.); (G.R.); (A.S.)
| | - Carmela Cursaro
- Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (C.C.); (M.M.); (F.G.); (P.A.)
| | - Marzia Margotti
- Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (C.C.); (M.M.); (F.G.); (P.A.)
| | - Silvia Galli
- Microbiology Unit, IRCCS AOUBO, 40138 Bologna, Italy;
| | - Maria Caracausi
- Unit of Histology, Embriology and Applied Biology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Lucia Brodosi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (V.G.); (G.R.); (A.S.)
- Clinical Nutrition and Metabolism Unit, IRCCS AOUBO, 40138 Bologna, Italy
| | - Filippo Gabrielli
- Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (C.C.); (M.M.); (F.G.); (P.A.)
| | - Pietro Andreone
- Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (C.C.); (M.M.); (F.G.); (P.A.)
| |
Collapse
|
17
|
Shi J, Bi C, Shan S, Zhao M, Li J, Hao X, Wang N, Li Z. In Vitro Investigation of the Anti-Hepatocellular Carcinoma Activity of Peptides Derived From Quinoa (Chenopodium quinoa Willd) Bran. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:28. [PMID: 39757262 DOI: 10.1007/s11130-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 01/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common and highly aggressive tumor in the world. Although immunotherapy, surgical resection, targeted therapy and HCC transplantation could improve the prognosis for HCC patients, the tumor recurrence rate of the tumor remains high due to its insidious and invasive nature. Therefore, the development of new HCC therapeutic agents has become particularly important. Quinoa is abundant in bioactive peptides, proteins, and other functional ingredients that confer various health benefits to humans. Quinoa bran, the outer seed coat of quinoa, like quinoa, has extremely high nutritional value and rich protein content. This study firstly found that hydrolysate from quinoa bran protein (QBPP) exhibited targeting anti-HCC effect on the proliferation of HepG2 and Bel-7402 HCC cells in a concentration dependent manner, without significant toxic side effects on normal human liver cells L02. Further, QBPP exerted anti-HCC effect through mitochondria-mediated apoptosis and inhibition of HCC cells migration. Collectively, QBPP shows potential as a next-generation dietary supplement for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Cai Bi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Mengyun Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Jiarong Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Xiaoyan Hao
- College of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
18
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing cisplatin efficacy in hepatocellular carcinoma with selenocystine: The suppression of DNA repair and inhibition of proliferation in hepatoma cells. Chem Biol Interact 2025; 405:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Zhang M, Guo R, Yuan Z, Wang H. Lipid Nanoparticle (LNP) -A Vector Suitable for Evolving Therapies for Advanced Hepatocellular Carcinoma (HCC). GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400217. [PMID: 39802046 PMCID: PMC11717671 DOI: 10.1002/gch2.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as the predominant form of primary liver cancer, characterized by a dismal prognosis. Therapeutic options for advanced HCC remain sparse, with efficacy significantly hampered by the emergence of drug resistance. In parallel with research into novel pharmacological agents, advances in drug delivery systems represent a promising avenue for overcoming resistance. Lipid nanoparticles (LNPs) have demonstrated considerable efficacy in the delivery of nucleic acid-based therapeutics and hold potential for broader applications in drug delivery. This review describes the development of LNPs tailored for HCC treatment and consolidates recent investigations using LNPs to target HCC.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Ruiping Guo
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Zhuhui Yuan
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Hao Wang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| |
Collapse
|
20
|
Zhang Z, Wang Z, Zhang H, Gong Y, Sun H, Zhang W. Regulatory factor X-5/SCL/TAL1 interruption site axis promotes aerobic glycolysis and hepatocellular carcinoma cell stemness. Kaohsiung J Med Sci 2025; 41:e12922. [PMID: 39718123 PMCID: PMC11724169 DOI: 10.1002/kjm2.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
The incidence and development of various tumors, such as hepatocellular carcinoma (HCC), are linked to tumor stem cells. Although research has revealed how important SCL/TAL1 interruption site (STIL) is in many human tumors, the impact of STIL on HCC stem cells is poorly understood. This study aimed to examine the regulatory mechanisms and the function of STIL in the stemness of HCC tumor cells. Bioinformatics analysis was applied to determine the STIL and regulatory factor X-5 (RFX5) expression in HCC tissues. Immunohistochemistry (IHC) was used to detect the expression of STIL and RFX5 in HCC tissues. Quantitative real-time polymerase chain reaction was utilized to measure the STIL and RFX5 expression levels in HCC cells. The viability of the cells was assessed by the Cell Counting Kit-8 assay. The sphere formation assay was used to evaluate the sphere-forming capacity. The expression levels of the stem cell markers SOX2, Oct-4, CD133, CD44, the glycolysis-related proteins LDHA, HK2, AKT, p-AKT, and β-catenin were assessed by Western blot. Lactate production, oxygen consumption rate, and extracellular acidification rate were measured to assess the glycolytic capacity of HCC cells. Chromatin immunoprecipitation and dual-luciferase experiments were performed to validate the connection between RFX5 and STIL. Bioinformatics analysis determined that STIL exhibited high expression in HCC tissues and was enriched in the glycolysis pathway. In addition, the expression of glycolysis marker genes was positively correlated with STIL expression. Cell experiments verified that the activation of the glycolysis pathway by overexpression of STIL promoted stemness in HCC. Molecular experiments also revealed the binding relationship between STIL and RFX5. IHC detected high expression of STIL and RFX5 in HCC tissues. Cell functional experiments revealed that RFX5 could influence the HCC cells stemness by activating the STIL transcription via the glycolysis pathway. This study identified a novel role for the RFX5/STIL axis in HCC progression, which may offer treatment targets for HCC.
Collapse
Affiliation(s)
- Zhi‐Zhong Zhang
- Department of General Surgery Ward OneAnyang Tumor HospitalAnyangHenanChina
| | - Zi‐Ming Wang
- Department of General Surgery Ward OneAnyang Tumor HospitalAnyangHenanChina
| | - Hao‐Wen Zhang
- Department of General Surgery Ward OneAnyang Tumor HospitalAnyangHenanChina
| | - Yan‐Xin Gong
- Department of General Surgery Ward OneAnyang Tumor HospitalAnyangHenanChina
| | - Hao‐Ran Sun
- Pathological CenterAnyang Tumor HospitalAnyangHenanChina
| | - Wei Zhang
- Department of General Surgery Ward OneAnyang Tumor HospitalAnyangHenanChina
| |
Collapse
|
21
|
Lai F, Fang Y, Cheng C, Zhong X, Zheng W, Lan S, Peng Q, Cai X, Cao T, Zhong C, Gao Y. CDK4 as a Prognostic Marker of Hepatocellular Carcinoma and CDK4 Inhibitors as Potential Therapeutics. Curr Med Chem 2025; 32:343-358. [PMID: 38231074 PMCID: PMC11826894 DOI: 10.2174/0109298673279399240102095116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The proteins CDK4 and CDK6, which are extremely homologous, control cell cycle entry. For the treatment of breast tumors that include hormone receptors, CDK4 and CDK6 inhibitors have been authorized. The link between CDK4 and liver hepatocellular carcinoma (LIHC), however, has not yet been established. OBJECTIVE The study aimed to explore the link between CDK4 and LIHC and the effect of CDK4 inhibitors on LIHC. METHODS In this study, we have evaluated CDK4's prognostic relevance in LIHC using data from The Cancer Genome Atlas (TCGA). The relationship between clinical-pathologic features and CDK4 expression has been evaluated using the Kruskal-Wallis test, the Wilcoxon signed-rank test, and logistic regression. We have analyzed CDK4 and factors related to the prognosis of HCC using the Kaplan-Meier technique and multivariate Cox regression. Gene set enrichment analysis (GSEA) identified CDK4-related critical pathways. To investigate the connections between CDK4 and cancer immune infiltrates, TCGA data were employed in single-sample gene set enrichment analysis (ssGSEA). For functional validation, CDK4 was chosen since it can be inhibited by recognized CDK4/ 6-inhibitors (e.g., abemaciclib). RESULTS Poorer overall and disease-specific outcomes were linked to high CDK4 expression in HCC patients. GSEA suggested that CDK4 and immune response are closely connected. The amount of Th2 cells infiltrating was positively correlated with CDK4 expression, while the amount of cytotoxic cells infiltrating was negatively correlated, according to ssGSEA. Both in vitro and in vivo, the anti-tumor efficacy of CDK4 inhibitor has been found to be superior to that of sorafenib. CONCLUSION This study suggests a relationship between CDK4 and immune infiltration and prognosis in HCC. Additionally, a CDK4 inhibitor may have anti-tumor properties against hepatocellular cancer.
Collapse
Affiliation(s)
- Fobao Lai
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yingbing Fang
- Department of Hepatobiliary Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Cong Cheng
- Department of Infectious Disease, Successful Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wanrong Zheng
- College of Medical Nursing, Minxi Vocational and Technical College, Longyan, China
| | - Shiqian Lan
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Quanshui Peng
- Department of Hepatobiliary Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiumei Cai
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Tiantian Cao
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chengqian Zhong
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Elhinnawi MA, Boushra MI, Hussien DM, Hussein FH, Abdelmawgood IA. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cell Rev Rep 2025; 21:198-210. [PMID: 39422808 DOI: 10.1007/s12015-024-10797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.
Collapse
Affiliation(s)
- Manar A Elhinnawi
- Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | |
Collapse
|
23
|
Miao G, Zhang Z, Wang M, Gu X, Xiang D, Cao H. Berberine in combination with anti-PD-L1 suppresses hepatocellular carcinoma progression and metastasis via Erk signaling pathway. Ann Med Surg (Lond) 2025; 87:103-112. [PMID: 40109642 PMCID: PMC11918555 DOI: 10.1097/ms9.0000000000002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Berberine (BBR) is an isoquinoline alkaloid extracted from Huang Lian and other herbal medicines. It has been reported to play a crucial role in multiple metabolic diseases and cancers. Programmed cell death-1 (PD-L1) is known as the immune checkpoint; immunotherapy targeting PD1/PD-L1 axis can effectively block its pro-tumor activity. However, the effect of the combined use of BBR and anti-PD-L1 on hepatocellular carcinoma (HCC) has not been reported. Methods Hep-3B and HCCLM3 cells were chosen as the experimental objects. To determine the potential anti-cancer activity of the combination of BBR and anti-PD-L1, we first treated v cells with BBR. The cell viability of Hep-3B and HCCLM3 with BBR treatment was measured by Cell Count Kit 8 assay. Cytometry by time-of-flight was performed to analyze tumor tissues after treatment with BBR and/or anti-PD-L1. Proliferation-, migration-, and invasion-related markers were measured by western blotting and immunohistochemistry. Results The results showed that BBR significantly inhibited the proliferation of Hep-3B and HCCLM3.The combination treatment of BBR and anti-PD-L1 had a prominent inhibitory effect on HCC tumorigenesis. Cytometry by time-of-flight analysis indicated that BBR affects the immune subsets in the tumors. Besides, BBR and anti-PD-L1 inhibited the migration and invasion of HCC by inactivating the phosphorylation of Erk. Conclusion Our study proposed that the combination treatment of BBR and anti-PD-L1 markedly inhibited the tumorigenesis of HCC by Erk signaling pathway. We hope our research can provide a new strategy for the potential of BBR as a therapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Zhiyu Zhang
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Meiyan Wang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Wang L, Zhao Z, Shu K, Ma M. MPCD Index for Hepatocellular Carcinoma Patients Based on Mitochondrial Function and Cell Death Patterns. Int J Mol Sci 2024; 26:118. [PMID: 39795978 PMCID: PMC11719604 DOI: 10.3390/ijms26010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with a poor prognosis. During the development of cancer cells, mitochondria influence various cell death patterns by regulating metabolic pathways such as oxidative phosphorylation. However, the relationship between mitochondrial function and cell death patterns in HCC remains unclear. In this study, we used a comprehensive machine learning framework to construct a mitochondrial functional activity-associated programmed cell death index (MPCDI) based on scRNA-seq and RNA-seq data from TCGA, GEO, and ICGC datasets. The index signature was used to classify HCC patients, and studied the multi-omics features, immune microenvironment, and drug sensitivity of the subtypes. Finally, we constructed the MPCDI signature consisting of four genes (S100A9, FYN, LGALS3, and HMOX1), which was one of the independent risk factors for the prognosis of HCC patients. The HCC patients were divided into high- and low-MPCDI groups, and the immune status was different between the two groups. Patients with a high MPCDI had higher TIDE scores and poorer responses to immunotherapy, suggesting that high-MPCDI patients might not be suitable for immunotherapy. By analyzing the drug sensitivity data of CTRP, GDSC, and PRISM databases, it was found that staurosporine has potential therapeutic significance for patients with a high MPCDI. In summary, based on the characteristics of mitochondria function and PCD patterns, we used single-cell and transcriptome data to identify four genes and construct the MPCDI signature, which provided new perspectives and directions for the clinical diagnosis and personalized treatment of HCC patients.
Collapse
Affiliation(s)
- Longxing Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Zhiming Zhao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
| | - Mingyue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; (L.W.); (Z.Z.); (K.S.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Xu W, Jian D, Yang H, Wang W, Ding Y. Aggregation-induced emission: Application in diagnosis and therapy of hepatocellular carcinoma. Biosens Bioelectron 2024; 266:116722. [PMID: 39232431 DOI: 10.1016/j.bios.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious health issue due to its low early diagnosis rate, resistance to chemotherapy, and poor five-year survival rate. Therefore, it is crucial to explore novel diagnostic and therapeutic approaches tailored to the characteristics of HCC. Aggregation-induced emission (AIE) is a phenomenon where the luminescence of certain molecules, typically non-luminescent or weakly luminescent in solution, is significantly enhanced upon aggregation. AIE has been extensively applied in bioimaging, biosensors, and therapy. Fluorophore materials based on AIE (AIEgens) have a wide range of application scenarios and potential for clinical translation. This review focuses on recent advances in AIE-based strategies for diagnosing and treating HCC. First, the specific functional mechanism of AIE is described. Next, we summarize recent progress in the application of AIE for multimodal imaging, biosensor detection, and phototherapy. Finally, prospects and challenges for the AIE-based application in the diagnosis and therapy of HCC are discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Danfeng Jian
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weili Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
26
|
Cheng Y, Wang HY, Wan CY, Shi JW, Jin YY, He SL, Yin BB, Chen JJ. Efficacy and Safety of Erzhu Jiedu Decoction Granules in Treating Mid-advanced Hepatitis B Virus-Associated Primary Liver Cancer Patients with Pi (Spleen)-Deficiency and Dampness-Heat Syndrome. Chin J Integr Med 2024:10.1007/s11655-024-3818-1. [PMID: 39636494 DOI: 10.1007/s11655-024-3818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE To assess the efficacy and safety of Erzhu Jiedu Decoction (EZJDD) Granules in treating mid-advanced hepatitis B virus-associated primary liver cancer (HBV-PLC) patients with Pi (Spleen)-deficiency and dampness-heat syndrome. METHODS From January 2021 to June 2023, a cohort of 132 patients were enrolled and randomly assigned to a control group or a EZJDD group according to the random numbers, with 66 patients in each group. The patients in the control group received conventional treatment for 3 months, followed by a 3-month follow-up. In addition to the conventional treatment, patients in the EZJDD group were administered EZJDD Granules (10.9 g/pack, 2 packs twice per day) orally for same duration. Progression-free survival (PFS) as primary outcome was evaluated by Kaplan Meier method. Karnofsky performance status (KPS) scores were used to assess the quality of life in two groups before and after treatment, and survival rates were determined as well. The efficacy of Chinese medicine syndrome was calculated with Nimodipine method. Liver function, tumor indicators and T lymphocyte subsets were measured, respectively. Safety indicators were recorded and assessed. RESULTS Of the 116 patients who completed the study, 57 were in the control group and 59 in the EZJDD group. The median PFS was 3.53 months (106 days) in the EZJDD group compared to 2.33 months (70 days) in the control group (P=0.005). Six-month survival rate was 52.63% (30/57) in the control group and 69.49% (41/59) in the EZJDD group (P=0.039). The median KPS score in the EZJDD group [70(63, 90)] was higher than that in the control group [70(60, 80)] (P=0.013). The total effective rate of CM syndrome was 52.63% (30/57) in the control group and 77.97% (46/59) in the EZJDD group (P=0.005). The levels of alpha fetoprotein, alpha fetoprotein-L3, alpha-L-fucosidase and protein induced by Vitamin K absence or antagonist- II in the EZJDD group increased less than the control group (P>0.05). CD8+ levels were decreased, while CD3+ and CD4+ levels, as well as CD4+/CD8+ ratio were significantly increased in the EZZJD group (P<0.05). No treatment-related adverse reactions were observed during the study. CONCLUSION EZJDD Granules significantly prolonged the median PFS and improved 6-month survival rate in patients with mid-advanced HBV-PLC (Registration No. ChiCTR2200056922).
Collapse
Affiliation(s)
- Yang Cheng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai, 201203, China.
| | - Hao-Yi Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng-Yi Wan
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie-Wen Shi
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan-Yuan Jin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sheng-Li He
- Department of Oncology, Minhang Branch of Tumor Hospital Affiliated to Fudan University, Shanghai, 200240, China
| | - Bao-Bing Yin
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Jian-Jie Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
27
|
Hu J, Zhu J, Chen T, Zhao Y, Xu Q, Wang Y. Cuproptosis in cancer therapy: mechanisms, therapeutic application and future prospects. J Mater Chem B 2024; 12:12191-12206. [PMID: 39526989 DOI: 10.1039/d4tb01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cuproptosis is a regulated form of cell death induced by the accumulation of metal ions and is closely linked to aspects of cellular drug resistance, cellular metabolism, and signalling pathways. Due to its crucial role in regulating physiological and pathological processes, cuproptosis has gained increasing significance as a potential target for anticancer drug development. In this review, we introduce the definition of cuproptosis and provide a comprehensive discussion of the mechanisms of cuproptosis. In addition, the methods for the detection of cuproptosis are summarized, and recent advances in cuproptosis in cancer therapy are reviewed, mainly in terms of elesclomol (ES)-mediated cuproptosis and disulfiram (DSF)-mediated cuproptosis, which provided practical value for applications. Finally, the current challenges and future development of cuproptosis-mediated cancer therapy are discussed. In summary, this review highlights recent progress on cuproptosis in cancer therapy, offering novel ideas and strategies for future research and applications.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
28
|
Krupa K, Fudalej M, Cencelewicz-Lesikow A, Badowska-Kozakiewicz A, Czerw A, Deptała A. Current Treatment Methods in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:4059. [PMID: 39682245 DOI: 10.3390/cancers16234059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumour worldwide. Depending on the stage of the tumour and liver function, a variety of treatment options are indicated. Traditional radiotherapy and chemotherapy are ineffective against HCC; however, the U.S. Food and Drug Administration (FDA) has approved radiofrequency ablation (RFA), surgical resection, and transarterial chemoembolization (TACE) for advanced HCC. On the other hand, liver transplantation is recommended in the early stages of the disease. Tyrosine kinase inhibitors (TKIs) like lenvatinib and sorafenib, immunotherapy and anti-angiogenesis therapy, including pembrolizumab, bevacizumab, tremelimumab, durvalumab, camrelizumab, and atezolizumab, are other treatment options for advanced HCC. Moreover, to maximize outcomes for patients with HCC, the combination of immune checkpoint inhibitors (ICIs) along with targeted therapies or local ablative therapy is being investigated. This review elaborates on the current status of HCC treatment, outlining the most recent clinical study results and novel approaches.
Collapse
Affiliation(s)
- Kamila Krupa
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Anna Cencelewicz-Lesikow
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | | | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| |
Collapse
|
29
|
Fan CW, Luo L, Li MS, Gu YQ, Fang YL, Qin F, Wang HS. Sesquilignans PD from Zanthoxylum nitidum var. tomentosum exerts antitumor effects via the ROS/MAPK pathway in liver cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1530-1542. [PMID: 38958633 DOI: 10.1080/10286020.2024.2371032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Yi-Lin Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
30
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
32
|
Li J, Liu Q, Zhang T, Du Q. Bioinformatics Analysis Reveals CDK1 and DLGAP5 as Key Modulators of Tumor Immune Cell Infiltration in Hepatocellular Carcinoma. Cancer Manag Res 2024; 16:1597-1608. [PMID: 39559249 PMCID: PMC11572444 DOI: 10.2147/cmar.s478426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC), a prevalent and aggressive form of cancer, poses significant challenges due to its limited therapeutic options. This study aims to leverage multi-omics data from liver cancer to identify potential therapeutic targets for HCC. Methods We employed an integrative approach by analyzing various omics datasets related to liver cancer. Through comprehensive data mining and analysis, we identified key genes that are significantly associated with HCC. To gain insights into their biological roles and underlying mechanisms, we constructed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway networks. Specifically, we focused on genes that exhibited high expression levels in HCC and were correlated with poor patient prognosis. Among these, CDK1 and DLGAP5 emerged as promising candidates and were further investigated for their potential involvement in tumor immune cell infiltration and HCC progression. Results Our analysis revealed that CDK1 and DLGAP5 are highly expressed in HCC tissues compared to normal liver tissues, and their elevated expression is associated with unfavorable clinical outcomes. Furthermore, through GO and KEGG pathway analyses, we found that these genes are implicated in critical biological processes and signaling pathways relevant to HCC pathogenesis. Notably, CDK1 and DLGAP5 were shown to be associated with tumor immune cell infiltration, suggesting their potential role in modulating the tumor microenvironment and promoting HCC progression. Discussion These findings provide valuable insights into the development of novel therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Jiajing Li
- The Diagnostics Laboratory, Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Qi Liu
- Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Ting Zhang
- Affiliated Hospital to Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| |
Collapse
|
33
|
Hu L, Shi W, Liu K, Ma D, Xin Q, Wang Z, Cao Y, Zhang G. EGFR bypass activation mediates acquired resistance to regorafenib in hepatocellular carcinoma. Front Med (Lausanne) 2024; 11:1464610. [PMID: 39606630 PMCID: PMC11598357 DOI: 10.3389/fmed.2024.1464610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Regorafenib, a tyrosine kinase inhibitor (TKI), is used in the treatment of unresectable hepatocellular carcinoma (HCC). However, the occurrence of acquired resistance limits its antitumor efficacy. While multiple studies have highlighted the crucial role of bypass activation in acquired TKI resistance, few have focused on bypass activation in regorafenib resistance in HCC. Methods High-throughput proteomics was used to identify differential proteins associated with bypass activation between acquired regorafenib-resistant cells and parental cells. The ability of epidermal growth factor receptor (EGFR) bypass inhibition to reverse resistance was evaluated both in vitro and in vivo using direct microscopic observation, the CCK-8 assay, colony formation assay, Annexin V-FITC/propidium iodide double staining, cell cycle analysis, western blotting, and a xenograft model. Results The expression of EGFR, a member of the receptor tyrosine kinase (RTK) family, was significantly increased in acquired regorafenib-resistant HCC cells compared with parental cells. Pharmacological inhibition of EGFR with gefitinib restored the sensitivity of regorafenib-resistant HCC cells to regorafenib. In a xenograft mouse model, gefitinib sensitized resistant tumors to regorafenib. Additionally, levels of RAS, RAF, and P-ERK1/2, components of the downstream EGFR signaling pathway, were positively associated with EGFR expression. Conclusion EGFR overexpression promotes acquired resistance to regorafenib through RAS/RAF/ERK bypass activation in HCC. Inhibition of EGFR restores sensitivity to regorafenib, and the combination of gefitinib and regorafenib demonstrates significant antitumor efficacy both in vivo and in vitro. These findings suggest that this combination could be a potential strategy for patients with advanced HCC.
Collapse
Affiliation(s)
- Lili Hu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Oncological Surgery, The First People’s Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Weiwei Shi
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Obstetrics and Gynecology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kua Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, China
| | - Ding Ma
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhongxia Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yin Cao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, China
| | - Guang Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Li H, Qiao L, Kong M, Fang H, Yan Z, Guo R, Guo W. Construction and validation of a prognostic signature based on microvascular invasion and immune-related genes in hepatocellular carcinoma. Sci Rep 2024; 14:26994. [PMID: 39506070 PMCID: PMC11541849 DOI: 10.1038/s41598-024-78467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is an independent risk factor of poor prognosis in hepatocellular carcinoma (HCC) and can be used to guide the diagnosis and treatment of HCC. The immune system serves as an integral role in the incidence and progression of HCC. However, the molecular biology correlation between MVI and tumor immunity and the value of combining the two parameters to predict patient prognosis and HCC response to treatment remain to be evaluated. RESULTS In this study, we used univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis to establish the MVI and immune-related gene index (MIRGPI) including eight genes. We demonstrated that the MIRGPI was an independent risk factor in predicting the prognosis of HCC. Subsequently, our research established a nomogram model combining pathologic characteristics and verified its good clinical application value. In addition, our study found that the TP53 gene had a higher mutation frequency and a lower degree of immune infiltration in the high-risk group. The low-risk group had higher sensitivity to immunotherapy, sorafenib, and TACE treatment, and the high-risk group had higher sensitivity to common chemotherapeutic agents. Finally, SEMA3C was found to facilitate the proliferation, migration and invasive ability of HCC by in vitro and in vivo experiments, and its mechanism may be associated with the activation of the NF-Κb/EMT signaling pathway. CONCLUSIONS In summary, the MIRGPI signature we developed is a reliable marker for the prediction of prognosis and treatment response, and is important for the prognostic assessment and individualized treatment of HCC.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lixue Qiao
- Thyroid Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Ran Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- National Organ Transplantation Physician Training Center, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
35
|
Dropmann A, Alex S, Schorn K, Tong C, Caccamo T, Godoy P, Ilkavets I, Liebe R, Gonzalez D, Hengstler JG, Piiper A, Quagliata L, Matter MS, Waidmann O, Finkelmeier F, Feng T, Weiss TS, Rahbari N, Birgin E, Rasbach E, Roessler S, Breuhahn K, Tóth M, Ebert MP, Dooley S, Hammad S, Meindl-Beinker NM. The TGF-β1 target WISP1 is highly expressed in liver cirrhosis and cirrhotic HCC microenvironment and involved in pro- and anti-tumorigenic effects. Biochem Biophys Res Commun 2024; 732:150409. [PMID: 39033550 DOI: 10.1016/j.bbrc.2024.150409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-β1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS WISP1 expression is induced by TGF-β1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.
Collapse
Affiliation(s)
- Anne Dropmann
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sophie Alex
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katharina Schorn
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Chenhao Tong
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tiziana Caccamo
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patricio Godoy
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Iryna Ilkavets
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roman Liebe
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Daniela Gonzalez
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Albrecht Piiper
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Oliver Waidmann
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Teng Feng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Center for Liver Cell Research, University Hospital Regensburg, Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Nuh Rahbari
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Emrullah Birgin
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Erik Rasbach
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany; Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; DKFZ-Hector Cancer Institute at the University Medical Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
36
|
Ma Y, Wang Y, Tuo P, Meng Z, Jiang B, Yuan Y, Ding Y, Naeem A, Guo X, Wang X. Downregulation of C1R promotes hepatocellular carcinoma development by activating HIF-1α-regulated glycolysis. Mol Carcinog 2024; 63:2237-2253. [PMID: 39150096 DOI: 10.1002/mc.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Glycolysis/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Down-Regulation
- DNA Methylation
- Promoter Regions, Genetic
- Male
- Cell Line, Tumor
- Mice, Nude
- Female
- Prognosis
- Cell Proliferation
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Signal Transduction
- DNA Methyltransferase 3A/metabolism
- DNA Methyltransferase 3A/genetics
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yuying Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuehua Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Tuo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Shiyan, China
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
37
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1611-1618. [PMID: 39048663 PMCID: PMC11567900 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
38
|
Song L, Zhu C, Shi Q, Xia Y, Liang X, Qin W, Ye T, Yang B, Cao X, Xia J, Zhang K. Gelation embolism agents suppress clinical TACE-incited pro-metastatic microenvironment against hepatocellular carcinoma progression. EBioMedicine 2024; 109:105436. [PMID: 39476535 PMCID: PMC11567102 DOI: 10.1016/j.ebiom.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Current embolic agents in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) encounter instability and easy leakage, discounting TACE efficacy with residual HCC. Moreover, clinical TACE aggravates hypoxia and pro-metastatic microenvironments, rendering patients with HCC poor prognosis. METHODS Herein, we developed Zein-based embolic agents that harness water-insoluble but ethanol-soluble Zein to encompass doxorubicin (DOX)-loaded mesoporous hollow MnO2 (HMnO2). The conditions and capacity of HMnO2 to generate reactive oxygen species (ROS) were assayed. Mechanical examinations of Zein-HMnO2@DOX were performed to evaluate its potential as the embolic agent. In vitro experiments were carried out to evaluate the effect of Zein-HMnO2@DOX on HCC. The subcutaneous HCC mouse model and rabbit VX2 HCC model were established to investigate its anti-tumor and anti-metastasis efficacy and explore its potential anti-tumor mechanism. FINDINGS The high adhesion and crosslinking of Zein with HMnO2@DOX impart Zein-HMnO2@DOX with strong mechanical strength to resist deformation and wash-off. Zein gelation and HMnO2 decomposition in response to water and acidic tumor microenvironment, respectively, enable continuous DOX release and Fenton-like reaction for reactive oxygen species (ROS) production and O2 release to execute ROS-enhanced TACE. Consequently, Zein-based embolic agents outperform clinically-used lipiodol to significantly inhibit orthotopic HCC growth. More significantly, O2 release down-regulates hypoxia inducible factor (HIF-1α), vascular endothelial growth factor (VEGF) and glucose transporter protein 1 (GLUT1), which thereby re-programmes TACE-aggravated hypoxic and pro-metastatic microenvironments to repress HCC metastasis towards lung. Mechanistic explorations uncover that such Zein-based TACE agents disrupt oxidative stress, angiogenesis and glycometabolism pathways to inhibit HCC progression. INTERPRETATION This innovative work not only provides a new TACE agent for HCC, but also establishes a new strategy to ameliorate TACE-aggravated hypoxia and metastasis motivation against clinically-common HCC metastasis after TACE operation. FUNDING Excellent Young Science Fund for National Natural Science Foundation of China (82022033); National Natural Science Foundation of China (Grant No. 82373086, 82102761); Major scientific and technological innovation project of Wenzhou Science and Technology Bureau (Grant No. ZY2021009); Shanghai Young Top-Notch Talent.
Collapse
Affiliation(s)
- Li Song
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Chunyan Zhu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Stomatology and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, China
| | - Qing Shi
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Xiayi Liang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Biwei Yang
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Jinglin Xia
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
39
|
Ji K, Zhu H, Zhang C, Ai J, Jing L, Zhao T, Tao H, Chen F, Wu W. Nomogram-based prognostic stratification for patients with large hepatocellular carcinoma: a population study of SEER database and a Chinese cohort. J Gastrointest Oncol 2024; 15:2201-2215. [PMID: 39554574 PMCID: PMC11565094 DOI: 10.21037/jgo-24-288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/16/2024] [Indexed: 11/19/2024] Open
Abstract
Background Large hepatocellular carcinoma (HCC) with a diameter ≥5 cm remains a significant challenge of poor survival and raises the need for prognosis evaluation. This study aimed to develop and validate a nomogram-based prognostic stratification to assess overall survival (OS) of patients with large HCC. Methods Data of patients with large HCC were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database and our hospital, and were divided into the training cohort, internal validation cohort and external validation cohort. Cox analysis was performed to identify independent prognostic factors for the construction of nomogram in training cohort. The predictive ability of the nomogram was validated compared with the tumor node metastasis (TNM) classification staging system. Furthermore, prognostic stratification system based on nomogram was developed. Results Independent prognostic factors including histological grade, T stage, M stage, alpha fetoprotein (AFP), fibrosis score and surgery, were incorporated to construct nomogram. C-indexes of nomogram were 0.730, 0.726 and 0.724 in the training, internal and external validation cohorts, respectively. Importantly, nomogram harbored a superior discrimination and clinical benefit than the TNM staging system. Nomogram-based prognostic stratification divided patients into three groups: 345-414 (low-risk group), 415-460 (medium-risk group) and 461-513 (high-risk group). As shown in Kaplan-Meier curves, there were significant differences in OS among low-, medium- and high-risk groups (P<0.01). Conclusions Nomogram showed a superior prognostic predictive ability compared with the TNM staging system. The prognostic stratification serves as a valuable tool to assist clinicians on the selection of optimal treatment method and follow-up plan, particularly for the high-risk population.
Collapse
Affiliation(s)
- Kun Ji
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Zhang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Ai
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiejian Zhao
- Department of General Surgery, The Sixth People’s Hospital of Luoyang, Luoyang, China
| | - Hui Tao
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Chen
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Medical Oncology, the Sixth People’s Hospital of Luoyang, Luoyang, China
| |
Collapse
|
40
|
Tang Q, Wang Y, Yan B, Zhang J, Wang T, Fang Y, Ye Z, Zhang N, Zhang N, Wu Z, Fan H, Lyu Y, Liu X, Wu R. Intracellular Magnetic Hyperthermia Sensitizes Sorafenib to Orthotopic Hepatocellular Carcinoma Via Amplified Ferroptosis. ACS NANO 2024; 18:29804-29819. [PMID: 39431335 DOI: 10.1021/acsnano.4c09500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sorafenib (SRF) is recognized as the primary treatment for hepatocellular carcinoma (HCC), yet the emergence of SRF resistance in many HCC patients results in unfavorable outcomes. Enhancing the efficacy of SRF in HCC remains a significant challenge. SRF works in inducing ferroptosis, a form of cell death, in cancer cells through the inhibition of glutathione peroxidase 4 (GPX4). The effectiveness of this process is limited by the low levels of cellular iron and reactive oxygen species (ROS). A promising approach to circumvent this limitation is the use of intracellular magnetic hyperthermia (MH) mediated by magnetic iron oxide nanomaterials (MIONs). When MIONs are subjected to an alternating magnetic field (AMF), they heat up, enhancing the Fenton reaction, which in turn significantly increases the production of ROS within cells. In this study, we explore the capability of MH facilitated by high-performance ferrimagnetic vortex-domain iron oxide nanoring (FVIO) to enhance the effectiveness of SRF treatment in HCC. The increased iron uptake facilitated by FVIO significantly enhances the sensitivity of HCC cells to SRF-induced ferroptosis. Moreover, the nanoheat generated by FVIO in response to an AMF further elevates ROS levels and stimulates lipid hydroperoxide (LPO) production and GPX4 inactivation, thereby intensifying ferroptosis. Both in vitro and in vivo animal studies demonstrate that combining FVIO-mediated MH with SRF significantly reduces cell viability and inhibits tumor growth, primarily through enhanced ferroptosis, with minimal side effects. The effectiveness of this combination therapy is affected by the ferroptosis inhibitor ferrostatin-1 (Fer-1) and the iron chelator deferoxamine (DFO). The combination treatment of FVIO-mediated MH and SRF offers a strategy for HCC treatment by promoting accelerated ferroptosis, presenting a different perspective for the development of ferroptosis-based anticancer therapies.
Collapse
Affiliation(s)
- Qianqian Tang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyun Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Fang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zirui Ye
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Haiming Fan
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
41
|
Yang H, Liu Y, Zhang N, Tao F, Yin G. Therapeutic advances in hepatocellular carcinoma: an update from the 2024 ASCO annual meeting. Front Oncol 2024; 14:1453412. [PMID: 39512765 PMCID: PMC11543349 DOI: 10.3389/fonc.2024.1453412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths worldwide. Recent advances in immunotherapies, targeted therapies, and combination treatments have significantly improved outcomes for many patients with HCC. This review summarizes key findings from the 2024 ASCO Annual Meeting, focusing on emerging therapies, including immune checkpoint inhibitors (ICIs), CAR-T cell therapies, oncolytic viruses, and locoregional treatments like transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC). ICIs, particularly when combined with other agents, have shown promising efficacy, though challenges such as immune-related adverse events and resistance mechanisms remain. CAR-T cell therapies and oncolytic viruses offer novel therapeutic avenues for advanced HCC, but their long-term efficacy in solid tumors is still under investigation. Locoregional therapies, especially in combination with systemic treatments, continue to play a critical role in managing unresectable HCC and improving conversion rates to surgical resection. Additionally, the potential of biomarkers, such as hypoxia scores and CTNNB1 mutations, is being explored to better personalize treatment and predict patient responses. These biomarkers could pave the way for more targeted and effective therapeutic strategies. Overall, the recent studies presented at the ASCO meeting highlight progress in HCC treatment, underscoring the importance of continued innovation. Future research should focus on overcoming resistance mechanisms, optimizing combination therapies, and integrating biomarker-driven approaches to improve patient outcomes and enhance personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Gaozheng Yin
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
42
|
Hussain T, Badshah Y, Shabbir M, Abid F, Kamal GM, Fayyaz A, Trembley JH, Afsar T, Husain FM, Razak S. Pathogenic nsSNPs of protein kinase C-eta with hepatocellular carcinoma susceptibility. Cancer Cell Int 2024; 24:346. [PMID: 39448958 PMCID: PMC11515447 DOI: 10.1186/s12935-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global health concern. Due to late diagnosis and limited therapeutic strategies, HCC based mortality rate is exponentially increasing globally. Genetic predisposition is a non-avoidable intrinsic factor that could alter the genome sequence, ultimately leading to HCC. Protein kinase C eta (PKCη) is involved in key physiological roles, hence alteration in PKCη could aid in cancer progression. Research indicates association between non-synonymous (ns) SNPs and HCC onset. However, effect of nsSNP variants of PKCη on HCC development has not been explored yet. Hence, this study aimed to investigate the association between pathogenic nsSNPs of PKCη with HCC. METHODS Non-synonymous (missense) variants of PKCη were obtained from Ensembl genome browser. These variants were filtered out to obtain pathogenic nsSNPs of PKCη. Genotyping of nsSNPs was done through Tetra ARMS PCR. For that, blood samples of 348 HCC patients and 337 controls were collected. The clinical factors that influence HCC were studied. Relative risk (RR) and Odds Ratio (OR) with 95% confidence interval was calculated by Chi-square test and P-value < 0.05 was deemed significant. RESULTS Five nsSNP variants of PKCη including rs1162102190 (T/C), rs868127012 (G/T), rs750830348 (G/T), rs768619375 (T/C), and rs752329416 (T/C) were identified. The retrieved nsSNPs were frequently identified in HCC patients. However, rs752329416 T/C was significantly prevalent in patients having HCC family history. Moreover, all the variants were found in HCC patients manifesting the stage II than the advance stages of HCC. CONCLUSION This study can be utilized to identify potential genetic markers for early screening of HCC. Moreover, consideration of further clinical factors, and mechanistic approach would enhance the understanding that how alteration in nsSNPs could impact the HCC onset.
Collapse
Affiliation(s)
- Tayyaba Hussain
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Fizzah Abid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Ghulam Murtaza Kamal
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Amna Fayyaz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
43
|
He Y, Xu M, Zhou C, Dong Q, Hu Z, Ren N. The Prognostic Significance of CTSV Expression in Patients with Hepatocellular Carcinoma. Int J Gen Med 2024; 17:4867-4881. [PMID: 39465186 PMCID: PMC11512791 DOI: 10.2147/ijgm.s467179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Cathepsin V (CTSV) is a cysteine protease peptidase, which is typically upregulated in cancer and is associated with various oncogenic processes, such as angiogenesis, proliferation, apoptosis, and invasion. The study explored the role of CTSV in hepatocellular carcinoma (HCC) and its potential as a potential biomarker. Patients and Methods This study collected tumor and peritumoral archived specimens from 180 HCC patients who underwent surgical resection at Zhongshan Hospital, Fudan University (Shanghai, China) between 2009 and 2010. We extracted data from the TCGA and GEO databases and conducted differential expression analysis, univariate Cox regression, and Kaplan-Meier analysis. Ultimately, we determined that CTSV may emerge as a potential biomarker. Then, immunohistochemical staining for CTSV was performed on tumors and adjacent tissues of HCC patients, and a Cox proportional hazards model was constructed to evaluate the prognostic significance of CTSV expression levels. Applied functional enrichment analysis to reveal the underlying molecular mechanisms. Utilized ssGSEA enrichment analysis and TIMER2.0 algorithm to explore the correlation between CTSV expression and immune cells in HCC. In vitro and in vivo experiments were conducted using human liver cancer cell lines to further validate the clinical application value of CTSV. Results In this study, we observed that CTSV expression was notably elevated in HCC (P < 0.001), and identified a significant association between elevated CTSV expression and reduced overall survival rates in patients. In vitro and in vivo experiments indicated that CTSV knockdown could significantly inhibit the proliferation, migration, and invasion of liver cancer cells, and it was found that the combination of CTSV knockdown with PD-1 inhibitors might enhance the therapeutic effect of PD-1 inhibitors in HCC. Conclusion CTSV serves as a standalone negative prognostic indicator and possesses clinical significance in HCC.
Collapse
Affiliation(s)
- Yuping He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People’s Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
| | - Minghao Xu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
| | - Chenhao Zhou
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People’s Republic of China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People’s Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People’s Republic of China
| |
Collapse
|
44
|
Fang H, Shi X, Gao J, Yan Z, Wang Y, Chen Y, Zhang J, Guo W. TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization. Cell Death Discov 2024; 10:438. [PMID: 39414762 PMCID: PMC11484822 DOI: 10.1038/s41420-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
45
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
46
|
Hai L, Bai XY, Luo X, Liu SW, Ma ZM, Ma LN, Ding XC. Prognostic modeling of hepatocellular carcinoma based on T-cell proliferation regulators: a bioinformatics approach. Front Immunol 2024; 15:1444091. [PMID: 39445019 PMCID: PMC11496079 DOI: 10.3389/fimmu.2024.1444091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The prognostic value and immune significance of T-cell proliferation regulators (TCRs) in hepatocellular carcinoma (HCC) have not been previously reported. This study aimed to develop a new prognostic model based on TCRs in patients with HCC. Method This study used The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and International Cancer Genome Consortium-Liver Cancer-Riken, Japan (ICGC-LIRI-JP) datasets along with TCRs. Differentially expressed TCRs (DE-TCRs) were identified by intersecting TCRs and differentially expressed genes between HCC and non-cancerous samples. Prognostic genes were determined using Cox regression analysis and were used to construct a risk model for HCC. Kaplan-Meier survival analysis was performed to assess the difference in survival between high-risk and low-risk groups. Receiver operating characteristic curve was used to assess the validity of risk model, as well as for testing in the ICGC-LIRI-JP dataset. Additionally, independent prognostic factors were identified using multivariate Cox regression analysis and proportional hazards assumption, and they were used to construct a nomogram model. TCGA-LIHC dataset was subjected to tumor microenvironment analysis, drug sensitivity analysis, gene set variation analysis, and immune correlation analysis. The prognostic genes were analyzed using consensus clustering analysis, mutation analysis, copy number variation analysis, gene set enrichment analysis, and molecular prediction analysis. Results Among the 18 DE-TCRs, six genes (DCLRE1B, RAN, HOMER1, ADA, CDK1, and IL1RN) could predict the prognosis of HCC. A risk model that can accurately predict HCC prognosis was established based on these genes. An efficient nomogram model was also developed using clinical traits and risk scores. Immune-related analyses revealed that 39 immune checkpoints exhibited differential expression between the high-risk and low-risk groups. The rate of immunotherapy response was low in patients belonging to the high-risk group. Patients with HCC were further divided into cluster 1 and cluster 2 based on prognostic genes. Mutation analysis revealed that HOMER1 and CDK1 harbored missense mutations. DCLRE1B exhibited an increased copy number, whereas RAN exhibited a decreased copy number. The prognostic genes were significantly enriched in tryptophan metabolism pathways. Conclusions This bioinformatics analysis identified six TCR genes associated with HCC prognosis that can serve as diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Long Hai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiao-Yang Bai
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai-Wei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zi-Min Ma
- Weiluo Microbial Pathogens Monitoring Technology Co., Ltd. of Beijing, Beijing, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Infectious Disease Clinical Research Center of Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Tropical Disease & Infectious Disease, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
47
|
Guo J, Gu H, Yin S, Yang J, Wang Q, Xu W, Wang Y, Zhang S, Liu X, Xian X, Qiu X, Huang J. Hepatocyte-derived Igκ promotes HCC progression by stabilizing electron transfer flavoprotein subunit α to facilitate fatty acid β-oxidation. J Exp Clin Cancer Res 2024; 43:280. [PMID: 39380077 PMCID: PMC11462706 DOI: 10.1186/s13046-024-03203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Lipid metabolism dysregulation is a key characteristic of hepatocellular carcinoma (HCC) onset and progression. Elevated expression of immunoglobulin (Ig), especially the Igκ free light chain with a unique Vκ4-1/Jκ3 rearrangement in cancer cells, is linked to increased malignancy and has been implicated in colon cancer tumorigenesis. However, the role of Igκ in HCC carcinogenesis remains unclear. The aim of this study was to elucidate the pivotal roles of hepatocyte-derived Igκ in HCC development. METHODS The rearrangement sequence and expression level of hepatocyte-derived Igκ in HCC cells were determined via RT-PCR, Sanger sequencing, immunohistochemistry, and western blot analysis. The function of Igκ in HCC tumorigenesis was assessed by silencing Igκ using siRNA or gRNA in various HCC cell lines. To assess the role of Igκ in HCC pathogenesis in vivo, a mouse model with hepatocyte-specific Igκ knockout and diethylnitrosamine (DEN) and carbon tetrachloride (CCL4)-induced HCC was utilized. The molecular mechanism by which Igκ affects HCC tumorigenesis was investigated through multiomics analyses, quantitative real-time PCR, immunoprecipitation, mass spectrometry, immunofluorescence, and metabolite detection. RESULTS We confirmed that Igκ, especially Vκ4-1/Jκ3-Igκ, is highly expressed in human HCC cells. Igκ depletion inhibited HCC cell proliferation and migration in vitro, and hepatocyte-specific Igκ deficiency ameliorated HCC progression in mice with DEN and CCL4-induced HCC in vivo. Mechanistically, Vκ4-1/Jκ3-Igκ interacts with electron transfer flavoprotein subunit α (ETFA), delaying its protein degradation. Loss of Igκ led to a decrease in the expression of mitochondrial respiratory chain complexes III and IV, resulting in aberrant fatty acid β-oxidation (FAO) and lipid accumulation, which in turn inhibited HCC cell proliferation and migration. CONCLUSION Our findings indicate that the Igκ/ETFA axis deregulates fatty acid β-oxidation, contributing to HCC progression, which suggests that targeting fatty acid metabolism may be an effective HCC treatment strategy. The results of this study suggest that hepatocyte-derived Vκ4-1/Jκ3-Igκ may serve as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Huining Gu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Sha Yin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Jiongming Yang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Yifan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Xiaofeng Liu
- Heatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- PUHSC Primary Immunodeficiency Research Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
48
|
Wu L, Lai Q, Li S, Wu S, Li Y, Huang J, Zeng Q, Wei D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:263. [PMID: 39375586 PMCID: PMC11457388 DOI: 10.1186/s12880-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The aim of this study was to conduct a systematic review and meta-analysis to comprehensively evaluate the performance and methodological quality of artificial intelligence (AI) in predicting recurrence after single first-line treatment for liver cancer. METHODS A rigorous and systematic evaluation was conducted on the AI studies related to recurrence after single first-line treatment for liver cancer, retrieved from the PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The area under the curve (AUC), sensitivity (SENC), and specificity (SPEC) of each study were extracted for meta-analysis. RESULTS Six percutaneous ablation (PA) studies, 16 surgical resection (SR) studies, and 5 transarterial chemoembolization (TACE) studies were included in the meta-analysis for predicting recurrence after hepatocellular carcinoma (HCC) treatment, respectively. Four SR studies and 2 PA studies were included in the meta-analysis for recurrence after intrahepatic cholangiocarcinoma (ICC) and colorectal cancer liver metastasis (CRLM) treatment. The pooled SENC, SEPC, and AUC of AI in predicting recurrence after primary HCC treatment via PA, SR, and TACE were 0.78, 0.90, and 0.92; 0.81, 0.77, and 0.86; and 0.73, 0.79, and 0.79, respectively. The values for ICC treated with SR and CRLM treated with PA were 0.85, 0.71, 0.86 and 0.69, 0.63,0.74, respectively. CONCLUSION This systematic review and meta-analysis demonstrates the comprehensive application value of AI in predicting recurrence after a single first-line treatment of liver cancer, with satisfactory results, indicating the clinical translation potential of AI in predicting recurrence after liver cancer treatment.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qingfeng Lai
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Yizhong Li
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Ju Huang
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qiuli Zeng
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.
| |
Collapse
|
49
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
50
|
Tong X, Du J, Jiang Q, Wu Q, Zhao S, Chen S. Lenvatinib acts on platelet‑derived growth factor receptor β to suppress the malignant behaviors of gastric cancer cells. Oncol Lett 2024; 28:483. [PMID: 39170883 PMCID: PMC11338234 DOI: 10.3892/ol.2024.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Given the limited treatment options and high mortality rates associated with gastric cancer, there is a need to explore novel therapeutic options. The present study aimed to investigate the efficacy of lenvatinib, a multi-target tyrosine kinase inhibitor, in mitigating the progress of gastric cancer in vitro. Comprehensive analyses were conducted to assess the impact of lenvatinib on gastric cancer cells, focusing on the inhibition of viability, suppression of proliferation, induction of apoptosis and reduction of metastatic potential. The effects of lenvatinib on these activities were determined using 5-ethynyl-2'-deoxyuridine staining, colony formation assay, flow cytometry, western blotting, scratch assay and Transwell assay. In addition, bioinformatics analyses were employed to identify key regulatory targets of lenvatinib, with particular attention given to platelet-derived growth factor receptor β (PDGFRB). In addition, the effects of PDGFRB overexpression on the regulation of lenvatinib were explored. Lenvatinib demonstrated significant inhibitory effects on the viability, proliferation and metastatic capabilities of MKN45 and HGC27 gastric cancer cell lines. Bioinformatics analyses identified PDGFRB as a crucial target of lenvatinib, with its downregulation showing promise in enhancing overall survival rates of patients with gastric cancer. By contrast, PDGFRB overexpression reversed the effects of lenvatinib on cells. The present findings underscore the potential of lenvatinib as a promising therapeutic option in the treatment of gastric cancer. By elucidating its mechanism of action and identifying PDGFRB as a primary target, the present study may aid further clinical advancements.
Collapse
Affiliation(s)
- Xiaoyi Tong
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Jun Du
- Department of Nursing, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Qiaoling Jiang
- Department of Clinical Laboratory, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Qiaoli Wu
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Shuxia Zhao
- Department of Pharmacy, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Shuhang Chen
- Department of Gastroenterology, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| |
Collapse
|