1
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
2
|
Hu ZY, Ding D, Song Y, Deng YF, Zhang CM, Yu T. Molecular mechanism of pancreatic ductal adenocarcinoma: The heterogeneity of cancer-associated fibroblasts and key signaling pathways. World J Clin Oncol 2025; 16:97007. [PMID: 39995552 PMCID: PMC11686552 DOI: 10.5306/wjco.v16.i2.97007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis, leading to a notably low five-year survival rate. This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers, such as mutations in CDKN2A, KRAS, SMAD4, and TP53, along with the influence of cancer-associated fibroblasts (CAFs) on disease progression. In particular, we focused on the pivotal roles of signaling pathways such as the transforming growth factor-β and Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies. This study provides new scientific perspectives on pancreatic cancer treatment, especially in the development of precision medicine and targeted therapeutic strategies, and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens. Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.
Collapse
Affiliation(s)
- Zhong-Yuan Hu
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ding Ding
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Yu Song
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ya-Feng Deng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Cheng-Ming Zhang
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| | - Tao Yu
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| |
Collapse
|
3
|
Zambrzycki SC, Saberi S, Biggs R, Eskandari N, Delisi D, Taylor H, Mehta AS, Drake RR, Gentile S, Bradshaw AD, Ostrowski M, Angel PM. Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI). Matrix Biol Plus 2024; 24:100161. [PMID: 39435160 PMCID: PMC11492733 DOI: 10.1016/j.mbplus.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
While numerous approaches have been reported towards understanding single cell regulation, there is limited understanding of single cell production of extracellular matrix phenotypes. Collagens are major proteins of the extracellular microenvironment extensively used in basic cell culture, tissue engineering, and biomedical applications. However, identifying compositional regulation of collagen remains challenging. Here, we report the development of In vitro ExtraCellular Matrix Mass Spectrometry Imaging (ivECM-MSI) as a tool to rapidly and simultaneously define collagen subtypes from coatings and basic cell culture applications. The tool uses the mass spectrometry imaging platform with reference libraries to produce visual and numerical data types. The method is highly integrated with basic in vitro strategies as it may be used with conventional cell chambers on minimal numbers of cells and with minimal changes to biological experiments. Applications tested include semi-quantitation of collagen composition in culture coatings, time course collagen deposition, deposition altered by gene knockout, and changes induced by drug treatment. This approach provides new access to proteomic information on how cell types respond to and change the extracellular microenvironment and provides a holistic understanding of both the cell and extracellular response.
Collapse
Affiliation(s)
| | | | - Rachel Biggs
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Najmeh Eskandari
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Davide Delisi
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Amy D. Bradshaw
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Michael Ostrowski
- Hollings Cancer Center, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
4
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
5
|
Vera R, Lamberti MJ, Gonzalez AL, Fernandez-Zapico ME. Epigenetic regulation of the tumor microenvironment: A leading force driving pancreatic cancer. Pancreatology 2024; 24:878-886. [PMID: 39095296 DOI: 10.1016/j.pan.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Dysregulation of the epigenomic landscape of tumor cells has been implicated in the pathogenesis of pancreatic cancer. However, these alterations are not only restricted to neoplastic cells. The behavior of other cell populations in the tumor stroma such as cancer-associated fibroblasts, immune cells, and others are mostly regulated by epigenetic pathways. Here, we present an overview of the main cellular and acellular components of the pancreatic cancer tumor microenvironment and discuss how the epigenetic mechanisms operate at different levels in the stroma to establish a differential gene expression to regulate distinct cellular phenotypes contributing to pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Renzo Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN, 55901, USA.
| | - María Julia Lamberti
- INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, 5800, Argentina
| | - Alina L Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| | | |
Collapse
|
6
|
Liu R, Li J, Liu L, Wang W, Jia J. Tumor-associated macrophages (TAMs): Constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC). CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
7
|
Ling X, Xu W, Tang J, Cao Q, Luo G, Chen X, Yang S, Reinach PS, Yan D. The Role of Ubiquitination and the E3 Ligase Nedd4 in Regulating Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38888282 PMCID: PMC11186577 DOI: 10.1167/iovs.65.6.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Ubiquitination serves as a fundamental post-translational modification in numerous cellular events. Yet, its role in regulating corneal epithelial wound healing (CEWH) remains elusive. This study endeavored to determine the function and mechanism of ubiquitination in CEWH. Methods Western blot and immunoprecipitation were used to discern ubiquitination alterations during CEWH in mice. Interventions, including neuronally expressed developmentally downregulated 4 (Nedd4) siRNA and proteasome/lysosome inhibitor, assessed their impact on CEWH. In vitro analyses, such as the scratch wound assay, MTS assay, and EdU staining, were conducted to gauge cell migration and proliferation in human corneal epithelial cells (HCECs). Moreover, transfection of miR-30/200 coupled with a luciferase activity assay ascertained their regulatory mechanism on Nedd4. Results Global ubiquitination levels were markedly increased during the mouse CEWH. Importantly, the application of either proteasomal or lysosomal inhibitors notably impeded the healing process both in vivo and in vitro. Furthermore, Nedd4 was identified as an essential E3 ligase for CEWH. Nedd4 expression was significantly upregulated during CEWH. In vivo studies revealed that downregulation of Nedd4 substantially delayed CEWH, whereas further investigations underscored its role in regulating cell proliferation and migration, through the Stat3 pathway by targeting phosphatase and tensin homolog (PTEN). Notably, our findings pinpointed miR-30/200 family members as direct regulators of Nedd4. Conclusions Ubiquitination holds pivotal significance in orchestrating CEWH. The critical E3 ligase Nedd4, under the regulatory purview of miR-30 and miR-200, facilitates CEWH through PTEN-mediated Stat3 signaling. This revelation sheds light on a prospective therapeutic target within the realm of CEWH.
Collapse
Affiliation(s)
- Xuemei Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiwei Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiongjie Cao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuai Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter Sol Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W, Wang H. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol 2024; 967:176357. [PMID: 38309677 DOI: 10.1016/j.ejphar.2024.176357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Mengxiao Li
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
9
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
10
|
Chen Y, Huang L, Gan RH, Yuan S, Lan T, Zheng D, Lu YG. IL-8 activates fibroblasts to promote the invasion of HNSCC cells via STAT3-MMP1. Cell Death Discov 2024; 10:65. [PMID: 38320998 PMCID: PMC10847094 DOI: 10.1038/s41420-024-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Matrix metalloproteinase-1 (MMP1) has an aberrant expression relevant to various behaviors of cancers. As dominant components of the tumor stroma, fibroblasts constitute an important source of Matrix metalloproteinase (MMPs) including mainly MMP1. The impacts of MMP1 derived from fibroblasts in tumor microenvironment, however, is not well defined. In this study, we demonstrated a part of crosstalk between fibroblasts and cancer cells that enhanced the invasiveness of cancer cells, IL8-induced activation of STAT3 signaling pathway as a key promoter to elevated MMP1 level in fibroblasts that supports the migration and invasion of head and neck squamous cell carcinoma (HNSCC) cells by extracellular matrix degradation. Importantly, once exposed to the inhibitor of STAT3 phosphorylation (TPCA-1), the enhanced induction of HNSCC cells invasion triggered by fibroblasts was significantly impaired.
Collapse
Affiliation(s)
- Yu Chen
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Li Huang
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Shuo Yuan
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Ting Lan
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Dali Zheng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.
- Fujian Key laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| |
Collapse
|
11
|
Chen J, Zhang L, Zhu Y, Zhao D, Zhang J, Zhu Y, Pang J, Xiao Y, Wu Q, Wang Y, Zhan Q. AKT2 S128/CCTα S315/319/323-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs). Signal Transduct Target Ther 2024; 9:21. [PMID: 38280862 PMCID: PMC10821909 DOI: 10.1038/s41392-023-01728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuheng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanmeng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Hamel Z, Sanchez S, Standing D, Anant S. Role of STAT3 in pancreatic cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:20-34. [PMID: 38464736 PMCID: PMC10918236 DOI: 10.37349/etat.2024.00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 03/12/2024] Open
Abstract
Pancreatic cancer remains a serious and deadly disease, impacting people globally. There remain prominent gaps in the current understanding of the disease, specifically regarding the role of the signal transducer and activator of transcription (STAT) family of proteins in pancreatic tumors. STAT proteins, particularly STAT3, play important roles in pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), which is the most prevalent histotype. The role of STAT3 across a continuum of molecular processes, such as PDAC tumorigenesis and progression, immune escape, drug resistance and stemness, and modulation of the tumor microenvironment (TME), are only a tip of the iceberg. In some ways, the role of STAT3 in PDAC may hold greater importance than that of oncogenic Kirsten rat sarcoma virus (KRAS). This makes STAT3 a highly attractive target for developing targeted therapies for the treatment of pancreatic cancer. In this review, the current knowledge of STAT3 in pancreatic cancer has been summarized, particularly relating to STAT3 activation in cancer cells, cells of the TME, and the state of targeting STAT3 in pre-clinical and clinical trials of PDAC.
Collapse
Affiliation(s)
- Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sierra Sanchez
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Wang M, Wang W, You S, Hou Z, Ji M, Xue N, Du T, Chen X, Jin J. ACAT1 deficiency in myeloid cells promotes glioblastoma progression by enhancing the accumulation of myeloid-derived suppressor cells. Acta Pharm Sin B 2023; 13:4733-4747. [PMID: 38045043 PMCID: PMC10692383 DOI: 10.1016/j.apsb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment (TME). In this environment, myeloid cells, such as myeloid-derived suppressor cells (MDSCs), play a pivotal role in suppressing antitumor immunity. Lipometabolism is closely related to the function of myeloid cells. Here, our study reports that acetyl-CoA acetyltransferase 1 (ACAT1), the key enzyme of fatty acid oxidation (FAO) and ketogenesis, is significantly downregulated in the MDSCs infiltrated in GBM patients. To investigate the effects of ACAT1 on myeloid cells, we generated mice with myeloid-specific (LyzM-cre) depletion of ACAT1. The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically. The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1 (CXCL1) of macrophages (Mφ). Overall, our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenyan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
16
|
Fernández Moro C, Geyer N, Harrizi S, Hamidi Y, Söderqvist S, Kuznyecov D, Tidholm Qvist E, Salmonson Schaad M, Hermann L, Lindberg A, Heuchel RL, Martín-Bernabé A, Dhanjal S, Navis AC, Villard C, Del Valle AC, Bozóky L, Sparrelid E, Dirix L, Strell C, Östman A, Schmierer B, Vermeulen PB, Engstrand J, Bozóky B, Gerling M. An idiosyncratic zonated stroma encapsulates desmoplastic liver metastases and originates from injured liver. Nat Commun 2023; 14:5024. [PMID: 37596278 PMCID: PMC10439160 DOI: 10.1038/s41467-023-40688-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
A perimetastatic capsule is a strong positive prognostic factor in liver metastases, but its origin remains unclear. Here, we systematically quantify the capsule's extent and cellular composition in 263 patients with colorectal cancer liver metastases to investigate its clinical significance and origin. We show that survival improves proportionally with increasing encapsulation and decreasing tumor-hepatocyte contact. Immunostaining reveals the gradual zonation of the capsule, transitioning from benign-like NGFRhigh stroma at the liver edge to FAPhigh stroma towards the tumor. Encapsulation correlates with decreased tumor viability and preoperative chemotherapy. In mice, chemotherapy and tumor cell ablation induce capsule formation. Our results suggest that encapsulation develops where tumor invasion into the liver plates stalls, representing a reparative process rather than tumor-induced desmoplasia. We propose a model of metastases growth, where the efficient tumor colonization of the liver parenchyma and a reparative liver injury reaction are opposing determinants of metastasis aggressiveness.
Collapse
Affiliation(s)
- Carlos Fernández Moro
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, 14186, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Natalie Geyer
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Sara Harrizi
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Yousra Hamidi
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Sara Söderqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Danyil Kuznyecov
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Medicinsk Service, Skåne University Hospital, 22185, Lund, Sweden
| | - Evelina Tidholm Qvist
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, 14186, Sweden
| | | | - Laura Hermann
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Rainer L Heuchel
- Pancreatic Cancer Research Laboratory, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14183, Hudinge, Sweden
| | | | - Soniya Dhanjal
- CRISPR Functional Genomics, SciLifeLab and Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Sweden
| | - Anna C Navis
- CRISPR Functional Genomics, SciLifeLab and Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Sweden
| | - Christina Villard
- Department of Medicine Huddinge, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Andrea C Del Valle
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Lorand Bozóky
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Ernesto Sparrelid
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, 14152, Stockholm, Sweden
| | - Luc Dirix
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, 17176, Solna, Sweden
| | - Bernhard Schmierer
- CRISPR Functional Genomics, SciLifeLab and Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Sweden
| | - Peter B Vermeulen
- Translational Cancer Research Unit (GZA Hospitals and University of Antwerp), Antwerp, Belgium
| | - Jennie Engstrand
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, 14152, Stockholm, Sweden
| | - Béla Bozóky
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, 14186, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden.
- Theme Cancer, Karolinska University Hospital, 17 176, Solna, Sweden.
| |
Collapse
|
17
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Sun G, Yang Z, Fang K, Xiong Y, Tu S, Yi S, Xiao W. Distribution characteristics and clinical significance of infiltrating T cells in the tumor microenvironment of pancreatic cancer. Oncol Lett 2023; 25:261. [PMID: 37205920 PMCID: PMC10189847 DOI: 10.3892/ol.2023.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are important components of the tumor microenvironment (TME). However, the distribution characteristics of TILs and their significance in pancreatic cancer (PC) remain largely unexplored. The levels of TILs, including the total number of T cells, cluster of differentiation (CD)4+ T cells, CD8+ cytotoxic T lymphocytes (CTLs), regulatory T-cells (Tregs), programmed cell death protein 1+ T cells and programmed cell death ligand 1 (PD-L1)+ T cells, in the TME of patients with PC were detected using multiple fluorescence immunohistochemistry. The associations between the number of TILs and the clinicopathological characteristics were investigated using χ2 tests. In addition, Kaplan-Meier survival and Cox regression analyses were used to assess the prognostic value of these TIL types. Compared with paracancerous tissues, in PC tissues, the proportions of total T cells, CD4+ T cells and CD8+ CTLs were markedly decreased, while those of Tregs and PD-L1+ T cells were significantly increased. The levels of CD4+ T cell and CD8+ CTL infiltrates were inversely associated with tumor differentiation. Higher infiltrates of Tregs and PD-L1+ T cells were closely associated with advanced N and TNM stages. It is important to note that the infiltrates of total T cells, CD4+ T cells, Tregs and PD-L1+ T cells in the TME were independent risk factors for the prognosis of PC. PC was characterized by an immunosuppressive TME with a decrease in the number of CD4+ T cells and CD8+ CTLs, and an increase in the number of Tregs and PD-L1+ T cells. Overall, the number of total T cells, CD4+ T cells, Tregs and PD-L1+ T cells in the TME was a potential predictive marker for the prognosis of PC.
Collapse
Affiliation(s)
- Gen Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengjiang Yang
- Department of General Surgery, The Affiliated Hospital of Jiujiang College, Jiujiang, Jiangxi 332001, P.R. China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Dr Weidong Xiao, Department of General Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizhengjie, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
20
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
21
|
Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers (Basel) 2023; 15:cancers15061899. [PMID: 36980785 PMCID: PMC10047485 DOI: 10.3390/cancers15061899] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer cells rely on the tumor microenvironment (TME), a composite of non-malignant cells, and extracellular matrix (ECM), for survival, growth, and metastasis. The ECM contributes to the biomechanical properties of the surrounding tissue, in addition to providing signals for tissue development. Cancer-associated fibroblasts (CAFs) are stromal cells in the TME that are integral to cancer progression. Subtypes of CAFs across a variety of cancers have been revealed, and each play a different role in cancer progression or suppression. CAFs secrete signaling molecules and remodel the surrounding ECM by depositing its constituents as well as degrading enzymes. In cancer, a remodeled ECM can lead to tumor-promoting effects. Not only does the remodeled ECM promote growth and allow for easier metastasis, but it can also modulate the immune system. A better understanding of how CAFs remodel the ECM will likely yield novel therapeutic targets. In this review, we summarize the key factors secreted by CAFs that facilitate tumor progression, ECM remodeling, and immune suppression.
Collapse
Affiliation(s)
- Kellen Wright
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthew Kriet
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
22
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
23
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|