1
|
Krzysztofik M, Brzewski P, Kulbat A, Masajada M, Richter K, Wysocki WM. The IL-23/Th17 pathway inhibitors in the treatment of psoriasis and the risk of skin malignancies: a review. Postepy Dermatol Alergol 2024; 41:552-559. [PMID: 39877117 PMCID: PMC11770571 DOI: 10.5114/ada.2024.143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 01/31/2025] Open
Abstract
Psoriasis and psoriatic arthritis are chronic inflammatory conditions that constitute a significant global health burden due to their prevalence and impact on quality of life. A deeper comprehension of psoriasis and psoriatic arthritis pathogenesis has recently led to the emergence of novel classes of biologics targeting the IL-23/Th17 pathway. The specific role of interleukin-12, -23, and -17 in cancer as either promoters or inhibitors is under investigation in various studies. Here, we explore the potential role of interleukin-12, -23, and -17 in the development of skin tumours as well as the safety of using their inhibitors in the treatment of psoriasis and psoriatic arthritis, particularly in relation to the risk of melanoma and non-melanoma skin cancer (NMSC) development.
Collapse
Affiliation(s)
- Marta Krzysztofik
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
| | - Paweł Brzewski
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Aleksandra Kulbat
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| | - Magdalena Masajada
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Karolina Richter
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wojciech M. Wysocki
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| |
Collapse
|
2
|
Ungureanu L, Vasilovici AF, Halmágyi SR, Trufin II, Apostu AP, Prisecaru M, Șenilă SC. Immunotherapy in Basal Cell Carcinoma. J Clin Med 2024; 13:5730. [PMID: 39407789 PMCID: PMC11476842 DOI: 10.3390/jcm13195730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most frequent of all cancers, with an increasing incidence. The first line therapy is surgical excision, but topical therapies can be used in low-risk superficial BCCs, while the more advanced, unresectable, or metastatic BCCs benefit from systemic therapies with hedgehog inhibitors and immunotherapy. The purpose of this review is to highlight local and systemic immunotherapies and their efficacy in the management of BCCs. Local therapies can be considered in superficial and low-risk nodular BCCs, with imiquimod frequently used for its antitumor and immunoregulatory properties. Imiquimod alone demonstrated higher histological clearance rates, but patients treated with imiquimod experienced more adverse events than ones treated with other therapies. Imiquimod can be used as an adjuvant before Mohs micrographic surgery and can also be combined with other local therapies, like curettage, electrodesiccation, cryosurgery, and photodynamic therapy, with some treatment methods yielding results comparable with the surgery. Interferons and Interleukin-2 were evaluated in a small number of studies with different results. Systemic immunotherapies with programmed death-ligand 1 (PD-L1) inhibitors showed inconsistent results in patients with advanced BCCs, being effective in some patients that progressed on or were intolerant to hedgehog pathway inhibitors (HHI).
Collapse
Affiliation(s)
- Loredana Ungureanu
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| | - Alina Florentina Vasilovici
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| | - Salomea-Ruth Halmágyi
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | | | - Adina Patricia Apostu
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | - Manuela Prisecaru
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | - Simona Corina Șenilă
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Cunha D, Neves M, Silva D, Silvestre AR, Nunes PB, Arrobas F, Ribot JC, Ferreira F, Moita LF, Soares-de-Almeida L, Silva JM, Filipe P, Ferreira J. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment-A Cross-Sectional Study. Cells 2024; 13:964. [PMID: 38891095 PMCID: PMC11172364 DOI: 10.3390/cells13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.
Collapse
Affiliation(s)
- Daniela Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Dermatology Unit, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Marco Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Daniela Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Ana Rita Silvestre
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
| | - Paula Borralho Nunes
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
- Instituto de Anatomia Patológica, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Fernando Arrobas
- Datamedica, Biostatistics Services and Consulting, 2610-008 Amadora, Portugal
| | - Julie C. Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Fernando Ferreira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Luís Soares-de-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Maia Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Paulo Filipe
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
5
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Han L, Huang X, Zhao B, Zhu H, Wang R, Liu S, Lin H, Feng F, Ma X, Liu F, Xue J, Liu W. TGF-β1 mediates tumor immunosuppression aggravating at the late stage post-high-light-dose photodynamic therapy. Cancer Immunol Immunother 2023; 72:3079-3095. [PMID: 37351605 PMCID: PMC10992786 DOI: 10.1007/s00262-023-03479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Photodynamic therapy (PDT) is an emerging clinical treatment that is expected to become an important adjuvant strategy for the immunotherapeutic cancer treatment. Recently, numerous works have reported combination strategies. However, clinical data showed that the anti-tumor immune response of PDT was not lasting though existing. The immune activation effect will eventually turn to immunosuppressive effect and get aggravated at the late stage post-PDT. So far, the mechanism is still unclear, which limits the design of specific correction strategies and further development of PDT. Several lines of evidence suggest a role for TGF-β1 in the immunosuppression associated with PDT. Herein, this study systematically illustrated the dynamic changes of immune states post-PDT within the tumor microenvironment. The results clearly demonstrated that high-light-dose PDT, as a therapeutic dose, induced early immune activation followed by late immunosuppression, which was mediated by the activated TGF-β1 upregulation. Then, the mechanism of PDT-induced TGF-β1 accumulation and immunosuppression was elucidated, including the ROS/TGF-β1/MMP-9 positive feedback loop and CD44-mediated local amplification, which was further confirmed by spatial transcriptomics, as well as by the extensive immune inhibitory effect of local high concentration of TGF-β1. Finally, a TGF-β blockade treatment strategy was presented as a promising combinational strategy to reverse high-light-dose PDT-associated immunosuppression. The results of this study provide new insights for the biology mechanism and smart improvement approaches to enhance tumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Bin Zhao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Hongtan Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruyi Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Shaoxia Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Honglei Lin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Ma
- Gansu Institute for Drug Control, Gansu, 730000, China
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou, 310018, China.
| |
Collapse
|
7
|
Zilberg C, Lyons JG, Gupta R, Damian DL. The Immune Microenvironment in Basal Cell Carcinoma. Ann Dermatol 2023; 35:243-255. [PMID: 37550225 PMCID: PMC10407341 DOI: 10.5021/ad.22.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 08/01/2022] [Indexed: 08/09/2023] Open
Abstract
The immune system plays a key role in the suppression and progression of basal cell carcinoma (BCC). The primary aetiological factor for BCC development is exposure to ultraviolet radiation (UVR) which, particularly in lighter Fitzpatrick skin types, leads to the accumulation of DNA damage. UVR has roles in the generation of an immunosuppressive environment, facilitating cancer progression. Rates of BCC are elevated in immunosuppressed patients, and BCC may undergo spontaneous immune-mediated regression. Histologic and immunohistochemical profiling of BCCs consistently demonstrates the presence of an immune infiltrate and associated immune proteins. Early studies of immune checkpoint inhibitors reveal promising results in BCC. Therefore, the host immune system and tumor responses to it are important in BCC pathogenesis. Understanding these interactions will be beneficial for disease prognostication and therapeutic decisions.
Collapse
Affiliation(s)
- Catherine Zilberg
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia.
| | - James Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Diona Lee Damian
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia
- Melanoma Institute Australia, Sydney, Australia
| |
Collapse
|
8
|
Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023; 12:2226535. [PMID: 37346450 PMCID: PMC10281486 DOI: 10.1080/2162402x.2023.2226535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical treatment used to target solid tumors, where the administration of a photosensitizing agent and light generate reactive oxygen species (ROS), thus resulting in strong oxidative stress that selectively damages the illuminated tissues. Several preclinical studies have demonstrated that PDT can prime the immune system to recognize and attack cancer cells throughout the body. However, there is still limited evidence of PDT-mediated anti-tumor immunity in clinical settings. In the last decade, several clinical trials on PDT for cancer treatment have been initiated, indicating that significant efforts are being made to improve current PDT protocols. However, most of these studies disregarded the immunological dimension of PDT. The immunomodulatory properties of PDT can be combined with standard therapy and/or emerging immunotherapies, such as immune checkpoint blockers (ICBs), to achieve better disease control. Combining PDT with immunotherapy has shown synergistic effects in some preclinical models. However, the value of this combination in patients is still unknown, as the first clinical trials evaluating the combination of PDT with ICBs are just being initiated. Overall, this Trial Watch provides a summary of recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. It also discusses the future perspectives of PDT for oncological indications.
Collapse
Affiliation(s)
- Mafalda Penetra
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | - Luís G. Arnaut
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
9
|
Nyholm N, Schnack H, Danø A, Skowron F. Cost per responder of biologic drugs used in the treatment of moderate-to-severe plaque psoriasis in France and Germany. Curr Med Res Opin 2023; 39:833-842. [PMID: 37203343 DOI: 10.1080/03007995.2023.2214046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The treatment of moderate-to-severe plaque psoriasis has seen significant improvements in recent years with the advent of biologic drugs. The aim of this study was to assess the cost-effectiveness of anti-IL17 drugs and other biologic therapies used to treat moderate-to-severe plaque psoriasis in France and Germany over a one-year time horizon. METHODS We developed a cost per responder model for biologic drugs used in psoriasis treatment. The model included anti-IL17s (brodalumab, secukinumab, ixekizumab and bimekizumab), anti-TNFs (adalimumab, etanercept, certolizumab and infliximab), an anti-IL12/23 (ustekinumab), and anti-IL23s (risankizumab, guselkumab and tildrakizumab). Efficacy estimates were collected through a systematic literature review of network meta-analyses on long-term Psoriasis Area and Severity Index (PASI) measures. Dose recommendations and country-specific prices were used to calculate drug costs. Biosimilar drug prices were used when available as a substitute for the originator drugs. RESULTS After one year, brodalumab had the lowest cost per PASI100-responder in both France (€20,220) and Germany (€26,807) across all available biologic treatments. Among the anti-IL17s, brodalumab had a 23% lower cost per PASI100-responder vs. the nearest comparator in France (bimekizumab, €26,369), and 30% lower vs. nearest comparator in Germany (ixekizumab, €38,027). Brodalumab also had the lowest cost per PASI75- and PASI90-responder among the anti-IL17s in both France and Germany after one year. Adalimumab had the lowest cost per PASI100-responder among the anti-TNFs in both France (€23,418) and Germany (€38,264). Among the anti-IL-23s, risankizumab had the lowest cost per PASI100-responder in both France (€20,969) and Germany (€26,994). CONCLUSION Driven by its lower costs and high response rates, brodalumab was the most cost-effective treatment option for moderate-to-severe plaque psoriasis over a one-year time-horizon within the anti-IL17 class and when compared to all other biologics in France and Germany.
Collapse
|
10
|
Neuner RA, Lee J, Rieger KE, Park C, Colevas AD, Chang ALS. Immunotherapy for keratinocyte cancers. Part I: Immune-related epidemiology, risk factors, pathogenesis, and immunotherapy management of keratinocyte cancers. J Am Acad Dermatol 2023; 88:1225-1240. [PMID: 37268390 DOI: 10.1016/j.jaad.2022.06.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/04/2023]
Abstract
The important role of the immune system in the surveillance and control of keratinocyte cancers (KCs), namely squamous and basal cell carcinomas, is increasingly appreciated, as new immunotherapies have recently become available. As the field of immunotherapy is rapidly evolving, this review synthesizes key concepts and highlights important cellular components within the immune system responsible for attacking KCs. We review the most current data on the epidemiology, risk factors, and immunotherapy management for KCs. Patients will seek advice from dermatologists to help explain why immunotherapies work for KCs and whether they might be appropriate for different clinical scenarios. Collaboration with medical colleagues across different disciplines to evaluate KCs for response to immunotherapy and early recognition of immune-related adverse events will help to optimize patient outcomes.
Collapse
Affiliation(s)
- Romy A Neuner
- Department of Internal Medicine, Spital Uster, Zurich, Switzerland
| | - Jinwoo Lee
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California
| | - Kerri E Rieger
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California
| | - Caroline Park
- Department of Geriatric Medicine, Geriatric Research Education and Clinical Center (GRECC), Veterans Administration, Palo Alto Healthcare System, Stanford University School of Medicine, Palo Alto, California
| | - Alexander D Colevas
- Department of Medicine-Oncology, Stanford University School of Medicine, Stanford, California
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California.
| |
Collapse
|
11
|
Chiang E, Stafford H, Buell J, Ramesh U, Amit M, Nagarajan P, Migden M, Yaniv D. Review of the Tumor Microenvironment in Basal and Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2453. [PMID: 37173918 PMCID: PMC10177565 DOI: 10.3390/cancers15092453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
It is widely known that tumor cells of basal and squamous cell carcinoma interact with the cellular and acellular components of the tumor microenvironment to promote tumor growth and progression. While this environment differs for basal and squamous cell carcinoma, the cellular players within both create an immunosuppressed environment by downregulating effector CD4+ and CD8+ T cells and promoting the release of pro-oncogenic Th2 cytokines. Understanding the crosstalk that occurs within the tumor microenvironment has led to the development of immunotherapeutic agents, including vismodegib and cemiplimab to treat BCC and SCC, respectively. However, further investigation of the TME will provide the opportunity to discover novel treatment options.
Collapse
Affiliation(s)
- Elizabeth Chiang
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haleigh Stafford
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jane Buell
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uma Ramesh
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moran Amit
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Migden
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Yaniv
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
12
|
Muñoz-Mata LS, López-Cárdenas MT, Espinosa-Montesinos A, Sosa-Delgado SM, Rosales-García VH, Moreno-Lafont MC, Ramón-Gallegos E. Photodynamic therapy stimulates IL-6 and IL-8 in responding patients with HPV infection associated or not with LSIL. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Kavasi RM, Neagu M, Constantin C, Munteanu A, Surcel M, Tsatsakis A, Tzanakakis GN, Nikitovic D. Matrix Effectors in the Pathogenesis of Keratinocyte-Derived Carcinomas. Front Med (Lausanne) 2022; 9:879500. [PMID: 35572966 PMCID: PMC9100789 DOI: 10.3389/fmed.2022.879500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), referred to as keratinocyte carcinomas, are skin cancer with the highest incidence. BCCs, rarely metastasize; whereas, though generally not characterized by high lethality, approximately 2–4% of primary cSCCs metastasize with patients exhibiting poor prognosis. The extracellular matrix (ECM) serves as a scaffold that provides structural and biological support to cells in all human tissues. The main components of the ECM, including fibrillar proteins, proteoglycans (PGs), glycosaminoglycans (GAGs), and adhesion proteins such as fibronectin, are secreted by the cells in a tissue-specific manner, critical for the proper function of each organ. The skin compartmentalization to the epidermis and dermis compartments is based on a basement membrane (BM), a highly specialized network of ECM proteins that separate and unify the two compartments. The stiffness and assembly of BM and tensile forces affect tumor progenitors' invasion at the stratified epithelium's stromal border. Likewise, the mechanical properties of the stroma, e.g., stiffness, are directly correlated to the pathogenesis of the keratinocyte carcinomas. Since the ECM is a pool for various growth factors, cytokines, and chemokines, its' intense remodeling in the aberrant cancer tissue milieu affects biological functions, such as angiogenesis, adhesion, proliferation, or cell motility by regulating specific signaling pathways. This review discusses the structural and functional modulations of the keratinocyte carcinoma microenvironment. Furthermore, we debate how ECM remodeling affects the pathogenesis of these skin cancers.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Adriana Munteanu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Aristidis Tsatsakis
- Forensic Science Department, Medical School, University of Crete, Heraklion, Greece
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
- *Correspondence: Dragana Nikitovic
| |
Collapse
|
14
|
Khashaba SAEL, Elgarf AM, Hamed DE, Elkashishy KA, Said NM. Clinicopathological evaluation of intralesional methotrexate in different subtypes of basal cell carcinoma. Dermatol Ther 2022; 35:e15315. [PMID: 35023272 DOI: 10.1111/dth.15315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. While slowly growing, it can cause major skin disfigurement. Therefore, novel cosmetically acceptable treatment options, other than surgery require investigation. to evaluate efficacy and safety of intralesional methotrexate (MTX) as a convenient modality for BCC treatment clinically and pathologicaly. A total of 20 patients with BCC of any clinical variant underwent intralesional MTX injection at a maximum 1 mL of 25 mg/mL MTX per session. Histopathological assessments were performed before and 1 month after treatment. 40% of patients showed >50% clinical improvement after 1-4 sessions. Intralesional MTX is a suitable and safe treatment modality for BCC and may be used as an adjuvant to surgery.
Collapse
Affiliation(s)
| | | | - Dina Esmat Hamed
- Venereology and Andrology, Faculty of Medicine, Zagazig University
| | | | | |
Collapse
|
15
|
Papayan G, Akopov A. Photodynamic Theranostics of Central Lung Cancer: Capabilities of Early Diagnosis and Minimally Invasive Therapy (Review). Sovrem Tekhnologii Med 2021; 13:78-86. [PMID: 35265362 PMCID: PMC8858399 DOI: 10.17691/stm2021.13.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to assess the prospects for central lung cancer (CLC) screening using fluorescent diagnostics and its treatment by endobronchial photodynamic therapy (PDT). Bronchoscopic fluorescent diagnostics using chlorin e6 photosensitizers and a developed instrumental system enable to reveal tumor changes in large bronchi mucosa at early stages, and a developed PDT technique performed under fluorescent control helps achieve personalized treatment. Such an approach is considered as a theranostic technique - photodynamic theranostics. central lung cancer screening requires a fluorescent dye characterized by availability and can be used directly within the examination. Indocyanine green can be used as a dye, its peculiarity is the necessity to excite and record fluorescence in the near-infrared (NIR) wavelength band. First experiments using NIR bands to diagnose a bronchoscopic system showed the detectability of tumor areas using on-site bronchoscopic photodynamic theranostics, which consists in NIR imaging of tumor foci when a standard dose of indocyanine green is administered during the examination. Conclusion Further progress of early diagnostics and minimally invasive CLC therapy will be determined by the development of new photosensitizers, which should be characterized by a high absorption band in NIR area, quick accumulation in a tumor, high yield of single oxygen in NIR illumination, bright fluorescence, high potential in terms of the induction of an anti-tumor immune response.
Collapse
Affiliation(s)
- G.V. Papayan
- Senior Researcher, Laser Medicine Center; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia; Senior Researcher, Research Department of Myocardial Microcirculation and Metabolism; Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - A.L. Akopov
- Professor, Head of Thoracic Surgery Department, Research Institute for Surgery and Emergency Medicine; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia
| |
Collapse
|
16
|
Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSDM, Dórea RSDM, Dantas ACS, Morbeck LLB, Lima IS, de Almeida AA, Dias MRDJ, de Melo FF. Relationship between Th17 immune response and cancer. World J Clin Oncol 2021; 12:845-867. [PMID: 34733609 PMCID: PMC8546660 DOI: 10.5306/wjco.v12.i10.845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and epidemiological projections predict growing cancer mortality rates in the next decades. Cancer has a close relationship with the immune system and, although Th17 cells are known to play roles in the immune response against microorganisms and in autoimmunity, studies have emphasized their roles in cancer pathogenesis. The Th17 immune response profile is involved in several types of cancer including urogenital, respiratory, gastrointestinal, and skin cancers. This type of immune response exerts pro and antitumor functions through several mechanisms, depending on the context of each tumor, including the protumor angiogenesis and exhaustion of T cells and the antitumor recruitment of T cells and neutrophils to the tumor microenvironment. Among other factors, the paradoxical behavior of Th17 cells in this setting has been attributed to its plasticity potential, which makes possible their conversion into other types of T cells such as Th17/Treg and Th17/Th1 cells. Interleukin (IL)-17 stands out among Th17-related cytokines since it modulates pathways and interacts with other cell profiles in the tumor microenvironment, which allow Th17 cells to prevail in tumors. Moreover, the IL-17 is able to mediate pro and antitumor processes that influence the development and progression of various cancers, being associated with variable clinical outcomes. The understanding of the relationship between the Th17 immune response and cancer as well as the singularities of carcinogenic processes in each type of tumor is crucial for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Júlio César Braga de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Thiago Macêdo Lopes Correia
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Nayara Silva de Macêdo Neres
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Anna Carolina Saúde Dantas
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Lôbo Brito Morbeck
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Iasmin Souza Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Amanda Alves de Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maiara Raulina de Jesus Dias
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
17
|
Patient-Derived Human Basal and Cutaneous Squamous Cell Carcinoma Tissues Display Apoptosis and Immunomodulation following Gas Plasma Exposure with a Certified Argon Jet. Int J Mol Sci 2021; 22:ijms222111446. [PMID: 34768877 PMCID: PMC8584092 DOI: 10.3390/ijms222111446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) have been subject of increasing interest in the pathophysiology and therapy of cancers in recent years. In skin cancer, ROS are involved in UV-induced tumorigenesis and its targeted treatment via, e.g., photodynamic therapy. Another recent technology for topical ROS generation is cold physical plasma, a partially ionized gas expelling dozens of reactive species onto its treatment target. Gas plasma technology is accredited for its wound-healing abilities in Europe, and current clinical evidence suggests that it may have beneficial effects against actinic keratosis. Since the concept of hormesis dictates that low ROS levels perform signaling functions, while high ROS levels cause damage, we investigated herein the antitumor activity of gas plasma in non-melanoma skin cancer. In vitro, gas plasma exposure diminished the metabolic activity, preferentially in squamous cell carcinoma cell (SCC) lines compared to non-malignant HaCaT cells. In patient-derived basal cell carcinoma (BCC) and SCC samples treated with gas plasma ex vivo, increased apoptosis was found in both cancer types. Moreover, the immunomodulatory actions of gas plasma treatment were found affecting, e.g., the expression of CD86 and the number of regulatory T-cells. The supernatants of these ex vivo cultured tumors were quantitatively screened for cytokines, chemokines, and growth factors, identifying CCL5 and GM-CSF, molecules associated with skin cancer metastasis, to be markedly decreased. These findings suggest gas plasma treatment to be an interesting future technology for non-melanoma skin cancer topical therapy.
Collapse
|
18
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
19
|
Litvinov IV, Xie P, Gunn S, Sasseville D, Lefrançois P. The transcriptional landscape analysis of basal cell carcinomas reveals novel signalling pathways and actionable targets. Life Sci Alliance 2021; 4:4/7/e202000651. [PMID: 33972406 PMCID: PMC8200290 DOI: 10.26508/lsa.202000651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer and human malignancy. By analyzing BCC RNA sequencing data according to clinically important features, we identified novel differentially regulated genes and new targetable pathways. Several biomarkers were validated in patient-derived BCC samples. Basal cell carcinoma (BCC) is the most common skin cancer and human malignancy. Although most BCCs are easily managed, some are aggressive locally, require Mohs micrographic surgery, or can even metastasize. In the latter, resistance to Sonic Hedgehog inhibitors may occur. Despite their frequent occurrence in clinical practice, their transcriptional landscape remains poorly understood. By analyzing BCC RNA sequencing data according to clinically important features (all BCCs versus normal skin, high-risk versus low-risk BCCs based solely on histopathological subtypes with aggressive features, advanced versus non-advanced BCCs, and vismodegib-resistant versus vismodegib-sensitive tumors), we have identified novel differentially regulated genes and new targetable pathways implicated in BCC tumorigenesis. Pathways as diverse as IL-17, TLR, Akt/PI3K, cadherins, integrins, PDGF, and Wnt/β-catenin are promising therapeutic avenues for local and systemic agents in managing this common malignancy, including through drug re-purposing of existing medications. We experimentally validated several of these targets as biomarkers in our patient-derived cohort of primary BCC tumors.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Pingxing Xie
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Denis Sasseville
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
21
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
22
|
Bernardini N, Skroza N, Tolino E, Mambrin A, Anzalone A, Balduzzi V, Colapietra D, Marchesiello A, Michelini S, Proietti I, Potenza C. IL-17 and its role in inflammatory, autoimmune, and oncological skin diseases: state of art. Int J Dermatol 2020; 59:406-411. [PMID: 31663126 PMCID: PMC7216999 DOI: 10.1111/ijd.14695] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/05/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Abstract
Recent data support the theory of the involvement of IL-17 in the pathogenesis of several chronic inflammatory skin diseases (psoriasis, atopic dermatitis, acne, hidradenitis suppurativa) and autoimmune skin diseases (alopecia areata, vitiligo, bullous diseases). Even if the role of IL-17 in inflammatory and autoimmune diseases has been reported extensively, its role in tumor is still controversial. Some reports show that Th17 cells eradicate tumors, while others reveal that they promote the initiation and early growth of tumors. Herein, we review the role of IL-17 in the involvement of some common dermatologic diseases: psoriasis, atopic dermatitis, hidradenitis suppurativa, acne, vitiligo, melanoma, and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Alessia Anzalone
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Daniela Colapietra
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”Department of Medico‐Surgical Sciences and Bio‐TechnologiesSapienza University of RomeFiorini Hospital, Polo PontinoTeracinaItaly
| |
Collapse
|
23
|
Georgescu SR, Tampa M, Mitran CI, Mitran MI, Caruntu C, Caruntu A, Lupu M, Matei C, Constantin C, Neagu M. Tumour Microenvironment in Skin Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:123-142. [PMID: 32030681 DOI: 10.1007/978-3-030-36214-0_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumour microenvironment is a complex system comprising cells and molecules that will provide the necessary conditions for tumour development and progression. Cells residing in the tumour microenvironment gain specific phenotypes and specific functions that are pro-tumorigenic. Tumour progression is in fact a combination between tumour cell characteristics and its interplay with tumour microenvironment. This dynamic network will allow tumour cells to grow, migrate and invade tissues. In the present chapter, we are highlighting some traits that characterise tumour microenvironment in basal cell carcinoma, squamous cell carcinoma and cutaneous melanoma. In skin cancers, there are some common tumour microenvironment characteristics such as the presence of tumour-associated macrophages and regulatory T lymphocytes that are non-tumour cells promoting tumorigenesis. There are also skin cancer type differences in terms of tumour microenvironment characteristics. Thus, markers such as macrophage migration inhibitory factor in melanoma or the extraordinary diverse genetic make-up in the cancer-associated fibroblasts associated to squamous cell carcinoma are just a few of specific traits in skin cancer types. New technological advances for evaluation of tumour environment are presented. Thus, non-invasive skin imaging techniques such as reflectance confocal microscopy can evaluate skin tumour inflammatory infiltrates for density and cellular populations. Analysing tumour micromedium in depth may offer new insights into cancer therapy and identify new therapy targets.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania
| | - Mircea Tampa
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania.
| | - Cristina Iulia Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Madalina Irina Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Constantin Caruntu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,Department of Dermatology, "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania.
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, Bucharest, Romania.,Faculty of Medicine, Department of Preclinical Sciences, "Titu Maiorescu" University, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, Bucharest, Romania
| | - Clara Matei
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania. .,Colentina Clinical Hospital, Bucharest, Romania. .,Faculty of Biology, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
24
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
25
|
Keramat S, Sadeghian MH, Keramati MR, Fazeli B. Assessment of T helper 17-associated cytokines in thromboangiitis obliterans. J Inflamm Res 2019; 12:251-258. [PMID: 31564950 PMCID: PMC6734553 DOI: 10.2147/jir.s218105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background The management of thromboangiitis obliterans (TAO) remains a medical challenge because of its unknown etiology. It is also not known whether it is a systemic or localized disease or a type of autoimmune vasculitis. Methods In this study, we evaluated the serum level of IL-17 and IL-23 which increase in both systemic inflammation and autoimmunity, in 60 TAO patients and 30 age- and smoking habit-matched controls. Also, IL-22, which has reported high level during infection but not in autoimmunity, was evaluated. Results The serum levels of IL-17, IL-22 and IL-23 were significantly higher in the TAO patients in comparison with the controls (P<0.001). Notably, the serum levels of IL-17, IL-22 and IL-23 were highest in the patients with the chief complaint of chronic ulcer and lowest in the patients with gangrene (P<0.05). Also, the serum level of IL-22 was significantly higher in the anemic patients in comparison with the non-anemic patients (P=0.03). Conclusion Owing to our findings, TAO appears more likely to be a systemic disorder rather than a localized vasculopathy. Therefore, treatment protocols based on systemic treatment of TAO patients may be more helpful than localized treatment, such as bypass surgery and endovascular procedures. Also, according to our findings regarding the high level of IL-22, the trigger of TAO development may be an infectious pathogen. However, additional research is highly recommended to investigate whether TAO is an infectious disease or an infectious-induced autoimmunity. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/KHamw3jfa1Q
Collapse
Affiliation(s)
- Shayan Keramat
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Immunology Department, Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Angiology, L.Sacco Hospital, Vascular Independent Research and Education, European Organization, Milan, Italy
| |
Collapse
|
26
|
Lee EB, Wu JJ. Safety of long-term interleukin-23 inhibition in patients with psoriasis. Br J Dermatol 2019; 180:977-978. [PMID: 31025743 DOI: 10.1111/bjd.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E B Lee
- University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, U.S.A
| | - J J Wu
- Dermatology Research and Education Foundation, Irvine, CA, U.S.A
| |
Collapse
|
27
|
Ventura A, Pellegrini C, Cardelli L, Rocco T, Ciciarelli V, Peris K, Fargnoli MC. Telomeres and Telomerase in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20061333. [PMID: 30884806 PMCID: PMC6470499 DOI: 10.3390/ijms20061333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
The role of telomere biology and telomerase activation in skin cancers has been investigated in melanoma and basal cell carcinoma but limited evidence is available for cutaneous squamous cell carcinoma (cSCC). We will review the current knowledge on the role of telomere and telomerase pathway in cSCC pathogenesis. At the somatic level, both long and short telomere lengths have been described in cSCC. This telomere dichotomy is probably related to two different mechanisms of tumour initiation which determines two tumour subtypes. Telomere shortening is observed during the invasive progression from in situ forms of cSCC, such as Bowen's disease (BD) and actinic keratosis (AK), to invasive cSCC. At the germline level, controversial results have been reported on the association between constitutive telomere length and risk of cSCC. Approximately 75⁻85% of cSCC tumours are characterized by a high level of telomerase activity. Telomerase activation has been also reported in AKs and BD and in sun-damaged skin, thus supporting the hypothesis that UV modulates telomerase activity in the skin. Activating TERT promoter mutations have been identified in 32⁻70% of cSCCs, with the majority showing the UV-signature. No significant correlation was observed between TERT promoter mutations and cSCC clinico-pathological features. However, TERT promoter mutations have been recently suggested to be independent predictors of an adverse outcome. The attention on telomere biology and telomerase activity in cSCC is increasing for the potential implications in the development of effective tools for prognostic assessment and of therapeutic strategies in patients with cutaneous cSCC.
Collapse
Affiliation(s)
- Alessandra Ventura
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cristina Pellegrini
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ludovica Cardelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Tea Rocco
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ketty Peris
- Institute of Dermatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00186 Rome, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
28
|
Wang W, Wang Z, Qin Y, Tang G, Cai G, Liu Y, Zhang J, Zhang P, Shen Q, Shen L, Yu W. Th17, synchronically increased with T regs and B regs , promoted by tumour cells via cell-contact in primary hepatic carcinoma. Clin Exp Immunol 2018; 192:181-192. [PMID: 29271479 DOI: 10.1111/cei.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 01/14/2023] Open
Abstract
Documented reports about T helper type 17 (Th17) cells have revealed that Th17 plays a critical role in inflammation and autoimmunity diseases. However, the role of Th17 in cancer remains contradictory. The interplay between Th17 and tumour cells in the tumour microenvironment of primary hepatic carcinoma (PHC) needs to be explored further and the relationship between Th17, regulatory T cells (Tregs ) and regulatory B cells (Bregs ) has not been defined completely. In this study, numerous experiments were undertaken to elucidate the interaction of Th17 and Treg /Breg cells involved in PHC. Our work demonstrated that an increased Th17 was detected in the peripheral circulation and in tumour tissues in PHC patients. In addition, increases in peripheral blood Th17 corresponded with tumour-node-metastasis (TNM) stage progression. Also, further studies indicated that Th17 cells were promoted by tumour cells in the PHC tumour microenvironment through both contact-dependent and -independent mechanisms, but cell-contact played the major important role in promoting the production and proliferation of Th17. When isolated CD4+ CD25+ CD127low Tregs and CD4+ CD25- CD127+ non-Tregs were cultured with autologous tumour cells, it implied that the phenotype of Th17 and Tregs was modified by tumour cells in the tumour microenvironment. As well as this, Th17 cells were also found to correlate positively with CD4+ forkhead box protein 3+ Tregs and CD19+ CD5+ CD1dhi Bregs in PHC. Notably, Th17 increased synchronically with Tregs and Bregs in PHC. These findings may provide new clues to reveal the mechanisms of immune escape in PHC.
Collapse
Affiliation(s)
- W Wang
- Department of Clinical Laboratory, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wang
- Department of Anesthesia, Eastern Hepatobiliary Hospital, Shanghai, China
| | - Y Qin
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - G Tang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - G Cai
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Y Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - J Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - P Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Q Shen
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - L Shen
- Department of Clinical Laboratory, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Yu
- Department of Anesthesia, Eastern Hepatobiliary Hospital, Shanghai, China
| |
Collapse
|
29
|
Non Melanoma Skin Cancer Pathogenesis Overview. Biomedicines 2018; 6:biomedicines6010006. [PMID: 29301290 PMCID: PMC5874663 DOI: 10.3390/biomedicines6010006] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Non-melanoma skin cancer is the most frequently diagnosed cancer in humans. The process of skin carcinogenesis is still not fully understood. However, several studies have been conducted to better explain the mechanisms that lead to malignancy; (2) Methods: We reviewed the more recent literature about the pathogenesis of non-melanoma skin cancer focusing on basal cell carcinomas, squamous cell carcinoma and actinic keratosis; (3) Results: Several papers reported genetic and molecular alterations leading to non-melanoma skin cancer. Plenty of risk factors are involved in non-melanoma skin cancer pathogenesis, including genetic and molecular alterations, immunosuppression, and ultraviolet radiation; (4) Conclusion: Although skin carcinogenesis is still not fully understood, several papers demonstrated that genetic and molecular alterations are involved in this process. In addition, plenty of non-melanoma skin cancer risk factors are now known, allowing for an effective prevention of non-melanoma skin cancer development. Compared to other papers on the same topic, our review focused on molecular and genetic factors and analyzed in detail several factors involved in non-melanoma skin cancer.
Collapse
|
30
|
Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutiérrez García-Rodrigo C, Fargnoli MC. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18112485. [PMID: 29165358 PMCID: PMC5713451 DOI: 10.3390/ijms18112485] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, PTCH1 and SMO, the TP53 tumor suppressor, and members of the RAS proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV)-induced, and/or copy-loss of heterozygosis in the PTCH1 gene. Recent advances in sequencing technology allowed genome-scale approaches to mutation discovery, identifying new genes and pathways potentially involved in BCC carcinogenesis. Mutational and functional analysis suggested PTPN14 and LATS1, both effectors of the Hippo–YAP pathway, and MYCN as new BCC-associated genes. In addition, emerging reports identified frequent non-coding mutations within the regulatory promoter sequences of the TERT and DPH3-OXNAD1 genes. Thus, it is clear that a more complex genetic network of cancer-associated genes than previously hypothesized is involved in BCC carcinogenesis, with a potential impact on the development of new molecular targeted therapies. This article reviews established knowledge and new hypotheses regarding the molecular genetics of BCC pathogenesis.
Collapse
Affiliation(s)
- Cristina Pellegrini
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Giovanna Maturo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Lucia Di Nardo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Carlota Gutiérrez García-Rodrigo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|