1
|
Conway E, Wu H, Tian L. Overview of Risk Factors for Esophageal Squamous Cell Carcinoma in China. Cancers (Basel) 2023; 15:5604. [PMID: 38067307 PMCID: PMC10705141 DOI: 10.3390/cancers15235604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 05/27/2024] Open
Abstract
(1) Background: China has the highest esophageal squamous cell carcinoma (ESCC) incidence areas in the world, with some areas of incidence over 100 per 100,000. Despite extensive public health efforts, its etiology is still poorly understood. This study aims to review and summarize past research into potential etiologic factors for ESCC in China. (2) Methods: Relevant observational and intervention studies were systematically extracted from four databases using key terms, reviewed using Rayyan software, and summarized into Excel tables. (3) Results: Among the 207 studies included in this review, 129 studies were focused on genetic etiologic factors, followed by 22 studies focused on dietary-related factors, 19 studies focused on HPV-related factors, and 37 studies focused on other factors. (4) Conclusions: ESCC in China involves a variety of factors including genetic variations, gene-environment interactions, dietary factors like alcohol, tobacco use, pickled vegetables, and salted meat, dietary behavior such as hot food/drink consumption, infections like HPV, poor oral health, gastric atrophy, and socioeconomic factors. Public health measures should prioritize genetic screening for relevant polymorphisms, conduct comprehensive investigations into environmental, dietary, and HPV influences, enhance oral health education, and consider socioeconomic factors overall as integral strategies to reduce ESCC in high-risk areas of China.
Collapse
Affiliation(s)
| | | | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Hong Kong SAR, China; (E.C.); (H.W.)
| |
Collapse
|
2
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population. BMC Cancer 2022; 22:1253. [PMID: 36461008 PMCID: PMC9719157 DOI: 10.1186/s12885-022-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) located in microRNA (miRNA) binding sites can affect the interactions between miRNAs and target genes, which is related to cancer susceptibility and tumorigenesis. However, the association between SNPs located in miR-17-92 cluster binding sites and ESCC risk remains unclear. Therefore, we aimed to explore the relationship between polymorphisms in miR-17-92 cluster binding sites and ESCC susceptibility. METHODS Six SNPs in the binding sites of miR-17-92 cluster were selected using bioinformatics databases, and their association with ESCC risk was investigated in a case-control study (including 488 cases and 512 controls) based on the population from high incidence areas of ESCC in China. We evaluated the SNP-SNP and SNP-smoking interactions using generalized multifactor dimensionality reduction (GMDR). Moreover, the expression of the miR-17-92 cluster and its target genes was determined in ESCC and adjacent normal tissues by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was conducted to verify the effect of SNPs on the binding affinity between miRNAs and target genes. RESULTS We found that the SNP rs1804506 C > T had a significant association with the decreased ESCC risk. The SNP rs1804506 T allele was associated with a significantly decreased risk of ESCC in the additive model (OR = 0.817, 95% CI = 0.681-0.981, P = 0.030). The rs1804506 T allele had more striking effects on reducing ESCC risk in older individuals, female or non-smoker subgroups. We also found a significant interaction effect between rs1366600 and smoking by GMDR methods (P = 0.011). Additionally, the expression levels of miR-19a-3p and TGFBR3 were significantly downregulated in ESCC tissues compared with normal tissues, and the carriers of rs1804506 TT genotype had lower expression level of TGFBR3 than those of rs1804506 CC/CT genotype. Following dual-luciferase reporter assay showed that the rs1804506 T allele reduced the binding of miR-19a-3p and TGFBR3 3'-UTR. CONCLUSIONS Our findings suggest that the rs1804506 polymorphism in miR-17-92 cluster binding sites contributes to the susceptibility of ESCC, which might provide new clues and scientific evidence for the etiology and biomarkers for the prevention and treatment of ESCC.
Collapse
|
4
|
Association of PTPRT Mutations with Cancer Metastasis in Multiple Cancer Types. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9386477. [PMID: 35789644 PMCID: PMC9250438 DOI: 10.1155/2022/9386477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the characteristics of advanced cancer and the primary cause of cancer-related deaths from cancer, but the mechanism underlying metastasis is unclear, and there is a lack of metastasis markers. PTPRT is a protein-coding gene involved in both signal transduction and cellular adhesion. It is also known as a tumor suppressor gene that inhibits cell malignant proliferation by inhibiting the STAT3 pathway. Recent studies have reported that PTPRT is involved in the early metastatic seeding of colorectal cancer; however, the correlation between PTPRT and metastasis in other types of cancer has not been revealed. A combined analysis using a dataset from the genomics evidence neoplasia information exchange (GENIE) and cBioPortal revealed that PTPRT mutation is associated with poor prognosis in pan-cancer and non-small-cell lung cancer. The mutations of PTPRT or “gene modules” containing PTPRT are significantly enriched in patients with metastatic cancer in multiple cancers, suggesting that the PTPRT mutations serve as potential biomarkers of cancer metastasis.
Collapse
|
5
|
Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van IJcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ. The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 2022; 36:687-700. [PMID: 34741119 PMCID: PMC8885418 DOI: 10.1038/s41375-021-01461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
Collapse
Affiliation(s)
- Christiaan J Stavast
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Iris van Zuijen
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Elena Karkoulia
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Arman Özçelik
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | | | - Leticia G Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Jane S A Voerman
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Monika Burocziova
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Alex Maas
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Eric M Bindels
- Erasmus MC, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands
| | | | - Christopher Schliehe
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stefan J Erkeland
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Cui D, Cheung ALM. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:609-622. [PMID: 34513596 PMCID: PMC8394161 DOI: 10.5306/wjco.v12.i8.609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Annie LM Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
7
|
Li L, Xu F, Xie P, Yuan L, Zhou M. PTPRT Could Be a Treatment Predictive and Prognostic Biomarker for Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3301402. [PMID: 34414233 PMCID: PMC8370817 DOI: 10.1155/2021/3301402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
The role of PTPRT in breast cancer was not comprehensively explored and well analyzed. Our study comprehensively searched available databases to analyze the clinical role of PTPRT in breast cancer. We found PTPRT was an antioncogene and could be used to distinguish different stages, age groups, molecular types, and grades for breast cancer. PTPRT might be primary resistance biomarkers for taxane, anthracycline, and ixabepilone but not be acquired resistance biomarkers. Higher PTPRT expression levels were associated with longer overall survival and recurrence-free survival. PTPRT was negatively associated with Ki67 and CDK4/6 but positively associated with BCL-2. PTPRT might be associated with cell cycle and microtubule, and tumor infiltration in B cell and macrophage cell. PTPRT could predict chemotherapy effectiveness and prognosis for breast cancer patients. PTPRT might inhibit tumor growth via disrupting the microtubule dynamics and cell cycle in breast cancer.
Collapse
Affiliation(s)
- Lun Li
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Feng Xu
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Pingfang Xie
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Liqin Yuan
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| | - Meirong Zhou
- Department of General Surgery, Xiangya Second Hospital, Central South University, No. 139 Middle People Road, Changsha, Hunan 410011, China
| |
Collapse
|
8
|
Liu X, Dong C, Ma S, Wang Y, Lin T, Li Y, Yang S, Zhang W, Zhang R, Zhao G. Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Deliv 2020; 27:323-333. [PMID: 32090639 PMCID: PMC7054961 DOI: 10.1080/10717544.2020.1716882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although microRNAs (miRNAs)-based cancer therapy strategies have been proved to be efficient and superior to chemotherapeutic agents in certain extent, the unstable properties of miRNAs significantly impaired the wide application. Therefore, how to safely deliver the miRNAs to the targeted site of action is the most pivotal step to achieve the ideal treatment effect. In the present work, the miR-128-3p, which is able of inducing chromosomal instability, was loaded into the nanocomplexes developed by the PEG-PDMAEMA (PDMAEMA-NP). By this way, the miR-128-3p was shielded from exposure to various degrading enzymes in bloodstream. Additionally, the PEGylation endowed the PDMAEMA-NP with long time of circulation as demonstrated in vivo by pharmacokinetics investigation. To target and deliver the miR-128-3p to the site of action, a tumor-homing peptide CPKSNNGVC, which specifically targets the monocarboxylate transporter 1 (MCT1), was decorated on the surface of PDMAEMA-NP. Both in vitro and in vivo experiments demonstrated that more efficient delivery of miR-128-3p to cells or tumor tissues was obtained by the PDMAEMA-NP than plasmid. Additionally, modification of C peptides further enhanced the tumor accumulation of miR-128-3p, and in turn contributed to the stronger tumor growth inhibition effect. Underlying mechanisms study revealed that the miR-128-3p inhibited the growth, migration, and invasion of colorectal cancer (CRC) cells and progress of CRC tissues through silence of the activity of PI3K/AKT and MEK/ERK pathway. By this way, the chemotherapy effect of 5-Fluorouracil (5-Fu) was dramatically improved after co-treating the cells with miR-128-3p formulations.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shihua Yang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wanchuan Zhang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guohua Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
9
|
Pan X, Huang L, Mo D, Liang Y, Huang Z, Zhu B, Fang M. SNP rs2240688 in CD133 gene on susceptibility and clinicopathological features of hepatocellular carcinoma. Transl Cancer Res 2020; 9:5940-5948. [PMID: 35117206 PMCID: PMC8799249 DOI: 10.21037/tcr-19-2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023]
Abstract
Background CD133 is one of the important cancer stem cells (CSCs) markers of hepatocellular carcinoma (HCC). The aim of this study was to explore the relationship between CD133 single-nucleotide polymorphisms (SNPs) and risk factors associated with HCC susceptibility and clinicopathological features in HCC cases and healthy controls from the Guangxi region of southern China. Methods A case control study was conducted, including 565 HCC patients and 561 control subjects. The genotyping of rs2240688 was performed using the SNaPshot method. Unconditional logistic regression was used to correct for gender, age, and other confounding factors. Odds ratio (OR) and its 95% confidence interval (CI) were calculated to analyze the relationship between allele and genotype frequency and the risk of HCC. Results The distribution frequencies of CD133 alleles and genotypes in the HCC case group and the control group were statistically significant (P<0.05). The CA heterozygous (P=0.003, OR =1.463, 95% CI: 1.134–1.887) and CC homozygous genotypes (P=0.036, OR =1.910, 95% CI: 1.044–3.493), as well as C carrier status (P=0.004, OR =1.465, 95% CI: 1.136–1.889) and C alleles (P=0.004, OR =1.465, 95% CI: 1.136–1.889), were associated with an increased risk of HCC. Additionally, in the subgroup analysis of CD133 rs2240688 polymorphism and clinical characteristics, the results showed that the genotype distribution of CD133 rs2240688 was significantly different in genotype distribution of metastasis and alanine aminotransferase (ALT). Conclusions the expression of miRNA binding site rs2240688 of tumor stem cell marker gene CD133 in HCC may be a promising marker for the prediction of HCC, but larger studies are still needed.
Collapse
Affiliation(s)
- Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Lingsha Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of the Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Zhaodong Huang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Bo Zhu
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| |
Collapse
|
10
|
Zhang X, Zhang X, Liu X, Qi P, Wang H, Ma Z, Chai Y. MicroRNA-296, a suppressor non-coding RNA, downregulates SGLT2 expression in lung cancer. Int J Oncol 2018; 54:199-208. [PMID: 30365049 DOI: 10.3892/ijo.2018.4599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/28/2018] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer worldwide and has the highest mortality rate in China. MicroRNAs (miRNAs or miRs) are involved in tumorigenesis and their important role in cancer is becoming increasingly apparent. The expression of miR‑296‑5p in particular has been shown to be significantly downregulated in lung cancer. Sodium-glucose co-transporter-2 [SGLT2, also known as solute carrier family 5 member 2 (SLC5A2)] is an oncogene that promotes tumorigenesis. In this study, we aimed to determine the role of miR‑296‑5p in lung cancer and whether this involves the targeting of SGLT2. For this purpose, we examined miR‑296‑5p and SGLT2 expression in human lung cancer samples and cell lines by RT-qPCR and western blot analysis. In addition, the data analysis website TCGA was used for survival analysis with respect to SGLT2 expression. The effects of miR‑296‑5p were also examined on cell proliferation and cell cycle progression using respective assays. The results demonstrate that miR‑296‑5p is significantly downregulated in NSCLC tissues. Additionally, it is demonstrated that SGLT2 is directly targeted by miR‑296‑5p. Furthermore, our data reveal that the knockdown of SGLT2 using siRNA inhibits cell proliferation and impedes cell cycle progression. Collectively, data suggest that miR‑296‑5p not only inhibits NSCLC by downregulating SGLT2 expression, but also acts as a novel regulator of aberrant lung cancer cells to limit lung cancer progression.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xinju Zhang
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Xiaomin Liu
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Pengfei Qi
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Huimin Wang
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
11
|
Involving the microRNA Targetome in Esophageal-Cancer Development and Behavior. Cancers (Basel) 2018; 10:cancers10100381. [PMID: 30322005 PMCID: PMC6210990 DOI: 10.3390/cancers10100381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common and sixth leading cause of cancer-related mortality in the world. Despite breakthroughs in EC diagnosis and treatment, patients with complete pathologic response after being submitted to chemoradiotherapy are still submitted to surgery, despite its high morbidity. Single-nucleotide polymorphisms (SNPs) in miRNA, miRNA-binding sites, and in its biogenesis pathway genes can alter miRNA expression patterns, thereby influencing cancer risk and prognosis. In this review, we systematized the information available regarding the impact of these miR-SNPs in EC development and prognosis. We found 34 miR-SNPs that were associated with EC risk. Despite the promising applicability of these miR-SNPs as disease biomarkers, they still lack validation in non-Asian populations. Moreover, there should be more pathway-based approaches to evaluate the cumulative effect of multiple unfavorable genotypes and, consequently, identify miR-SNPs signatures capable of predicting EC therapy response and prognosis.
Collapse
|
12
|
Teng MS, Hsu LA, Juan SH, Lin WC, Lee MC, Su CW, Wu S, Ko YL. A GDF15 3' UTR variant, rs1054564, results in allele-specific translational repression of GDF15 by hsa-miR-1233-3p. PLoS One 2017; 12:e0183187. [PMID: 28806401 PMCID: PMC5555568 DOI: 10.1371/journal.pone.0183187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a strong predictor of cardiovascular events and mortality in individuals with or without cardiovascular diseases. Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) target sites, also known as miRSNPs, are known to enhance or weaken miRNA-mRNA interactions and have been linked to diseases such as cardiovascular disease and cancer. In this study, we aimed to elucidate the functional significance of the miRSNP rs1054564 in regulating GDF15 levels. Two rs1054564-containing binding sites for hsa-miR-873-5p and hsa-miR-1233-3p were identified in the 3′ untranslated region (UTR) of the GDF15 transcript using bioinformatics tools. Their activities were further characterized by in vitro reporter assays. Bioinformatics prediction suggested that miRNA binding sites harboring the rs1054564-G allele had lower free energies than those with the C allele and therefore were better targets with higher affinities for both hsa-miR-873-5p and hsa-miR-1233-3p. Reporter assays showed that luciferase activity was significantly decreased by rs1054564-G-containing 3′ UTRs for both miRNAs (P < 0.05) and was restored by miRNA inhibitors. Comparing the fold suppression of the two miRNAs, only that of hsa-miR-1233-3p showed significant changes between the rs1054564-G- and C-containing 3′ UTRs (P = 0.034). In addition, western blots showed that transfection of both miRNA mimics significantly decreased endogenous GDF15 expression in a melanoma cell line (P < 0.05). Taken together, our findings demonstrate that GDF15 is a target of hsa-miR-873-5p and hsa-miR-1233-3p and that the rs1054564-C allele partially abolishes hsa-miR-1233-3p-mediated translational suppression of GDF15. These results suggest that rs1054564 confers allele-specific translational repression of GDF15 via hsa-miR-1233-3p. Our work thus provides biological insight into the previously reported clinical association between rs1054564 and plasma GDF15 levels.
Collapse
Affiliation(s)
- Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Hui Juan
- Graduate Institute of Medical Sciences, Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Lin
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Wen Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
- * E-mail: (SW); (YLK)
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine and Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail: (SW); (YLK)
| |
Collapse
|
13
|
Ji HB, Wang LL, Wang XY, Yin SJ, Shang D, Sun LL, Wang L. Retracted: Single Nucleotide Polymorphisms in the PTPN1 Gene Are Associated with Susceptibility to Esophageal Squamous Cell Carcinoma: A Case–Control Study in Inner Mongolia, China. Genet Test Mol Biomarkers 2017; 21:305-311. [DOI: 10.1089/gtmb.2016.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hong-Bo Ji
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Le-Le Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Xiao-Ying Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Sheng-Jie Yin
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Di Shang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Li-Li Sun
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Lei Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|