1
|
Yap FHX, Amanuel B, Rijhumal H, Martin AM, Allanson B. Molecular and cytogenetic evidence of high-grade B-cell lymphoma with CCND1 rearrangement as a secondary event. Pathology 2024; 56:585-588. [PMID: 38097450 DOI: 10.1016/j.pathol.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 05/13/2024]
Affiliation(s)
- Francis H X Yap
- Department of Anatomical Pathology, PathWest QEII Medical Centre, Nedlands, WA, Australia.
| | - Benhur Amanuel
- Department of Anatomical Pathology, PathWest QEII Medical Centre, Nedlands, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, WA, Australia
| | - Hashika Rijhumal
- Department of Diagnostic Genomics, PathWest QEII Medical Centre, Nedlands, WA, Australia
| | - Annalise M Martin
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia
| | - Ben Allanson
- Department of Anatomical Pathology, PathWest QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
2
|
Wang H, Wan X, Zhang Y, Guo J, Bai O. Advances in the treatment of relapsed/refractory marginal zone lymphoma. Front Oncol 2024; 14:1327309. [PMID: 38333686 PMCID: PMC10850340 DOI: 10.3389/fonc.2024.1327309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Marginal zone lymphoma (MZL) is the second most common subtype of inert B-cell non-Hodgkin's lymphoma, accounting for 5-15% of non-Hodgkin's lymphoma cases. Patients with MZL have a long survival period, with a median survival of >10 years, and patients treated with a combination of anti-CD20 monoclonal antibody can achieve an overall effective rate of 81%. However, 20% of patients with MZL show relapse or experience disease progression within 2 years, with a median survival of only 3-5 years. Currently, the treatment options for patients with relapsed/refractory (R/R) MZL are limited, underscoring the pressing need for novel therapeutic drugs. The advent of novel anti-CD20 monoclonal antibodies, small molecule kinase inhibitors, immunomodulators, and other therapeutic strategies has ushered in a new era in the treatment of R/R MZL. Our objective is to summarize the existing treatment strategies, including immunotherapy and the emergent targeted therapies, and to evaluate their effectiveness and safety in the management of R/R MZL. By doing so, we aim to provide a clear understanding of the therapeutic landscape for R/R MZL, and to guide future research directions toward improving the prognosis and quality of life for patients afflicted with this challenging disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Nagy Á, Bátai B, Kiss L, Gróf S, Király PA, Jóna Á, Demeter J, Sánta H, Bátai Á, Pettendi P, Szendrei T, Plander M, Körösmezey G, Alizadeh H, Kajtár B, Méhes G, Krenács L, Timár B, Csomor J, Tóth E, Schneider T, Mikala G, Matolcsy A, Alpár D, Masszi A, Bödör C. Parallel testing of liquid biopsy (ctDNA) and tissue biopsy samples reveals a higher frequency of EZH2 mutations in follicular lymphoma. J Intern Med 2023; 294:295-313. [PMID: 37259686 DOI: 10.1111/joim.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recent genomic studies revealed enhancer of zeste homolog 2 (EZH2) gain-of-function mutations, representing novel therapeutic targets in follicular lymphoma (FL) in around one quarter of patients. However, these analyses relied on single-site tissue biopsies and did not investigate the spatial heterogeneity and temporal dynamics of these alterations. OBJECTIVES We aimed to perform a systematic analysis of EZH2 mutations using paired tissue (tumor biopsies [TB]) and liquid biopsies (LB) collected prior to treatment within the framework of a nationwide multicentric study. METHODS Pretreatment LB and TB samples were collected from 123 patients. Among these, 114 had paired TB and LB, with 39 patients characterized with paired diagnostic and relapse samples available. The EZH2 mutation status and allele burden were assessed using an in-house-designed, highly sensitive multiplex droplet digital PCR assay. RESULTS EZH2 mutation frequency was found to be 41.5% in the entire cohort. In patients with paired TB and LB samples, EZH2 mutations were identified in 37.8% of the patients with mutations exclusively found in 5.3% and 7.9% of TB and LB samples, respectively. EZH2 mutation status switch was documented in 35.9% of the patients with paired diagnostic and relapse samples. We also found that EZH2 wild-type clones may infiltrate the bone marrow more frequently compared to the EZH2 mutant ones. CONCLUSION The in-depth spatio-temporal analysis identified EZH2 mutations in a considerably higher proportion of patients than previously reported. This expands the subset of FL patients who most likely would benefit from EZH2 inhibitor therapy.
Collapse
Affiliation(s)
- Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Bátai
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Laura Kiss
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Stefánia Gróf
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Attila Király
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Ádám Jóna
- Department of Hematology, Faculty of Medicine, Medical School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Hermina Sánta
- Szent György Hospital of County Fejér, Székesfehérvár, Hungary
| | - Árpád Bátai
- Szent György Hospital of County Fejér, Székesfehérvár, Hungary
| | - Piroska Pettendi
- Hetényi Géza Hospital, Clinic of County Jász-Nagykun-Szolnok, Szolnok, Hungary
| | - Tamás Szendrei
- Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Márk Plander
- Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Gábor Körösmezey
- Department of Medicine, Military Hospital - Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, Szeged, Hungary
| | - Botond Timár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Judit Csomor
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tamás Schneider
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Gábor Mikala
- Department of Hematology and Stem Cell Transplantation, National Institute for Hematology and Infectious Diseases, South Pest Central Hospital, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Masszi
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Pecori R, Ren W, Pirmoradian M, Wang X, Liu D, Berglund M, Li W, Tasakis RN, Di Giorgio S, Ye X, Li X, Arnold A, Wüst S, Schneider M, Selvasaravanan KD, Fuell Y, Stafforst T, Amini RM, Sonnevi K, Enblad G, Sander B, Wahlin BE, Wu K, Zhang H, Helm D, Binder M, Papavasiliou FN, Pan-Hammarström Q. ADAR1-mediated RNA editing promotes B cell lymphomagenesis. iScience 2023; 26:106864. [PMID: 37255666 PMCID: PMC10225930 DOI: 10.1016/j.isci.2023.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.
Collapse
Affiliation(s)
- Riccardo Pecori
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mohammad Pirmoradian
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Annette Arnold
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yvonne Fuell
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Sonnevi
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Björn Engelbrekt Wahlin
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dominic Helm
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
6
|
Haider Z, Wästerlid T, Spångberg LD, Rabbani L, Jylhä C, Thorvaldsdottir B, Skaftason A, Awier HN, Krstic A, Gellerbring A, Lyander A, Hägglund M, Jeggari A, Rassidakis G, Sonnevi K, Sander B, Rosenquist R, Tham E, Smedby KE. Whole-genome informed circulating tumor DNA analysis by multiplex digital PCR for disease monitoring in B-cell lymphomas: a proof-of-concept study. Front Oncol 2023; 13:1176698. [PMID: 37333831 PMCID: PMC10272573 DOI: 10.3389/fonc.2023.1176698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Analyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA). Methods In 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens. Patient-specific multiplex ddPCR (m-ddPCR) assays were designed for simultaneous detection of multiple SNVs, indels and/or SVs, with a detection sensitivity of 0.0025% for SV assays and 0.02% for SNVs/indel assays. M-ddPCR was applied to analyze cfDNA isolated from serially collected plasma at clinically critical timepoints during primary and/or relapse treatment and at follow-up. Results A total of 164 SNVs/indels were identified by WGS including 30 variants known to be functionally relevant in lymphoma pathogenesis. The most frequently mutated genes included KMT2D, PIM1, SOCS1 and BCL2. WGS analysis further identified recurrent SVs including t(14;18)(q32;q21) (IGH::BCL2), and t(6;14)(p25;q32) (IGH::IRF4). Plasma analysis at diagnosis showed positive circulating tumor DNA (ctDNA) levels in 88% of patients and the ctDNA burden correlated with baseline clinical parameters (LDH and sedimentation rate, p-value <0.01). While clearance of ctDNA levels after primary treatment cycle 1 was observed in 3/6 patients, all patients analyzed at final evaluation of primary treatment showed negative ctDNA, hence correlating with PET-CT imaging. One patient with positive ctDNA at interim also displayed detectable ctDNA (average variant allele frequency (VAF) 6.9%) in the follow-up plasma sample collected 2 years after final evaluation of primary treatment and 25 weeks before clinical manifestation of relapse. Conclusion In summary, we demonstrate that multi-targeted cfDNA analysis, using a combination of SNVs/indels and SVs candidates identified by WGS analysis, provides a sensitive tool for MRD monitoring and can detect lymphoma relapse earlier than clinical manifestation.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tove Wästerlid
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Deleskog Spångberg
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Leily Rabbani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hero Nikdin Awier
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gellerbring
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Lyander
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Moa Hägglund
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Ashwini Jeggari
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Stockholm, Sweden
| | - Kristina Sonnevi
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology and Cancer Diagnostics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E. Smedby
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Stuckey R, Luzardo Henríquez H, de la Nuez Melian H, Rivero Vera JC, Bilbao-Sieyro C, Gómez-Casares MT. Integration of molecular testing for the personalized management of patients with diffuse large B-cell lymphoma and follicular lymphoma. World J Clin Oncol 2023; 14:160-170. [PMID: 37124135 PMCID: PMC10134203 DOI: 10.5306/wjco.v14.i4.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the most common forms of aggressive and indolent lymphoma, respectively. The majority of patients are cured by standard R-CHOP immunochemotherapy, but 30%–40% of DLBCL and 20% of FL patients relapse or are refractory (R/R). DLBCL and FL are phenotypically and genetically hereterogenous B-cell neoplasms. To date, the diagnosis of DLBCL and FL has been based on morphology, immunophenotyping and cytogenetics. However, next-generation sequencing (NGS) is widening our understanding of the genetic basis of the B-cell lymphomas. In this review we will discuss how integrating the NGS-based characterization of somatic gene mutations with diagnostic or prognostic value in DLBCL and FL could help refine B-cell lymphoma classification as part of a multidisciplinary pathology work-up. We will also discuss how molecular testing can identify candidates for clinical trials with targeted therapies and help predict therapeutic outcome to currently available treatments, including chimeric antigen receptor T-cell, as well as explore the application of circulating cell-free DNA, a non-invasive method for patient monitoring. We conclude that molecular analyses can drive improvements in patient outcomes due to an increased understanding of the different pathogenic pathways affected by each DLBCL subtype and indolent FL vs R/R FL.
Collapse
Affiliation(s)
- Ruth Stuckey
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | - Hugo Luzardo Henríquez
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | | | - José Carlos Rivero Vera
- Department of Anatomical Pathology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas 35019, Spain
| | - Cristina Bilbao-Sieyro
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35019, Las Palmas de Gran Canaria, Spain
- Department of Morphology, Universitario de Las Palmas de Gran Canaria, Las Palmas 35001, Spain
| | - María Teresa Gómez-Casares
- Department of Hematology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria 35019, Las Palmas de Gran Canaria, Spain
- Medical Science, Universitario de Las Palmas de Gran Canaria, Las Palmas 35001, Spain
| |
Collapse
|
8
|
Slack GW. Diagnostic, Prognostic, and Predictive Role of Next-Generation Sequencing in Mature Lymphoid Neoplasms. Surg Pathol Clin 2023; 16:433-442. [PMID: 37149368 DOI: 10.1016/j.path.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lymphoma is a clinically and biologically heterogeneous disease. Next-generation sequencing (NGS) has expanded our understanding of this heterogeneity at the genetic level, refining disease classification, defining new entities, and providing additional information that can be used in diagnosis and management. This review highlights some of the NGS findings in lymphoma and how they can be used as genetic biomarkers to aid diagnosis and prognosis and guide therapy.
Collapse
|
9
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
10
|
Ma G, Gao Y, Jing X, He C, Liu H, Wu X, Gao Z, Li Y, Zhang S, Zhao G. Targeted sequencing reveals the relationship between mutations and patients' clinical indicators, blood cell counts and early progression in diffuse large-B cell lymphoma. Leuk Lymphoma 2023; 64:140-150. [PMID: 36215154 DOI: 10.1080/10428194.2022.2131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current study, we assessed the relationship between mutations and the blood cell counts and early progression of patients with diffuse large-B cell lymphoma (DLBCL). A total of 109 patients with newly diagnosed DLBCL were included in this study. UBE2A mutation was only found in patients with bone marrow involvement. The mutations of ZNF608, SF3B1, DTX1, and NCOR2 were related to blood cell counts. NCOR2 mutations were only detected in patients of the noncomplete response group (PR + SD + PD). In addition, the mutations of ATM, BTG2, TBL1XR1, and TP53 were linked to lower PFS/OS rate, while SGK1, SCOS1, and NFKBIE were related to higher PFS/OS rate. Importantly, we identified that Ann Arbor stage (III-IV), B symptoms, absolute lymphocyte count (ALC) abnormity, and MTOR mutation were the four independent influencing factors of the 12-month progression of DLBCL patients. Overall, this study revealed that mutations were associated with the early progression of DLBCL.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhuan Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaotong Jing
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiying He
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haisheng Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Wu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhe Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengnan Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Zhao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Nie M, Ren W, Ye X, Berglund M, Wang X, Fjordén K, Du L, Giannoula Y, Lei D, Su W, Li W, Liu D, Linderoth J, Jiang C, Bao H, Jiang W, Huang H, Hou Y, Zhu S, Enblad G, Jerkeman M, Wu K, Zhang H, Amini R, Li Z, Pan‐Hammarström Q. The dual role of CD70 in B-cell lymphomagenesis. Clin Transl Med 2022; 12:e1118. [PMID: 36471481 PMCID: PMC9722974 DOI: 10.1002/ctm2.1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CD70 is a costimulatory molecule that is transiently expressed on a small set of activated lymphocytes and is involved in T-cell-mediated immunity. However, the role of CD70 in B-cell malignancies remains controversial. METHODS We investigated the clinical relevance of CD70 genetic alterations and its protein expression in two diffuse large B-cell lymphoma (DLBCL) cohorts with different ethnic backgrounds. We also performed transcriptomic analysis to explore the role of CD70 alterations in tumour microenvironment. We further tested the blockade of CD70 in combination with PD-L1 inhibitor in a murine lymphoma model. RESULTS We showed that CD70 genetic aberrations occurred more frequently in the Chinese DLBCL cohort (56/233, 24.0%) than in the Swedish cohort (9/84, 10.8%), especially in those with concomitant hepatitis B virus (HBV) infection. The CD70 genetic changes in DLBCL resulted in a reduction/loss of protein expression and/or CD27 binding, which might impair T cell priming and were independently associated with poor overall survival. Paradoxically, we observed that over-expression of CD70 protein was also associated with a poor treatment response, as well as an advanced disease stage and EBV infection. More exhausted CD8+ T cells were furthermore identified in CD70 high-expression DLBCLs. Finally, in a murine lymphoma model, we demonstrated that blocking the CD70/CD27 and/or PD1/PD-L1 interactions could reduce CD70+ lymphoma growth in vivo, by directly impairing the tumour cell proliferation and rescuing the exhausted T cells. CONCLUSIONS Our findings suggest that CD70 can play a role in either tumour suppression or oncogenesis in DLBCL, likely via distinct immune evasion mechanisms, that is, impairing T cell priming or inducing T cell exhaustion. Characterisation of specific dysfunction of CD70 in DLBCL may thus provide opportunities for the development of novel targeted immuno-therapeutic strategies.
Collapse
Affiliation(s)
- Man Nie
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Weicheng Ren
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Xiaofei Ye
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Mattias Berglund
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
- Department of ImmunologyGenetics and PathologyUppsala UniversityUppsalaSweden
| | - Xianhuo Wang
- Department of LymphomaNational Clinical Research Center of CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Karin Fjordén
- Department of OncologySkåne University HospitalLundSweden
| | - Likun Du
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Yvonne Giannoula
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Dexin Lei
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenjia Su
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Wei Li
- Department of LymphomaNational Clinical Research Center of CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Dongbing Liu
- BGI‐ShenzhenShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease GenomicsShenzhen Key Laboratory of GenomicsBGI‐ShenzhenShenzhenChina
| | | | - Chengyi Jiang
- Department of HematologyJilin Cancer HospitalChangchunChina
| | - Huijing Bao
- Department of HematologyJilin Cancer HospitalChangchunChina
| | - Wenqi Jiang
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huiqiang Huang
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | | | | | - Gunilla Enblad
- Department of ImmunologyGenetics and PathologyUppsala UniversityUppsalaSweden
| | - Mats Jerkeman
- Department of OncologySkåne University HospitalLundSweden
| | - Kui Wu
- BGI‐ShenzhenShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease GenomicsShenzhen Key Laboratory of GenomicsBGI‐ShenzhenShenzhenChina
| | - Huilai Zhang
- Department of LymphomaNational Clinical Research Center of CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Rose‐Marie Amini
- Department of ImmunologyGenetics and PathologyUppsala UniversityUppsalaSweden
| | - Zhi‐Ming Li
- Department of Medical OncologyState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qiang Pan‐Hammarström
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
- Department of LymphomaNational Clinical Research Center of CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
- BGI‐ShenzhenShenzhenChina
| |
Collapse
|
12
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Thus YJ, Eldering E, Kater AP, Spaargaren M. Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia 2022; 36:2165-2176. [PMID: 35725771 PMCID: PMC9418002 DOI: 10.1038/s41375-022-01627-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Mantle cell lymphoma (MCL), an aggressive, but incurable B-cell lymphoma, is genetically characterized by the t(11;14) translocation, resulting in the overexpression of Cyclin D1. In addition, deregulation of the B-cell lymphoma-2 (BCL-2) family proteins BCL-2, B-cell lymphoma-extra large (BCL-XL), and myeloid cell leukemia-1 (MCL-1) is highly common in MCL. This renders these BCL-2 family members attractive targets for therapy; indeed, the BCL-2 inhibitor venetoclax (ABT-199), which already received FDA approval for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML), shows promising results in early clinical trials for MCL. However, a significant subset of patients show primary resistance or will develop resistance upon prolonged treatment. Here, we describe the underlying mechanisms of venetoclax resistance in MCL, such as upregulation of BCL-XL or MCL-1, and the recent (clinical) progress in the development of inhibitors for these BCL-2 family members, followed by the transcriptional and (post-)translational (dys)regulation of the BCL-2 family proteins, including the role of the lymphoid organ microenvironment. Based upon these insights, we discuss how rational combinations of venetoclax with other therapies can be exploited to prevent or overcome venetoclax resistance and improve MCL patient outcome.
Collapse
Affiliation(s)
- Yvonne J Thus
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
15
|
Genomic characterization of lymphomas in patients with inborn errors of immunity. Blood Adv 2022; 6:5403-5414. [PMID: 35687490 PMCID: PMC9631701 DOI: 10.1182/bloodadvances.2021006654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Inborn errors of immunity-associated lymphomas are characterized by distinct clinical features and genetic signatures. Both germline and somatic alterations contribute to lymphomagenesis in patients with inborn errors of immunity. Patients with inborn errors of immunity (IEI) have a higher risk of developing cancer, especially lymphoma. However, the molecular basis for IEI-related lymphoma is complex and remains elusive. Here, we perform an in-depth analysis of lymphoma genomes derived from 23 IEI patients. We identified and validated disease-causing or -associated germline mutations in 14 of 23 patients involving ATM, BACH2, BLM, CD70, G6PD, NBN, PIK3CD, PTEN, and TNFRSF13B. Furthermore, we profiled somatic mutations in the lymphoma genome and identified 8 genes that were mutated at a significantly higher level in IEI-associated diffuse large B-cell lymphomas (DLBCLs) than in non-IEI DLBCLs, such as BRCA2, NCOR1, KLF2, FAS, CCND3, and BRWD3. The latter, BRWD3, is furthermore preferentially mutated in tumors of a subgroup of activated phosphoinositide 3-kinase δ syndrome patients. We also identified 5 genomic mutational signatures, including 2 DNA repair deficiency-related signatures, in IEI-associated lymphomas and a strikingly high number of inter- and intrachromosomal structural variants in the tumor genome of a Bloom syndrome patient. In summary, our comprehensive genomic characterization of lymphomas derived from patients with rare genetic disorders expands our understanding of lymphomagenesis and provides new insights for targeted therapy.
Collapse
|
16
|
A cauldron of choices. Blood 2022; 139:3103-3104. [PMID: 35616990 DOI: 10.1182/blood.2022015995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
|
17
|
Ren W, Wang X, Yang M, Wan H, Li X, Ye X, Meng B, Li W, Yu J, Lei M, Xie F, Jiang W, Kimby E, Huang H, Liu D, Li ZM, Wu K, Zhang H, Pan-Hammarström Q. Distinct clinical and genetic features of hepatitis B virus-associated follicular lymphoma in Chinese patients. Blood Adv 2022; 6:2731-2744. [PMID: 35030632 PMCID: PMC9092402 DOI: 10.1182/bloodadvances.2021006410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection has been associated with an increased risk for B-cell lymphomas. We previously showed that 20% of diffuse large B-cell lymphoma (DLBCL) patients from China, an endemic area of HBV infection, have chronic HBV infection (surface antigen-positive, HBsAg+) and are characterized by distinct clinical and genetic features. Here, we showed that 24% of follicular lymphoma (FL) Chinese patients are HBsAg+. Compared with the HBsAg- FL patients, HBsAg+ patients are younger, have a higher histological grade at diagnosis, and have a higher incidence of disease progression within 24 months. Moreover, by sequencing the genomes of 109 FL tumors, we observed enhanced mutagenesis and distinct genetic profile in HBsAg+ FLs, with a unique set of preferentially mutated genes (TNFAIP3, FAS, HIST1H1C, KLF2, TP53, PIM1, TMSB4X, DUSP2, TAGAP, LYN, and SETD2) but lack of the hallmark of HBsAg- FLs (ie, IGH/BCL2 translocations and CREBBP mutations). Transcriptomic analyses further showed that HBsAg+ FLs displayed gene-expression signatures resembling the activated B-cell-like subtype of diffuse large B-cell lymphoma, involving IRF4-targeted genes and NF-κB/MYD88 signaling pathways. Finally, we identified an increased infiltration of CD8+ memory T cells, CD4+ Th1 cells, and M1 macrophages and higher T-cell exhaustion gene signature in HBsAg+ FL samples. Taken together, we present new genetic/epigenetic evidence that links chronic HBV infection to B-cell lymphomagenesis, and HBV-associated FL is likely to have a distinct cell-of-origin and represent as a separate subtype of FL. Targetable genetic/epigenetic alterations identified in tumors and their associated tumor microenvironment may provide potential novel therapeutic approaches for this subgroup of patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Bing Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mengyue Lei
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Fanfan Xie
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Wenqi Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Eva Kimby
- Unit of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; and
| | - Huiqiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Zhi-Ming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
18
|
Matsuda Y, Ikeda S, Abe F, Takahashi Y, Kitadate A, Takahashi N, Wakui H, Tagawa H. Downregulation of miR-26 promotes invasion and metastasis via targeting interleukin-22 in cutaneous T-cell lymphoma. Cancer Sci 2022; 113:1208-1219. [PMID: 35133054 PMCID: PMC8990290 DOI: 10.1111/cas.15296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
It has been reported that certain microRNAs (miRNA) are associated with the pathogenesis of lymphoma. We have previously demonstrated that histone deacetylase inhibitors restore tumor-suppressive miRNAs, such as miR-16, miR-29, miR-150, and miR-26, in advanced cutaneous T-cell lymphoma (CTCL). Among these, the function of miR-26 remains unclear. In this study, we aimed to reveal the function of miR-26 in CTCL oncogenesis. First, we confirmed that the miR-26 family was markedly dysregulated in CTCL cell lines and primary samples. In vivo analysis using miR-26a-transduced CTCL cells injected into immunodeficient NOG mice demonstrated the significant prolonged survival of the mice, suggesting that the miRNA had a tumor-suppressive function. We performed gene expression assays and identified 12 candidate miR-26 targets, namely RGS13, FAM71F1, OAF, SNX21, CDH2, PTPLB, IL22, DNAJB5, CASZ1, CACNA1C, MYH10, and CNR1. Among these, IL22 was the most likely candidate target because the IL-22-STAT3-CCL20-CCR6 cascade is associated with tumor invasion and metastasis of advanced CTCL. In vitro analysis of IL22 and IL22RA knockdown and miR-26 transduction demonstrated inhibited CTCL cell migration. In particular, IL22 knockdown induced cell apoptosis. Finally, we conducted in vivo inoculation analysis of mice injected with shIL22-transfected CTCL cells, and found no tumor invasion or metastasis in the inoculated mice, although the control mice showed multiple tumor invasions and metastases. These results, along with our previous data, demonstrated that miR-26 is a tumor suppressor that is associated with tumor invasion and the metastasis of advanced CTCL by regulating the IL-22-STAT3-CCL20 cascade. Therefore, a IL-22-targeting therapy could be a novel therapeutic strategy for advanced CTCL.
Collapse
Affiliation(s)
- Yuka Matsuda
- Department of Life ScienceGraduate School of Engineering ScienceAkita UniversityAkitaJapan
| | - Sho Ikeda
- Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Fumito Abe
- Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Yuto Takahashi
- Department of Life ScienceGraduate School of Engineering ScienceAkita UniversityAkitaJapan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| | - Hideki Wakui
- Department of Life ScienceGraduate School of Engineering ScienceAkita UniversityAkitaJapan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and RheumatologyAkita University Graduate School of MedicineAkitaJapan
| |
Collapse
|
19
|
Zanubrutinib in relapsed/refractory mantle cell lymphoma: long-term efficacy and safety results from a phase 2 study. Blood 2022; 139:3148-3158. [PMID: 35303070 PMCID: PMC9136878 DOI: 10.1182/blood.2021014162] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Zanubrutinib demonstrated deep and durable responses and a favorable safety profile in R/R MCL at median 35.3 months follow-up. Zanubrutinib provided a high response rate (84% [78% CR]) and extended PFS (median 33.0 months) in patients with R/R MCL. Bruton tyrosine kinase (BTK) inhibitor is an established treatment for relapsed/refractory (R/R) mantle cell lymphoma (MCL). Zanubrutinib, a highly selective BTK inhibitor, is approved for patients with MCL who have received ≥1 prior therapy. We report the long-term safety and efficacy results from the multicenter, open-label, phase 2 registration trial of zanubrutinib. Patients (n = 86) received oral zanubrutinib 160 mg twice daily. The primary endpoint was the overall response rate (ORR), assessed per Lugano 2014. After a median follow-up of 35.3 months, the ORR was 83.7%, with 77.9% achieving complete response (CR); the median duration of response was not reached. Median progression-free survival (PFS) was 33.0 months (95% confidence interval [CI], 19.4-NE). The 36-month PFS and overall survival (OS) rates were 47.6% (95% CI, 36.2-58.1) and 74.8% (95% CI, 63.7-83.0), respectively. The safety profile was largely unchanged with extended follow-up. Most common (≥20%) all-grade adverse events (AEs) were neutrophil count decreased (46.5%), upper respiratory tract infection (38.4%), rash (36.0%), white blood cell count decreased (33.7%), and platelet count decreased (32.6%); most were grade 1/2 events. Most common (≥10%) grade ≥3 AEs were neutrophil count decreased (18.6%) and pneumonia (12.8%). Rates of infection, neutropenia, and bleeding were highest in the first 6 months of therapy and decreased thereafter. No cases of atrial fibrillation/flutter, grade ≥3 cardiac AEs, second primary malignancies, or tumor lysis syndrome were reported. After extended follow-up, zanubrutinib demonstrated durable responses and a favorable safety profile in R/R MCL. The trial is registered at ClinicalTrials.gov as NCT03206970.
Collapse
|
20
|
Sheng L, Fu D, Cao Y, Huo Y, Wang S, Shen R, Xu P, Cheng S, Wang L, Zhao W. Integrated Genomic and Transcriptomic Analyses of Diffuse Large B-Cell Lymphoma With Multiple Abnormal Immunologic Markers. Front Oncol 2022; 12:790720. [PMID: 35237512 PMCID: PMC8882913 DOI: 10.3389/fonc.2022.790720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive subtype of lymphoma and related to autoimmune diseases (AIDs). Primary B-cell receptor-mediated AIDs are associated with poor clinical outcome of DLBCL. To further determine the role of immunological alterations on disease progression, our study integrated genomic and transcriptomic analyses on DLBCL with multiple abnormal immunologic markers. Methods The clinical data of 1,792 patients with newly diagnosed DLBCL were collected, with DNA- and RNA-sequencing conducted for 164 and 127 patients, respectively. Frequent gene mutations and the involved dysregulated pathways, along with gene expression pattern and tumor microenvironment alternations, were analyzed and compared based on the immune status of the patients. Results DLBCL with multiple abnormal immunologic markers demonstrated a variety of characteristics including elevated serum lactic dehydrogenase level, inferior prognosis, and dysregulated cell cycle and immune response, as well as activated oxidative phosphorylation pathway and increased Th1/Th2 and Th17/Treg ratios, which were highly similar as those that occur in AIDs. Conclusions We piloted the description of the clinical and genetic features of DLBCL with multiple abnormal immunologic markers, illustrated possible mechanisms of disease progression, and provided a clinical rationale of mechanism-based targeted therapy in this subset of DLBCL.
Collapse
|
21
|
Jirabanditsakul C, Dakeng S, Kunacheewa C, U-Pratya Y, Owattanapanich W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol Cancer Res Treat 2022; 21:15330338221111228. [PMID: 35770320 PMCID: PMC9252016 DOI: 10.1177/15330338221111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.
Collapse
Affiliation(s)
- Chutirat Jirabanditsakul
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sumana Dakeng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, 65106Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Fu H, Zhou H, Qiu Y, Wang J, Ma Z, Li H, Zhang F, Qiu C, Shen J, Liu T. SEPT6_ TRIM33 Gene Fusion and Mutated TP53 Pathway Associate With Unfavorable Prognosis in Patients With B-Cell Lymphomas. Front Oncol 2021; 11:765544. [PMID: 34926267 PMCID: PMC8671703 DOI: 10.3389/fonc.2021.765544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mounting studies have sought to identify novel mutation biomarkers having diagnostic and prognostic potentials. Nevertheless, the understanding of the mutated pathways related to development and prognosis of B-cell lymphoma is still lacking. We aimed to comprehensively analyze the mutation alterations in genes of canonical signaling pathways and their impacts on the clinic outcomes of patients with B-cell lymphoma. Methods Circulating cell-free DNA (cfDNA) samples from 79 patients with B-cell lymphomas were used for targeted sequencing with a 560-gene panel for depicting mutation landscapes and identifying gene fusion events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of mutated genes were performed. The associations of mutation status of genes and seven canonical oncogenic pathways with progression-free survival (PFS) were assessed using Kaplan-Meier test and multivariate Cox analysis. The variant allele frequencies (VAFs) of genes in TP53 and Hippo pathways in paired baseline and post-treatment samples from 18 B-cell lymphoma patients were compared. Finally, the associations of identified fusion genes, mutated genes, and pathways with treatment response were evaluated based on objective response rates (ORRs) comparisons of groups. Results We identified 666 mutations from 262 genes in baseline cfDNAs from 79 B-cell lymphoma patients, and found some genes were preferentially mutated in our cohort such as GNAQ, GNAS, H3F3A, DNMT3A, HLA-A, and HLA-B. These frequently mutated genes were significantly associated with negative "regulation of gene expression, epigenetic" and virus infections such as cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus 1 infections. We detected five fusion genes in at least two patients with B-cell lymphoma, and among them, TCF7L2_WT1 gene fusion was most frequently detected in 30.4% of patients (24 of 79 cases). SEPT6_TRIM33 gene fusion, mutated TP53 and Hippo pathways were significantly associated with poor PFS, and SEPT6_TRIM33 fusion gene and mutated TP53 pathway were independent prognostic factors for B-cell lymphoma. A decreased VAF of TP53 p.Y88C and LATS2 p.F972L was detected in patients with complete response to treatments. Moreover, a significant difference in ORR was observed in patients with NPM1_NR4A3 and SEPT6_TRIM33 fusions. Conclusions SEPT6_TRIM33 gene fusion and mutated TP53 and Hippo pathways may serve as prognostic makers for B-cell lymphoma patients.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Yanyan Qiu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Jianfei Wang
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Chenxi Qiu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
23
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
24
|
Dlouhy I, Karube K, Enjuanes A, Salaverria I, Nadeu F, Ramis-Zaldivar JE, Valero JG, Rivas-Delgado A, Magnano L, Martin-García D, Pérez-Galán P, Clot G, Rovira J, Jares P, Balagué O, Giné E, Mozas P, Briones J, Sancho JM, Salar A, Mercadal S, Alcoceba M, Valera A, Campo E, López-Guillermo A. Revised International Prognostic Index and genetic alterations are associated with early failure to R-CHOP in patients with diffuse large B-cell lymphoma. Br J Haematol 2021; 196:589-598. [PMID: 34632572 DOI: 10.1111/bjh.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or β2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.
Collapse
Affiliation(s)
- Ivan Dlouhy
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Kennosuke Karube
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Cell Biology & Pathology Department, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Anna Enjuanes
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Itziar Salaverria
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Enric Ramis-Zaldivar
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Valero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Laura Magnano
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - David Martin-García
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordina Rovira
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Pedro Jares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Balagué
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Hospital Clínico Universitario, Salamanca, Spain
| | - Alexandra Valera
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Ye X, Ren W, Liu D, Li X, Li W, Wang X, Meng FL, Yeap LS, Hou Y, Zhu S, Casellas R, Zhang H, Wu K, Pan-Hammarström Q. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med 2021; 218:211517. [PMID: 33136155 PMCID: PMC7608067 DOI: 10.1084/jem.20200573] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Both somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase (AID). Dysregulation of these processes has been linked to B cell lymphomagenesis. Here we performed an in-depth analysis of diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) genomes. We characterized seven genomic mutational signatures, including two B cell tumor-specific signatures, one of which is novel and associated with aberrant SHM. We further identified two major mutational signatures (K1 and K2) of clustered mutations (kataegis) resulting from the activities of AID or error-prone DNA polymerase η, respectively. K1 was associated with the immunoglobulin (Ig) switch region mutations/translocations and the ABC subtype of DLBCL, whereas K2 was related to the Ig variable region mutations and the GCB subtype of DLBCL and FL. Similar patterns were also observed in chronic lymphocytic leukemia subtypes. Thus, alterations associated with aberrant CSR and SHM activities can be linked to distinct developmental paths for different subtypes of B cell lymphomas.
Collapse
Affiliation(s)
- Xiaofei Ye
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Weicheng Ren
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Qiang Pan-Hammarström
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
26
|
Genetics of Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:259-265. [PMID: 34398552 DOI: 10.1097/ppo.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT During the past 10 years, relevant advances have been made in the understanding of the pathogenesis of chronic lymphocytic leukemia via the integrated analysis of its genome and related epigenome, and transcriptome. These analyses also had an impact on our understanding of the initiation, as well as of the evolution of chronic lymphocytic leukemia, including resistance to chemotherapy and sensitivity and resistance to novel targeted therapies. This chapter will review the current state of the art in this field, with emphasis on the genetic heterogeneity of the disease and the biological pathways that are altered by the genetic lesions.
Collapse
|
27
|
Rosenquist R. Molecular diagnostics and reporting in lymphoid malignancies: Current status and beyond. Hematol Oncol 2021; 39 Suppl 1:73-77. [PMID: 34105808 DOI: 10.1002/hon.2849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Navrkalova V, Plevova K, Hynst J, Pal K, Mareckova A, Reigl T, Jelinkova H, Vrzalova Z, Stranska K, Pavlova S, Panovska A, Janikova A, Doubek M, Kotaskova J, Pospisilova S. LYmphoid NeXt-Generation Sequencing (LYNX) Panel: A Comprehensive Capture-Based Sequencing Tool for the Analysis of Prognostic and Predictive Markers in Lymphoid Malignancies. J Mol Diagn 2021; 23:959-974. [PMID: 34082072 DOI: 10.1016/j.jmoldx.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
B-cell neoplasms represent a clinically heterogeneous group of hematologic malignancies with considerably diverse genomic architecture recently endorsed by next-generation sequencing (NGS) studies. Because multiple genetic defects have a potential or confirmed clinical impact, a tendency toward more comprehensive testing of diagnostic, prognostic, and predictive markers is desired. This study introduces the design, validation, and implementation of an integrative, custom-designed, capture-based NGS panel titled LYmphoid NeXt-generation sequencing (LYNX) for the analysis of standard and novel molecular markers in the most common lymphoid neoplasms (chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma). A single LYNX test provides the following: i) accurate detection of mutations in all coding exons and splice sites of 70 lymphoma-related genes with a sensitivity of 5% variant allele frequency, ii) reliable identification of large genome-wide (≥6 Mb) and recurrent chromosomal aberrations (≥300 kb) in at least 20% of the clonal cell fraction, iii) the assessment of immunoglobulin and T-cell receptor gene rearrangements, and iv) lymphoma-specific translocation detection. Dedicated bioinformatic pipelines were designed to detect all markers mentioned above. The LYNX panel represents a comprehensive, up-to-date tool suitable for routine testing of lymphoid neoplasms with research and clinical applicability. It allows a wide adoption of capture-based targeted NGS in clinical practice and personalized management of patients with lymphoproliferative diseases.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jakub Hynst
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine II - Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrea Mareckova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Tomas Reigl
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Jelinkova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zuzana Vrzalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
29
|
He J, Xi Y, Gao N, Xu E, Chang J, Liu J. Identification of miRNA-34a and miRNA-155 as prognostic markers for mantle cell lymphoma. J Int Med Res 2021; 49:3000605211016390. [PMID: 34024195 PMCID: PMC8142528 DOI: 10.1177/03000605211016390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective MicroRNAs (miRNAs) with functional relevance have not been previously identified in mantle cell lymphoma (MCL). Here, we aimed to evaluate the relationships between miR-34a and miR-155-5p and MCL clinicopathology and prognosis. Methods Seventy-five paraffin-embedded tissue samples from patients with MCL who completed at least four cycles of chemotherapy from January 2006 to October 2016, and 27 samples from control patients with reactive lymphoid hyperplasia (RLH), were collected. MiRNA expression levels were measured by qRT-PCR. Results The miR-155-5p levels were significantly higher in patients with MCL than in the controls. The Eastern Cooperative Oncology Group (ECOG) ≥ 2 and Sex-Determining Region Y-Box transcription factor 11 (SOX11) < median value (M) groups presented lower miR-34a expression than the ECOG < 2 and SOX11 ≥ M groups, respectively. MiR-155-5p expression differed between low, intermediate, and high MCL International Prognostic Index risk groups. The AUCs of miR-34a and miR-155-5p were 0.5819 and 0.7784, respectively. The median survival times of the miR-34a ≤ 0.2150 and miR-155-5p > 2.11 groups were shorter than those of the miR-34a > 0.2150 and miR-155-5p ≤ 2.11 groups, respectively. Conclusions Low miR-34a and elevated miR-155-5p levels may be correlated with poor prognosis in MCL.
Collapse
Affiliation(s)
- Jianxia He
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Ning Gao
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Jin Chang
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Jie Liu
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
30
|
Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: long-term follow-up and biomarker analysis. Blood Adv 2021; 4:5773-5784. [PMID: 33227125 DOI: 10.1182/bloodadvances.2020003121] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced marginal zone lymphoma (MZL) is an incurable B-cell malignancy dependent on B-cell receptor signaling. The phase 2 PCYC-1121 study demonstrated the safety and efficacy of single-agent ibrutinib 560 mg/d in 63 patients with relapsed/refractory MZL treated with prior rituximab (RTX) or rituximab-based chemoimmunotherapy (RTX-CIT). We report the final analysis of PCYC-1121 with median follow-up of 33.1 months (range: 1.4-44.6). Overall response rate (ORR) was 58%; median duration of response (DOR) was 27.6 months (95% confidence interval [CI]: 12.1 to not estimable [NE]); median progression-free survival (PFS) was 15.7 months (95% CI: 12.2-30.4); and median overall survival (OS) was not reached (95% CI: NE to NE). Patients with prior RTX treatment had better outcomes (ORR: 81%; median DOR: not reached [95% CI: 12.2 to NE]; median PFS: 30.4 months [95% CI: 22.1 to NE]; median OS: not reached [95% CI: 30.3 to NE]) vs those with prior RTX-CIT treatment (ORR: 51%; DOR: 12.4 months [95% CI: 2.8 to NE]; PFS: 13.8 months [95% CI: 8.3-22.5]; OS: not reached [95% CI: NE to NE]). ORRs were 63%, 47%, and 62% for extranodal, nodal, and splenic subtypes, respectively. With up to 45 months of ibrutinib treatment, the safety profile remained consistent with prior reports. The most common grade ≥3 event was anemia (16%). Exploratory biomarker analysis showed NF-κB pathway gene mutations correlated with outcomes. Final analysis of PCYC-1121 demonstrated long-term safety and efficacy of ibrutinib in patients with relapsed/refractory MZL, regardless of prior treatment or MZL subtype. This trial was registered at www.clinicaltrials.gov as #NCT01980628.
Collapse
|
31
|
Fei Y, Yu J, Li Y, Li L, Zhou S, Zhang T, Li L, Qiu L, Meng B, Pan Y, Ren X, Qian Z, Wang X, Zhang H. Plasma soluble PD-L1 and STAT3 predict the prognosis in diffuse large B cell lymphoma patients. J Cancer 2020; 11:7001-7008. [PMID: 33123290 PMCID: PMC7591999 DOI: 10.7150/jca.47816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Diffuse large B cell lymphoma (DLBCL) is one of the most common B cell lymphomas, which displays heterogeneous pathologies. Programmed cell death 1/ programmed cell death ligand 1 (PD-1/PD-L1) plays an essential role in immunosuppression in multiple malignancies. Signal transducer and activator of transcription 3 (STAT3)-positive patients also have an independently inferior clinical outcome. However, there are no reports on the effect of plasma soluble PD-L1 (sPD-L1) combined with plasma STAT3 on the prognosis of DLBCL. In this study, we investigate the relationships between plasma sPD-L1 combined with STAT3 and clinical prognosis of DLBCL. Methods: Levels of plasma sPD-L1 and STAT3 were quantified using ELISA in eighty-seven DLBCL patients. Multiplexed immunofluorescence staining was performed to visualize the expression of PD-L1 in twenty-nine matched FFPE specimens from all patients. Results: The survival analysis revealed that the progression-free survival (PFS) and overall survival (OS) in high sPD-L1 level group were poorer than that in low sPD-L1 level group (PFS, P < 0.001; OS, P < 0.001). Similarly, the PFS and OS in high STAT3 level group were also poorer than that in low STAT3 level group. Multivariate cox regression analysis showed that both high sPD-L1 and high STAT3 levels were the independent prognostic factors negatively affecting survival. In addition, patients with DLBCL having high levels of both sPD-L1 and STAT3 had a worse outcome than those patients having any one high or low levels of both (P < 0.001). Conclusions: We therefore revealed that high levels of plasma sPD-L1 and STAT3 are associated with inferior outcome for DLBCL patients, suggesting that combined measurement of their levels in plasma may be a promising prognostic strategy for DLBCL patients.
Collapse
Affiliation(s)
- Yue Fei
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Yang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Linyu Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China.,Department of Radiotherapy, The Second People Hospital of Dezhou, Shandong, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Tingting Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yi Pan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
32
|
Genetic heterogeneity and prognostic impact of recurrent ANK2 and TP53 mutations in mantle cell lymphoma: a multi-centre cohort study. Sci Rep 2020; 10:13359. [PMID: 32770099 PMCID: PMC7414214 DOI: 10.1038/s41598-020-70310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular features of mantle cell lymphoma (MCL), including its increased incidence, and complex therapies have not been investigated in detail, particularly in East Asian populations. In this study, we performed targeted panel sequencing (TPS) and whole-exome sequencing (WES) to investigate the genetic alterations in Korean MCL patients. We obtained a total of 53 samples from MCL patients from five Korean university hospitals between 2009 and 2016. We identified the recurrently mutated genes such as SYNE1, ATM, KMT2D, CARD11, ANK2, KMT2C, and TP53, which included some known drivers of MCL. The mutational profiles of our cohort indicated genetic heterogeneity. The significantly enriched pathways were mainly involved in gene expression, cell cycle, and programmed cell death. Multivariate analysis revealed that ANK2 mutations impacted the unfavourable overall survival (hazard ratio [HR] 3.126; P = 0.032). Furthermore, TP53 mutations were related to worse progression-free survival (HR 7.813; P = 0.043). Among the recurrently mutated genes with more than 15.0% frequency, discrepancies were found in only 5 genes from 4 patients, suggesting comparability of the TPS to WES in practical laboratory settings. We provide the unbiased genetic landscape that might contribute to MCL pathogenesis and recurrent genes conferring unfavourable outcomes.
Collapse
|
33
|
Sarkozy C, Chong L, Takata K, Chavez EA, Miyata-Takata T, Duns G, Telenius A, Boyle M, Slack GW, Laurent C, Farinha P, Molina TJ, Copie-Bergman C, Damotte D, Salles GA, Mottok A, Savage KJ, Scott DW, Traverse-Glehen A, Steidl C. Gene expression profiling of gray zone lymphoma. Blood Adv 2020; 4:2523-2535. [PMID: 32516416 PMCID: PMC7284085 DOI: 10.1182/bloodadvances.2020001923] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Gray zone lymphoma (GZL), a B-cell lymphoma with features intermediate between large B-cell lymphoma (LBCL) and classic Hodgkin lymphoma (cHL), is a rare and poorly defined entity. Alongside GZL, a subset of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) has been described with polymorphic/GZL-like morphology (polymorphic-EBV-L). To fill the important gap in our understanding of the pathogenic process underlying these entities, we performed a gene expression study of a large international cohort of GZL and polymorphic-EBV-L, combined with cHL and primary mediastinal large B-cell lymphoma (PMBCL) cases. In an unsupervised principal component analysis, GZL cases presented with intermediate scores in a spectrum between cHL and PMBCL, whereas polymorphic-EBV-L clustered distinctly. The main biological pathways underlying the GZL spectrum were related to cell cycle, reflecting tumor cell content, and extracellular matrix signatures related to the cellular tumor microenvironment. Differential expression analysis and phenotypic characterization of the tumor microenvironment highlighted the predominance of regulatory macrophages in GZL compared with cHL and PMBCL. Two distinct subtypes of GZL were distinguishable that were phenotypically reminiscent of PMBCL and DLBCL, and we observed an association of PMBCL-type GZL with clinical presentation in the "thymic" anatomic niche. In summary, gene expression profiling (GEP) enabled us to add precision to the GZL spectrum, describe the biological distinction compared with polymorphic-EBV-L, and distinguish cases with and without thymic involvement as 2 subgroups of GZL, namely PMBCL-like and DLBCL-like GZL.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- INSERM Unité Mixte de Recherche (UMR)-S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Lauren Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Elizabeth A Chavez
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | | | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Graham W Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Camille Laurent
- Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire Toulouse, INSERM U.1037, Centre de Recherche en Cancerologie de Toulouse-Purpan, Toulouse, France
| | - Pedro Farinha
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Thierry J Molina
- Pathology Department, Necker Enfants Malades Hospital, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christiane Copie-Bergman
- Pathology Department, Henri Mondor-Albert Chennevier Hospital, AP-HP, Paris Est-Créteil (UPEC) University, UMR-S 955, INSERM, Créteil, France
| | - Diane Damotte
- Département de Pathologie, Groupe Hospitalier Cochin, AP-HP, Paris Descartes University-Sorbonne, Paris, France
| | - Gilles A Salles
- INSERM Unité Mixte de Recherche (UMR)-S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service d'Hématologie, Pierre Bénite Cedex, France
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany; and
| | - Kerry J Savage
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Alexandra Traverse-Glehen
- INSERM Unité Mixte de Recherche (UMR)-S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service d'Anatomie Pathologique, Pierre Bénite Cedex, France
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| |
Collapse
|
34
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
35
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
36
|
Abstract
Chronic lymphocytic leukaemia (CLL), the most frequent type of leukaemia in adults, is a lymphoproliferative disorder that is characterized by the expansion of monoclonal, mature CD5+CD23+ B cells in the peripheral blood, secondary lymphoid tissues and bone marrow. CLL is an incurable disease with a heterogeneous clinical course, for which the treatment decision still relies on conventional parameters (such as clinical stage and lymphocyte doubling time). During the past 5 years, relevant advances have been made in understanding CLL biology. Indeed, substantial progress has been made in the identification of the putative cell of origin of CLL, and comprehensive studies have dissected the genomic, epigenomic and transcriptomic landscape of CLL. Advances in clinical management include improvements in our understanding of the prognostic value of different genetic lesions, particularly those associated with chemoresistance and progression to highly aggressive forms of CLL, and the advent of new therapies targeting crucial biological pathways. In this Review, we discuss new insights into the genetic lesions involved in the pathogenesis of CLL and how these genetic insights influence clinical management and the development of new therapeutic strategies for this disease.
Collapse
|
37
|
Wei L, Li H, Tamagnone L, You H. Semaphorins and Their Receptors in Hematological Malignancies. Front Oncol 2019; 9:382. [PMID: 31143707 PMCID: PMC6521731 DOI: 10.3389/fonc.2019.00382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
While semaphorins were initially identified as axonal guidance cues for wiring the neural network, it was then recognized their wide relevance in tissue development and homeostasis. Notably, semaphorin activities were also extensively studied in many types of solid tumors; however, their relevance in hematological malignancies is far from understood. In this mini-review, we surveyed the current knowledge about semaphorins and their receptors in leukemias, lymphomas, and multiple myeloma. Noteworthy, current data support a promoting role for Semaphorin 4D and Neuropilin-1 in these tumors, while Semaphorin 3A seems to consistently act as oncosuppressor in leukemias and multiple myeloma. The expression levels and functional activities of SEMA3B, SEMA3F, and Neuropilin-2 have furthermore been investigated in leukemias and lymphoma cells. Herein, we reviewed the state of the art and highlighted some of the open questions to be addressed in the field.
Collapse
Affiliation(s)
- Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongbo Li
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,YouJiang Medical University For Nationalities, Baise, China.,Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Wu Y, Yang R, Ming Y, Xu Y, Chen H, Yao M, Chen X, Mao R, Fan Y. TAK1 is a druggable kinase for diffuse large B-cell lymphoma. Cell Biochem Funct 2019; 37:153-160. [PMID: 30907011 DOI: 10.1002/cbf.3381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/27/2019] [Indexed: 02/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, and up to 30% DLBCL patients eventually died by using first-line chemotherapy regimens. Currently, Bruton tyrosine kinase (BTK) inhibitor (ibrutinib) is one of the most promising medicine in clinical trials for DLBCL, to which about 25% of patients with relapsed or refractory DLBCL are responsive. Thus, it is urgent to discover new druggable targets for DLBCL, especially for patients who are unresponsive to first-line chemotherapy and ibrutinib. Here, we found that MAP 3K7 (TAK1) is required for DLBCL survival. Inhibition of TAK1 by small molecule 5Z7 or genetic silence could massively induce deaths of DLBCL cells. Mechanistically, TAK1 inhibition could dramatically reduce the nuclear factor kappa B (NF-κB) activity. Notably, ibrutinib-resistant DLBCL cells also respond to TAK1 inhibition. Database analysis showed that high expression of TAK1 in patients with DLBCL shows poor survival. A subtype of DLBCL patients showed that high expression of both TAK1 and BTK1 is poorly responsive to the current chemotherapy. Moreover, DLBCL cell line with high expression of both TAK1 and BTK1 is resistant to Dox. Simultaneously targeting TAK1 and BTK not only increases cellular toxicity of individual drug but also enhances the sensitivity to Dox. Taken together, we provide convincing evidence to show that kinase TAK1 is a druggable target in DLBCL. SIGNIFICANCE OF THE STUDY: Currently, there is still a significant portion of patients with DLBCL who are unresponsive to first-line chemotherapy. Thus, identification of novel druggable targets such as kinase is critical important. Here, we found that TAK1 inhibition promotes death of DLBCL cells through inhibition of chronic NF-κB signalling. Importantly, TAK1 inhibition overcomes ibrutinib resistance in DLBCL cells. Finally, DLBCL patients with high expression of both TAK1 and BTK showed extremely poor survival. In summary, we provide convincing results to demonstrate a potential important druggable kinase in DLBCL.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Riyun Yang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Yue Ming
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yuanpei Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China.,Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
39
|
Sutamtewagul G, Link BK. Novel treatment approaches and future perspectives in follicular lymphoma. Ther Adv Hematol 2019; 10:2040620718820510. [PMID: 30719267 PMCID: PMC6348550 DOI: 10.1177/2040620718820510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Follicular lymphoma (FL) is a common B-cell malignancy characterized by relatively indolent growth and incurability with an expected lifetime course of serial intermittent treatment courses. Many patients with FL have lives shortened by the disease and despite a relatively favorable prognosis relative to other incurable systemic malignancies, optimal management of FL has not been achieved. This review focuses on identifying both patients for whom novel therapies might be most beneficial as well as systematically reviewing novel strategies at various levels of investigation. Prognostic markers incorporating clinical measurements and tumor genetics are discussed, yet at the time of diagnosis do not yet powerfully discriminate patients for whom specific strategies are beneficial. Reassessment of prognosis after evaluating the response to initial therapy is the most powerful identifier of those in need of novel management strategies. For initial therapy of high burden systemic disease, anti-CD20 antibody along with chemotherapy or immunomodulators all offer relatively similar effects on overall survival with subtly different effects on progression-free survival and quality of life. Several new agents currently under investigation in the upfront setting are discussed. Perhaps the best testing ground for novel therapies is in patients with early relapse following initial immunochemotherapy. Ongoing research in multiple therapy classes including, novel monoclonal antibodies, antibody drug conjugates, immunomodulatory agents, intracellular pathway inhibitors, immune checkpoint inhibitors, and epigenetic regulators are discussed herein.
Collapse
Affiliation(s)
- Grerk Sutamtewagul
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Dr., C305 GH, Iowa City, IA 52242, USA
| | - Brian K. Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
40
|
Microbial Agents as Putative Inducers of B Cell Lymphoma in Sjögren's Syndrome through an Impaired Epigenetic Control: The State-of-The-Art. J Immunol Res 2019; 2019:8567364. [PMID: 30723750 PMCID: PMC6339763 DOI: 10.1155/2019/8567364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Understanding the mechanisms underlying the pathogenesis of Sjögren's syndrome (SS) is crucially important in order to be able to discriminate the steps that lead to B cell transformation and promptly identify the patients at risk of lymphomagenesis. The aim of this narrative review is to describe the evidence concerning the role that infections or dysbiosis plays in the epigenetic control of gene expression in SS patients and their possible involvement in B cell lymphomagenesis. Materials and Methods We searched the PubMed and Google Scholar databases and selected a total of 92 articles published during the last 25 years that describe experimental and clinical studies of the potential associations of microbiota and epigenetic aberrations with the risk of B cell lymphoma in SS patients. Results and Discussion The genetic background of SS patients is characterized by the hyperexpression of genes that are mainly involved in regulating the innate and adaptive immune responses and oncogenesis. In addition, salivary gland epithelial cells and lymphocytes both have an altered epigenetic background that enhances the activation of proinflammatory and survival pathways. Dysbiosis or chronic latent infections may tune the immune response and modify the cell epigenetic machinery in such a way as to give B lymphocytes an activated or transformed phenotype. It is also worth noting that transposable integrated retroelements may participate in the pathogenesis of SS and B cell lymphomagenesis by inducing DNA breaks, modulating cell gene expression, or generating aberrant transcripts that chronically stimulate the immune system. Conclusions Microorganisms may epigenetically modify target cells and induce their transcriptome to generate an activated or transformed phenotype. The occurrence of lymphoma in more than 15% of SS patients may be the end result of a combination of genetics, epigenetics, and dysbiosis or latent infections.
Collapse
|
41
|
CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1 - mantle cell lymphoma. Blood 2018; 133:940-951. [PMID: 30538135 DOI: 10.1182/blood-2018-07-862151] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by the t(11;14)(q13;q32) translocation resulting in overexpression of cyclin D1. However, a small subset of cyclin D1- MCL has been recognized, and approximately one-half of them harbor CCND2 translocations while the primary event in cyclin D1-/D2- MCL remains elusive. To identify other potential mechanisms driving MCL pathogenesis, we investigated 56 cyclin D1-/SOX11+ MCL by fluorescence in situ hybridization (FISH), whole-genome/exome sequencing, and gene-expression and copy-number arrays. FISH with break-apart probes identified CCND2 rearrangements in 39 cases (70%) but not CCND3 rearrangements. We analyzed 3 of these negative cases by whole-genome/exome sequencing and identified IGK (n = 2) and IGL (n = 1) enhancer hijackings near CCND3 that were associated with cyclin D3 overexpression. By specific FISH probes, including the IGK enhancer region, we detected 10 additional cryptic IGK juxtapositions to CCND3 (6 cases) and CCND2 (4 cases) in MCL that overexpressed, respectively, these cyclins. A minor subset of 4 cyclin D1- MCL cases lacked cyclin D rearrangements and showed upregulation of CCNE1 and CCNE2. These cases had blastoid morphology, high genomic complexity, and CDKN2A and RB1 deletions. Both genomic and gene-expression profiles of cyclin D1- MCL cases were indistinguishable from cyclin D1+ MCL. In conclusion, virtually all cyclin D1- MCLs carry CCND2/CCND3 rearrangements with immunoglobulin genes, including a novel IGK/L enhancer hijacking mechanism. A subset of cyclin D1-/D2-/D3- MCL with aggressive features has cyclin E dysregulation. Specific FISH probes may allow the molecular identification and diagnosis of cyclin D1- MCL.
Collapse
|
42
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
43
|
Pham K, Kan A, Whitehead L, Hennessy RJ, Rogers K, Hodgkin PD. Converse Smith-Martin cell cycle kinetics by transformed B lymphocytes. Cell Cycle 2018; 17:2041-2051. [PMID: 30205749 PMCID: PMC6260211 DOI: 10.1080/15384101.2018.1511511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent studies using direct live cell imaging have reported that individual B lymphocytes have correlated transit times between their G1 and S/G2/M phases. This finding is in contradiction with the influential model of Smith and Martin that assumed the bulk of the total cell cycle time variation arises in the G1 phase of the cell cycle with little contributed by the S/G2/M phase. Here we extend these studies to examine the relation between cell cycle phase lengths in two B lymphoma cell lines. We report that transformed B lymphoma cells undergo a short G1 period that displays little correlation with the time taken for the subsequent S/G2/M phase. Consequently, the bulk of the variation noted for total division times within a population is found in the S/G2/M phases and not the G1 phase. Models that reverse the expected source of variation and assume a single deterministic time in G1 followed by a lag + exponential distribution for S/G2/M fit the data well. These models can be improved further by adopting two sequential distributions or by using the stretched lognormal model developed for primary lymphocytes. We propose that shortening of G1 transit times and uncoupling from other cell cycle phases may be a hallmark of lymphocyte transformation that could serve as an observable phenotypic marker of cancer evolution.
Collapse
Affiliation(s)
- K Pham
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia
| | - A Kan
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia.,c Department of Computing and Information Systems , The University of Melbourne , Parkville , Australia
| | - L Whitehead
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia
| | - R J Hennessy
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia
| | - K Rogers
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia
| | - P D Hodgkin
- a Division of Immunology , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia.,b Department of Medical Biology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
44
|
Hyeon J, Lee B, Shin SH, Yoo HY, Kim SJ, Kim WS, Park WY, Ko YH. Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement. Mod Pathol 2018; 31:1418-1428. [PMID: 29765142 DOI: 10.1038/s41379-018-0064-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/10/2022]
Abstract
Gastric extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is a distinct entity in that Helicobacter pylori infection plays the most important causative role in the development of the disease. To investigate the genomic alteration in gastric marginal zone lymphoma that was resistant to the H. pylori eradication therapy, we analyzed 19 cases of the gastric marginal zone lymphoma using fluorescence in situ hybridization for MALT1, BCL10 rearrangement, and targeted sequencing using an Illumina platform. Major genetic alterations affected genes involved in nuclear factor (NF)-κB pathway activation and included MALT1 rearrangement (39%), and somatic mutations of TRAF3 (21%), TNFAIP3 (16%), and NOTCH1 (16%). In the MALT1 rearrangement-negative group, disruptive somatic mutations of TRAF3 were the most common alterations (4/12, 33%), followed by somatic mutations of TNFAIP3 (3/12, 25%), and NOTCH1 (3/12, 25%). The present study confirms that genes involved in activation of NF-κB-signaling pathways are a major driver in oncogenesis of H. pylori eradication-resistant gastric marginal zone lymphoma and revealed that TRAF3 mutation is a major contributor in MALT1 rearrangement-negative gastric marginal zone lymphoma.
Collapse
Affiliation(s)
- Jiyeon Hyeon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Boram Lee
- Samsung Genome Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - So-Hyun Shin
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Division of hematology-oncology, Department of Internal medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of hematology-oncology, Department of Internal medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.
| | - Young-Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Malpeli G, Barbi S, Tosadori G, Greco C, Zupo S, Pedron S, Brunelli M, Bertolaso A, Scupoli MT, Krampera M, Kamga PT, Croce CM, Calin GA, Scarpa A, Zamò A. MYC-related microRNAs signatures in non-Hodgkin B-cell lymphomas and their relationships with core cellular pathways. Oncotarget 2018; 9:29753-29771. [PMID: 30038718 PMCID: PMC6049865 DOI: 10.18632/oncotarget.25707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
In order to investigate the role of microRNAs in the pathogenesis of different B-cell lymhoma subtypes, we have applied an array-based assay to a series of 76 mixed non-Hodgkin B-cell lymphomas, including Burkitt's lymphoma (BL), diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, mantle cell lymphoma (MCL) and follicular lymphoma. Lymphomas clustered according to histological subtypes, driven by two miRNA clusters (the miR-29 family and the miR-17-92 cluster). Since the two miRNA clusters are known to be MYC-regulated, we investigated whether this would be supported in MYC-driven experimental models, and found that this signature separated BL cell lines and a MYC-translocated MCL cell lines from normal germinal center B-cells and other B-cell populations. Similar results were also reproduced in tissue samples comparing BL and reactive lymph node samples. The same series was then quantitatively analyzed for MYC expression by immunohistochemistry and MYC protein levels were compared with corresponding miRNA signatures. A specific metric was developed to summarize the levels of MYC-related microRNAs and the corresponding protein levels. We found that MYC-related signatures are directly related to MYC protein expression across the whole spectrum of B-cells and B-cell lymphoma, suggesting that the MYC-responsive machinery shows predominantly quantitative, rather than qualitative, modifications in B-cell lymphoma. Novel MYC-related miRNAs were also discovered by this approach. Finally, network analysis found that in BL MYC-related differentially expressed miRNAs could control, either positively or negatively, a limited number of hub proteins, including BCL2, CDK6, MYB, ZEB1, CTNNB1, BAX and XBP1.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriele Tosadori
- Center for BioMedical Computing, University of Verona, Verona, Italy
| | - Corinna Greco
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Simonetta Zupo
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertolaso
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Center for BioMedical Computing, University of Verona, Verona, Italy
| | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
46
|
Abstract
OPINION STATEMENT Even in the modern era, follicular lymphoma (FL) remains largely an incurable but treatable disease with both standard and novel treatment modalities. Despite the abundance of efficacious treatment modalities currently available, there is no universally agreed upon standard approach to treatment for patients with FL, particularly in the relapsed/refractory (R/R) setting. There is an increasing need for better tools to risk-stratify patients and to identify those likely to experience relapse early. Additionally, the use of gene expression profiling and next-generation sequencing techniques in recent years has led to a wealth of knowledge regarding the molecular drivers of lymphomagenesis; however, much of this knowledge is not currently applicable on a day to day basis in the clinic setting. Further studies are needed to determine a validated, clinically relevant predictive model that incorporates patient factors and molecular factors that will guide clinicians on the most effective treatment strategy. With many questions left unanswered, it is our opinion that the treatment of FL and sequencing of therapy in the R/R setting should be a personalized approach that balances patient-specific factors such as preferences and comorbidities with treatment-related factors such as known response rates and toxicity profiles.
Collapse
|
47
|
Lopez-Santillan M, Larrabeiti-Etxebarria A, Arzuaga-Mendez J, Lopez-Lopez E, Garcia-Orad A. Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: a systematic review. Oncotarget 2018; 9:22850-22861. [PMID: 29854319 PMCID: PMC5978269 DOI: 10.18632/oncotarget.25230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy, with highly variable outcomes among patients. Although classification and prognostic tools have been developed, standard therapy still fails in 30-40% of patients. Hence, identification of novel biomarkers is needed. Recently, circulating microRNAs (miRNAs) have been suggested as non-invasive biomarkers in cancer. Our aim was to review the potential role of circulating miRNAs as biomarkers for diagnosis, classification, prognosis, and treatment response in DLBCL. We performed a search in PubMed using the terms [((‘Non-coding RNA’) OR (‘microRNA’ OR ‘miRNA’ OR ‘miR’) OR (‘exosome’) OR (‘extracellular vesicle’) OR (‘secretome’)) AND (‘Diffuse large B cell lymphoma’ OR ‘DLBCL’)] to identify articles that evaluated the impact of circulating miRNAs as diagnosis, subtype, treatment response or prognosis biomarkers in DLBCL in human population. Among the twelve articles that met the inclusion criteria, eleven considered circulating miRNAs as biomarkers for diagnosis, two for classification, and five for prognosis or treatment response. The limited number of studies performed and lack of consistency in results make it difficult to draw conclusions about the role of circulating miRNAs as non-invasive biomarkers in DLBCL. Although the preliminary associations observed seem promising, the only consistent result is the upregulation of mir-21 in DLBCL patients, which could be a biomarker for diagnosis. Further studies are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Medical Oncology Service, Basurto University Hospital, Bilbao, Spain
| | - Ane Larrabeiti-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Pharmacy Service, Araba University Hospital-Txagorritxu, Vitoria, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,Hematology and Hemotherapy Service, Cruces University Hospital, Barakaldo, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursery, University of The Basque Country (UPV/EHU), Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
48
|
Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood 2018; 131:2670-2681. [PMID: 29545328 DOI: 10.1182/blood-2017-11-817601] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection is endemic in some parts of Asia, Africa, and South America and remains to be a significant public health problem in these areas. It is known as a leading risk factor for the development of hepatocellular carcinoma, but epidemiological studies have also shown that the infection may increase the incidence of several types of B-cell lymphoma. Here, by characterizing altogether 275 Chinese diffuse large B-cell lymphoma (DLBCL) patients, we showed that patients with concomitant HBV infection (surface antigen positive [HBsAg+]) are characterized by a younger age, a more advanced disease stage at diagnosis, and reduced overall survival. Furthermore, by whole-genome/exome sequencing of 96 tumors and the respective peripheral blood samples and targeted sequencing of 179 tumors from these patients, we observed an enhanced rate of mutagenesis and a distinct set of mutation targets in HBsAg+ DLBCL genomes, which could be partially explained by the activities of APOBEC and activation-induced cytidine deaminase. By transcriptome analysis, we further showed that the HBV-associated gene expression signature is contributed by the enrichment of genes regulated by BCL6, FOXO1, and ZFP36L1. Finally, by analysis of immunoglobulin heavy chain gene sequences, we showed that an antigen-independent mechanism, rather than a chronic antigenic simulation model, is favored in HBV-related lymphomagenesis. Taken together, we present the first comprehensive genomic and transcriptomic study that suggests a link between HBV infection and B-cell malignancy. The genetic alterations identified in this study may also provide opportunities for development of novel therapeutic strategies.
Collapse
|
49
|
Ohgami RS, Rosenwald A, Bagg A. Next-Generation Sequencing for Lymphomas: Perfecting a Pipeline for Personalized Pathobiologic and Prognostic Predictions. J Mol Diagn 2018; 20:163-165. [PMID: 29355824 DOI: 10.1016/j.jmoldx.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/28/2022] Open
Abstract
This commentary highlights the article by Hung et al that details the design and implementation of a 32-gene next-generation sequencing panel for lymphomas and compares hybrid-capture with amplicon-based next-generation sequencing approaches.
Collapse
Affiliation(s)
- Robert S Ohgami
- Department of Pathology, Stanford University, Stanford, California.
| | | | - Adam Bagg
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Baliakas P, Mattsson M, Hadzidimitriou A, Minga E, Agathangelidis A, Sutton LA, Scarfo L, Davis Z, Yan XJ, Plevova K, Sandberg Y, Vojdeman FJ, Tzenou T, Chu CC, Veronese S, Mansouri L, Smedby KE, Giudicelli V, Nguyen-Khac F, Panagiotidis P, Juliusson G, Anagnostopoulos A, Lefranc MP, Trentin L, Catherwood M, Montillo M, Niemann CU, Langerak AW, Pospisilova S, Stavroyianni N, Chiorazzi N, Oscier D, Jelinek DF, Shanafelt T, Darzentas N, Belessi C, Davi F, Ghia P, Rosenquist R, Stamatopoulos K. No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica 2017; 103:e158-e161. [PMID: 29269523 DOI: 10.3324/haematol.2017.182634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Panagiotis Baliakas
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Mattias Mattsson
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.,Department of Hematology, Uppsala University Hospital, Sweden
| | | | - Eva Minga
- Institute of Applied Biosciences, Thessaloniki, Greece
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Thessaloniki, Greece.,Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program in CLL, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lesley-Ann Sutton
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lydia Scarfo
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program in CLL, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zadie Davis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Karla Plevova
- CEITEC-Central European Institute of Technology, MasarykBrno, Czech Republic.,University Hospital Brno, Czech Republic
| | - Yorick Sandberg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Fie J Vojdeman
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Tatiana Tzenou
- First Department of Propaedeutic Medicine, University of Athens, Greece
| | - Charles C Chu
- The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Silvio Veronese
- Molecular Pathology Unit and Haematology Department, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | - Larry Mansouri
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Karin E Smedby
- Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet, and Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Véronique Giudicelli
- IMGT®, the international ImMunoGeneTics information system®, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier, France
| | - Florence Nguyen-Khac
- Hematology Department and University Pierre et Marie Curie, Hopital Pitie-Salpetriere, Paris, France
| | | | - Gunnar Juliusson
- Lund University and Hospital Department of Hematology, Lund Stem Cell Center, Sweden
| | | | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier, France
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Mark Catherwood
- Department of Hemato-Oncology, Belfast City Hospital, Belfast, UK
| | - Marco Montillo
- Molecular Pathology Unit and Haematology Department, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | | | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Sarka Pospisilova
- CEITEC-Central European Institute of Technology, MasarykBrno, Czech Republic.,University Hospital Brno, Czech Republic
| | - Niki Stavroyianni
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | | | - Tait Shanafelt
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nikos Darzentas
- CEITEC-Central European Institute of Technology, MasarykBrno, Czech Republic
| | | | - Frederic Davi
- Hematology Department and University Pierre et Marie Curie, Hopital Pitie-Salpetriere, Paris, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program in CLL, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Rosenquist
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden .,Institute of Applied Biosciences, Thessaloniki, Greece.,Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| |
Collapse
|