1
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Calcineurin regulates the stability and activity of estrogen receptor α. Proc Natl Acad Sci U S A 2021; 118:2114258118. [PMID: 34711683 DOI: 10.1073/pnas.2114258118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118 Finally, the expression of the calcineurin A-α gene (PPP3CA) was associated with poor prognosis in ER-α-positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α-positive breast cancer.
Collapse
|
3
|
Sala E, Vived C, Luna J, Saavedra-Ávila NA, Sengupta U, Castaño AR, Villar-Pazos S, Haba L, Verdaguer J, Ropero AB, Stratmann T, Pizarro J, Vázquez-Carrera M, Nadal A, Lahti JM, Mora C. CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model. Front Immunol 2021; 12:634797. [PMID: 33664748 PMCID: PMC7923961 DOI: 10.3389/fimmu.2021.634797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.
Collapse
Affiliation(s)
- Ester Sala
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Celia Vived
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Júlia Luna
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Noemí Alejandra Saavedra-Ávila
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Upasana Sengupta
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - A. Raúl Castaño
- Departament of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Sabrina Villar-Pazos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Laura Haba
- Experimental Diabetes Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Ana B. Ropero
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Diabetes and Associated Metabolic Disorders CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| |
Collapse
|
4
|
Young BD, Serrano XM, Rosales SM, Miller MW, Williams D, Traylor-Knowles N. Innate immune gene expression in Acropora palmata is consistent despite variance in yearly disease events. PLoS One 2020; 15:e0228514. [PMID: 33091033 PMCID: PMC7580945 DOI: 10.1371/journal.pone.0228514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Coral disease outbreaks are expected to increase in prevalence, frequency and severity due to climate change and other anthropogenic stressors. This is especially worrying for the Caribbean branching coral Acropora palmata which has already seen an 80% decrease in cover primarily due to disease. Despite the importance of this keystone species, there has yet to be a characterization of its transcriptomic response to disease exposure. In this study we provide the first transcriptomic analysis of 12 A. palmata genotypes and their symbiont Symbiodiniaceae exposed to disease in 2016 and 2017. Year was the primary driver of gene expression variance for A. palmata and the Symbiodiniaceae. We hypothesize that lower expression of ribosomal genes in the coral, and higher expression of transmembrane ion transport genes in the Symbiodiniaceae indicate that a compensation or dysbiosis may be occurring between host and symbiont. Disease response was the second driver of gene expression variance for A. palmata and included a core set of 422 genes that were significantly differentially expressed. Of these, 2 genes (a predicted cyclin-dependent kinase 11b and aspartate 1-decarboxylase) showed negative Log2 fold changes in corals showing transmission of disease, and positive Log2 fold changes in corals showing no transmission of disease, indicating that these may be important in disease resistance. Co-expression analysis identified two modules positively correlated to disease exposure, one enriched for lipid biosynthesis genes, and the other enriched in innate immune genes. The hub gene in the immune module was identified as D-amino acid oxidase, a gene implicated in phagocytosis and microbiome homeostasis. The role of D-amino acid oxidase in coral immunity has not been characterized but could be an important enzyme for responding to disease. Our results indicate that A. palmata mounts a core immune response to disease exposure despite differences in the disease type and virulence between 2016 and 2017. These identified genes may be important for future biomarker development in this Caribbean keystone species.
Collapse
Affiliation(s)
- Benjamin D. Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Xaymara M. Serrano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, United States of America
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
| | - Margaret W. Miller
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, United States of America
- SECORE International, Miami, FL, United States of America
| | - Dana Williams
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, United States of America
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
5
|
Reid BM, Permuth JB, Chen YA, Fridley BL, Iversen ES, Chen Z, Jim H, Vierkant RA, Cunningham JM, Barnholtz-Sloan JS, Narod S, Risch H, Schildkraut JM, Goode EL, Monteiro AN, Sellers TA. Genome-wide Analysis of Common Copy Number Variation and Epithelial Ovarian Cancer Risk. Cancer Epidemiol Biomarkers Prev 2019; 28:1117-1126. [PMID: 30948450 DOI: 10.1158/1055-9965.epi-18-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/02/2018] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Germline DNA copy number variation (CNV) is a ubiquitous source of genetic variation and remains largely unexplored in association with epithelial ovarian cancer (EOC) risk. METHODS CNV was quantified in the DNA of approximately 3,500 cases and controls genotyped with the Illumina 610k and HumanOmni2.5M arrays. We performed a genome-wide association study of common (>1%) CNV regions (CNVRs) with EOC and high-grade serous (HGSOC) risk and, using The Cancer Genome Atlas (TCGA), performed in silico analyses of tumor-gene expression. RESULTS Three CNVRs were associated (P < 0.01) with EOC risk: two large (∼100 kb) regions within the 610k set and one small (<5 kb) region with the higher resolution 2.5M data. Large CNVRs included a duplication at LILRA6 (OR = 2.57; P = 0.001) and a deletion at CYP2A7 (OR = 1.90; P = 0.007) that were strongly associated with HGSOC risk (OR = 3.02; P = 8.98 × 10-5). Somatic CYP2A7 alterations correlated with EGLN2 expression in tumors (P = 2.94 × 10-47). An intronic ERBB4/HER4 deletion was associated with reduced EOC risk (OR = 0.33; P = 9.5 × 10-2), and somatic deletions correlated with ERBB4 downregulation (P = 7.05 × 10-5). Five CNVRs were associated with HGSOC, including two reduced-risk deletions: one at 1p36.33 (OR = 0.28; P = 0.001) that correlated with lower CDKIIA expression in TCGA tumors (P = 2.7 × 10-7), and another at 8p21.2 (OR = 0.52; P = 0.002) that was present somatically where it correlated with lower GNRH1 expression (P = 5.9 × 10-5). CONCLUSIONS Though CNV appears to not contribute largely to EOC susceptibility, a number of low-to-common frequency variants may influence the risk of EOC and tumor-gene expression. IMPACT Further research on CNV and EOC susceptibility is warranted, particularly with CNVs estimated from high-density arrays.
Collapse
Affiliation(s)
- Brett M Reid
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Y Ann Chen
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | - Zhihua Chen
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Heather Jim
- Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Steven Narod
- Center for Research in Women's Health, Toronto, Ontario, Canada
| | - Harvey Risch
- Yale School of Public Health, New Haven, Connecticut
| | | | - Ellen L Goode
- Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
6
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells. Curr Drug Targets 2019; 20:690-704. [DOI: 10.2174/1389450119666181015114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiologia Celular. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
8
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Mechanisms that Increase Stability of Estrogen Receptor Alpha in Breast Cancer. Clin Breast Cancer 2016; 17:1-10. [PMID: 27561704 DOI: 10.1016/j.clbc.2016.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor alpha (ER) is a transcriptional regulator that controls the expression of genes related to cellular proliferation and differentiation in normal mammary tissue. However, the expression, abundance, and activity of this receptor are increased in 70% of breast cancers. The ER upregulation is facilitated by several molecular mechanisms, including protein stability, which represents an important strategy to maintain an active and functional repertoire of ER. Several proteins interact and protect ER from degradation by the ubiquitin-proteasome system. Through diverse mechanisms, these proteins prevent polyubiquitination and degradation of ER, leading to an increase in ER protein levels; consequently, estrogen signaling and its physiologic effects are enhanced in breast cancer cells. Thus, increased protein stability seems to be one of the main reasons that ER is upregulated in breast cancer. Here, we highlight findings on the proteins and mechanisms that participate directly or indirectly in ER stability and their relevance to breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
9
|
Chi Y, Huang S, Peng H, Liu M, Zhao J, Shao Z, Wu J. Critical role of CDK11(p58) in human breast cancer growth and angiogenesis. BMC Cancer 2015; 15:701. [PMID: 26470709 PMCID: PMC4608324 DOI: 10.1186/s12885-015-1698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/07/2015] [Indexed: 11/24/2022] Open
Abstract
Background A capillary network is needed in cancer growth and metastasis. Induction of angiogenesis represents one of the major hallmarks of cancer. CDK11p58, a Ser/Thr kinase that belongs to the Cell Division Cycle 2-like 1 (CDC2L1) subfamily is associated with cell cycle progression, tumorigenesis, sister chromatid cohesion and apoptotic signaling. However, its role in breast cancer proliferation and angiogenesis remains unclear. Methods Tumorigenicity assays and blood vessel assessment in athymic mice were used to assess the function of CDK11p58 in tumor proliferation and angiogenesis. CCK-8 assay was used to detect breast cancer cell growth. Immunohistochemistry was used to detect the expression of vascular endothelial growth factor (VEGF), CD31 and CD34 in CDK11 positive patient breast cancer tissues. Dual-Luciferase array was used to analyze the function of CDK11p58 in the regulation of VEGF promoter activity. Western blot was used to detect related protein expression levels. Results CDK11p58 inhibited breast cancer growth and angiogenesis in breast cancer cells and in nude mice transplanted with tumors. Immunohistochemistry confirmed that CDK11p58 was negatively associated with angiogenesis-related proteins such as VEGF, CD31 and CD34 in breast cancer patients. Real-time PCR and dual-luciferase assay showed CDK11p58 inhibited the mRNA levels of VEGF and the promoter activity of VEGF. As CDK11p58 is a Ser/Thr kinase, the kinase-dead mutant failed to inhibit VEGF mRNA and promoter activity. Western blot analysis showed the same pattern of related protein expression. The data suggested angiogenesis inhibition was dependent on CDK11p58 kinase activity. Conclusion This study indicates that CDK11p58 inhibits the growth and angiogenesis of breast cancer dependent on its kinase activity. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1698-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yayun Chi
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Haojie Peng
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengying Liu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jun Zhao
- School of Biomedical Engineering, hanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhiming Shao
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiong Wu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
10
|
Shi L, Xia TS, Wei XL, Zhou W, Xue J, Cheng L, Lou P, Li C, Wang Y, Wei JF, Ding Q. Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer. Oncotarget 2015; 6:12264-78. [PMID: 25881544 PMCID: PMC4494937 DOI: 10.18632/oncotarget.3654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/26/2015] [Indexed: 02/05/2023] Open
Abstract
Estrogen receptors (ERs), including ERα and ERβ, mainly mediate the genotype effect of estrogen. ERα is highly expressed in most breast cancers. Endocrine therapy is the most effective and safety adjunctive therapy for ER positive breast cancers. RNPC1, an RNA binding protein (RBP), post-transcriptionally regulating gene expression, is emerging as a critical mechanism for gene regulation in mammalian cells. In this study, we revealed RNPC1's capability of regulating ERα expression. There was a significant correlation between RNPC1 and ERα expression in breast cancer tissues. Ectopic expression of RNPC1 could increase ERα transcript and expression in breast cancer cells, and vice versa. Consistent with this, RNPC1 was able to bind to ERα transcript to increase its stability. Furthermore, overexpression of ERα could decrease the level of RNPC1 transcript and protein. It suggested a novel mechanism by which ERα expression was regulated via stabilizing mRNA. A regulatory feedback loop between RNPC1 and ERα was proved. It indicated that RNPC1 played a crucial role in ERα regulation in ER-positive breast cancers via binding to ERα mRNA. These findings might provide new insights into breast cancer endocrine therapy and ERα research.
Collapse
Affiliation(s)
- Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wenbin Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jinqiu Xue
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Peipei Lou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chunlian Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Abstract
Summary Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials.
Collapse
|
12
|
Chai F, Liang Y, Bi J, Chen L, Zhang F, Cui Y, Jiang J. REGγ regulates ERα degradation via ubiquitin-proteasome pathway in breast cancer. Biochem Biophys Res Commun 2014; 456:534-40. [PMID: 25490392 DOI: 10.1016/j.bbrc.2014.11.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 02/07/2023]
Abstract
REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin-proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.
Collapse
Affiliation(s)
- Fan Chai
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yan Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiong Bi
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080, China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fan Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Chi Y, Huang S, Wang L, Zhou R, Wang L, Xiao X, Li D, Cai Y, Zhou X, Wu J. CDK11p58 inhibits ERα-positive breast cancer invasion by targeting integrin β3 via the repression of ERα signaling. BMC Cancer 2014; 14:577. [PMID: 25106495 PMCID: PMC4138392 DOI: 10.1186/1471-2407-14-577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Background CDK11p58, a Ser/Thr kinase that belongs to the cell division cycle 2-like 1 (CDC2L1) subfamily, is associated with cell cycle progression, tumorigenesis and apoptotic signaling. CDK11p58 is also involved in the regulation of steroid receptors, such as androgen and estrogen receptors. We previously found that CDK11p58 was abnormally expressed in prostate cancer. However, its role in breast cancer remains unclear. Methods CDK11p58 expression was evaluated by immunohistochemical staining in a tissue array. A Transwell assay was used to detect invasion and metastasis in breast cancer cells. The TaqMan® Metastasis Gene Expression Assay was used to search for potential downstream factors in the CDK11p58 signaling pathway. qRT-PCR was used to evaluate mRNA levels, and the dual luciferase array was used to analyze promoter activity. Western blotting was used to detect the protein level. Results CDK11p58 expression was negatively correlated with node status (P = 0.012), relapse status (P = 0.002) and metastasis status (P = 0.023). Kaplan-Meier survival curves indicated that the disease-free survival (DFS) was significantly poor in breast cancer patients with low CDK11 expression. Interestingly, using the breast cancer cell lines ZR-75-30 and MDA-MB-231, we found that CDK11p58 was capable of repressing the migration and invasion of ERα-positive breast cancer cells, but not ERα-negative breast cancer cells, in a kinase-dependent manner. Gene expression assays demonstrated that integrin β3 mRNA was dramatically repressed by CDK11p58, and luciferase results confirmed that the integrin β3 promoter was inhibited by CDK11p58 through ERα repression. The expression of integrin β3 was highly related to ERα signaling; ERα overexpression stimulated integrin β3 expression, whereas siRNA-mediated knockdown of ERα attenuated integrin β3 expression. Conclusions These data indicate that CDK11p58 is an anti-metastatic gene in ERα-positive breast cancer and that the regulation of integrin β3 by CDK11p58 via the repression of ERα signaling may constitute part of a signaling pathway underlying breast cancer invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiong Wu
- Breast Cancer Institute; Department of Breast Surgery, Fudan University Shanghai Cancer Center, Building 7, No, 270 Dong An Road, Shanghai 200032, China.
| |
Collapse
|
14
|
Rajbhandari P, Schalper KA, Solodin NM, Ellison-Zelski SJ, Ping Lu K, Rimm DL, Alarid ET. Pin1 modulates ERα levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene 2013; 33:1438-47. [PMID: 23542176 DOI: 10.1038/onc.2013.78] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
Estrogen receptor-alpha (ERα) is an important biomarker used to classify and direct therapy decisions in breast cancer (BC). Both ERα protein and its transcript, ESR1, are used to predict response to tamoxifen therapy, yet certain tumors have discordant levels of ERα protein and ESR1, which is currently unexplained. Cellular ERα protein levels can be controlled post-translationally by the ubiquitin-proteasome pathway through a mechanism that depends on phosphorylation at residue S118. Phospho-S118 (pS118-ERα) is a substrate for the peptidyl prolyl isomerase, Pin1, which mediates cis-trans isomerization of the pS118-P119 bond to enhance ERα transcriptional function. Here, we demonstrate that Pin1 can increase ERα protein without affecting ESR1 transcript levels by inhibiting proteasome-dependent receptor degradation. Pin1 disrupts ERα ubiquitination by interfering with receptor interactions with the E3 ligase, E6AP, which also is shown to bind pS118-ERα. Quantitative in situ assessments of ERα protein, ESR1, and Pin1 in human tumors from a retrospective cohort show that Pin1 levels correlate with ERα protein but not to ESR1 levels. These data show that ERα protein is post-translationally regulated by Pin1 in a proportion of breast carcinomas. As Pin1 impacts both ERα protein levels and transactivation function, these data implicate Pin1 as a potential surrogate marker for predicting outcome of ERα-positive BC.
Collapse
Affiliation(s)
- P Rajbhandari
- Department of Oncology, UW Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - K A Schalper
- Department of Pathology, Yale University Medical School, New Haven, CT, USA
| | - N M Solodin
- Department of Oncology, UW Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - S J Ellison-Zelski
- Department of Oncology, UW Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - K Ping Lu
- Department of Medicine, Cancer Biology Program, Beth Isreal Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D L Rimm
- Department of Pathology, Yale University Medical School, New Haven, CT, USA
| | - E T Alarid
- Department of Oncology, UW Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Gupta N, Grebhardt S, Mayer D. Janus kinase 2--a novel negative regulator of estrogen receptor α function. Cell Signal 2011; 24:151-61. [PMID: 21907792 DOI: 10.1016/j.cellsig.2011.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) functions as a transcription factor to regulate a wide range of cellular activities in response to 17β-estradiol (E2). The regulation of ERα transcriptional activity is highly complex and not yet fully understood. In this respect, recent studies have highlighted the importance of certain cellular protein kinases. To identify novel protein kinases regulating ERα activity, we performed a high-throughput siRNA screening in combination with a luciferase reporter assay in an ERα positive breast cancer cell line. Among the vast majority of potential positive regulators, we found Janus kinase 2 (JAK2), a member of the Janus kinase family of non-receptor tyrosine kinases, to have a negative regulatory effect on E2 induced luciferase activity. In addition, silencing of JAK2 resulted in increased expression of endogenous ERα target genes, pS2 and GREB1. In an attempt to understand the mechanism underlying JAK2 mediated regulation of ERα transcriptional activity, we found that JAK2 negatively regulates ERα protein level. Gene expression analysis revealed no significant influence of JAK2 on ERα mRNA level. Subsequently, a role of JAK2 in regulating ERα protein degradation was analyzed. Inhibition of the lysosome did not alter JAK2 mediated downregulation of ERα. In contrast, using proteasome inhibitors MG132 and lactacystin, we demonstrated that JAK2 governs ERα protein stability via the ubiquitin-proteasome pathway. In contrast to JAK2, the two other members of the JAK family expressed in the breast (JAK1 and TYK2) had no influence on ERα function. In addition, we found that prolonged E2 treatment upregulates JAK2 mRNA and protein levels. These results suggest a novel negative regulation of ERα activity and protein by JAK2 in breast cancer cells and indicate a potential new cross-talk.
Collapse
Affiliation(s)
- Nibedita Gupta
- Hormones and Signal Transduction Group, German Cancer Research Centre, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Wang WZ, Liu HO, Wu YH, Hong Y, Yang JW, Liu YH, Wu WB, Zhou L, Sun LL, Xu JJ, Yun XJ, Gu JX. Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:140. [PMID: 21040551 PMCID: PMC2989947 DOI: 10.1186/1756-9966-29-140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/01/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND HBO1 (histone acetyltransferase binding to ORC1) is a histone acetyltransferase (HAT) which could exert oncogenic function in breast cancer. However, the biological role and underlying mechanism of HBO1 in breast cancer remains largely unknown. In the current study, we aimed to investigate the role of HBO1 in breast cancer and uncover the underlying molecular mechanism. METHODS Immunohistochemistry was applied to detect HBO1 protein expression in breast cancer specimens (n=112). The expression of protein level was scored by integral optical density (IOD) for further statistical analyses using SPSS. Real-time PCR was used to simultaneously measure mRNA levels of HBO1. The HBO1 protein expression in breast cancer cells was confirmed by western blot. RESULTS HBO1 was highly expressed in breast cancer tissues and significantly correlated with estrogen receptor α (ERα) (p<0.001) and progestational hormone (PR) (p=0.002). HBO1 protein level also correlated positively with histology grade in ERα positive tumors (p=0.016) rather than ERα negative tumors. 17β-estradiol (E2) could upregulate HBO1 gene expression which was significantly inhibited by ICI 182,780 or ERα RNAi. E2-increased HBO1 protein expression was significantly suppressed by treatment with inhibitor of MEK1/2 (U0126) in T47 D and MCF-7 cells. CONCLUSIONS HBO1 was an important downstream molecule of ERα, and ERK1/2 signaling pathway may involved in the expression of HBO1 increased by E2.
Collapse
Affiliation(s)
- Wen-zhong Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|