1
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025:1-17. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Haycock J, Maehr T, Dastjerdi A, Steinbach F. Asian elephant interferons alpha and beta and their anti-herpes viral activity. Front Immunol 2025; 16:1533038. [PMID: 40201174 PMCID: PMC11975597 DOI: 10.3389/fimmu.2025.1533038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
The type I interferons (IFNs) are a group of key cytokines of the vertebrate innate immune system that induce an antiviral state in uninfected cells. Experimental in-vitro and in-vivo data have proven the fundamental role these cytokines possess in the protective response to a wide variety of pathogens, including herpesviruses. In a clinical setting, IFNs have been an important treatment in humans for several decades and increasing evidence demonstrates their potential in controlling viral haemorrhagic fevers when administered early in disease. In juvenile Asian elephants, elephant endotheliotropic herpesvirus haemorrhagic disease (EEHV-HD) often proves fatal when an effective adaptive immune response cannot be mounted in time, suggesting that an enhancement of the innate immune response could provide protection. This study sequenced six members of the Asian elephant type I IFNs, most closely related to sequences from the African elephant and Florida manatee. Subsequently, recombinant Asian elephant IFNα and IFNβ proteins were expressed and assessed for bioactivity in-vitro, relative to recombinant human IFNs, using a novel infection model incorporating primary Asian elephant fibroblasts and bovine alphaherpesvirus 1 (BoHV-1) as a surrogate for EEHV. In a dose-dependent manner, both Asian elephant IFNs and human IFNα2a protected cells from BoHV-1 infection in this proof-of-concept study, even if applied up to 24 hours post-infection in-vitro.
Collapse
Affiliation(s)
- Jonathan Haycock
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Tanja Maehr
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Akbar Dastjerdi
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Falko Steinbach
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
3
|
Gao J, Ding M, Xiyang Y, Qin S, Shukla D, Xu J, Miyagi M, Fujioka H, Liang J, Wang X. Aggregatin is a mitochondrial regulator of MAVS activation to drive innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:238-252. [PMID: 40073244 PMCID: PMC11878994 DOI: 10.1093/jimmun/vkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 03/14/2025]
Abstract
Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation. Here we show that Aggregatin serves as a cross-seed for MAVS aggregates on mitochondria to orchestrate innate immune signaling. Aggregatin is primarily localized to mitochondria in the cytosol and has the ability to induce MAVS aggregation and MAVS-dependent IFN-I responses alone in both HEK293 cells and human leukemia monocytic THP-1 cells. Mitochondrial Aggregatin level increases upon viral infection. Also, Aggregatin knockout suppresses viral infection-induced MAVS aggregation and IFN-I signal cascade activation. Nemo-like kinase is further identified as a kinase phosphorylating Aggregatin at Ser59 to regulate its stability and cross-seeding activity. Collectively, our finding reveals an important physiological function of Aggregatin in innate immunity by cross-seeding MAVS aggregation.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Yanbin Xiyang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Siyue Qin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Devanshi Shukla
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Jiawei Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, United States
| | - Jingjing Liang
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Kirby D, Zilman A. Ligand-induced receptor multimerization achieves specificity enhancement of kinetic proofreading without associated costs. Phys Rev E 2025; 111:024408. [PMID: 40103052 DOI: 10.1103/physreve.111.024408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 03/20/2025]
Abstract
Kinetic proofreading (KPR) is a commonly invoked mechanism for specificity enhancement of receptor signaling. However, specificity enhancement comes at a cost of nonequilibrium energy input and signal attenuation. We show that ligand-induced multimeric receptor assembly can enhance receptor specificity to the same degree as KPR, yet without the need for out-of-equilibrium energy expenditure and signal loss. We show how multimeric receptor specificity enhancement arises from the amplification of affinity differences via sequential progression down a free energy landscape. We also show that multimeric receptor ligand recognition is more robust to stochastic fluctuations and molecular noise than KPR receptors. Finally, we show that multimeric receptors perform signaling tasks beyond specificity enhancement like absolute discrimination and aspects of ligand antagonism. Our results suggest that multimeric receptors may serve as a potent mechanism of ligand discrimination comparable to and potentially with more advantages than traditional proofreading.
Collapse
Affiliation(s)
- Duncan Kirby
- University of Toronto, Department of Physics, , Toronto, Ontario, Canada M5S 1A7
| | - Anton Zilman
- University of Toronto, Department of Physics, , Toronto, Ontario, Canada M5S 1A7
- University of Toronto, Institute for Bioengineering, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
5
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024; 67:58-72. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
6
|
Wang J, Huang M, Du Y, Chen H, Li Z, Zhai T, Ou Z, Huang Y, Bu F, Zhen H, Pan R, Wang Y, Zhao X, Situ B, Zheng L, Hu X. Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. Probiotics Antimicrob Proteins 2024; 16:1966-1978. [PMID: 37624569 PMCID: PMC11573810 DOI: 10.1007/s12602-023-10137-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Numerous recent studies have demonstrated that the commensal microbiota plays an important role in host immunity against infections. During the infection process, viruses can exhibit substantial and close interactions with the commensal microbiota. However, the associated mechanism remains largely unknown. Therefore, in this study, we explored the specific mechanisms by which the commensal microbiota modulates host immunity against viral infections. We found that the expression levels of type I interferon (IFN-I) and antiviral priming were significantly downregulated following the depletion of the commensal microbiota due to treatment with broad-spectrum antibiotics (ABX). In addition, we confirmed a unique molecular mechanism underlying the induction of IFN-I mediated by the commensal microbiota. In vivo and in vitro experiments confirmed that Lactobacillus rhamnosus GG (LGG) can suppress herpes simplex virus type 2 (HSV-2) infection by inducing IFN-I expression via the retinoic acid-inducible gene-I (RIG-I) signalling pathway. Therefore, the commensal microbiota-induced production of IFN-I provides a potential therapeutic approach to combat viral infections. Altogether, understanding the complexity and the molecular aspects linking the commensal microbiota to health will help provide the basis for novel therapies already being developed.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqi Du
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoming Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zixiong Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taiyu Zhai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haojun Zhen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoru Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohan Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
8
|
Papasavvas E, Lu L, Fair M, Oliva I, Cassel J, Majumdar S, Mounzer K, Kostman JR, Tebas P, Bar-Or A, Muthumani K, Montaner LJ. Cloning and Functional Characterization of Novel Human Neutralizing Anti-IFN-α and Anti-IFN-β Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:808-822. [PMID: 39109927 PMCID: PMC11575944 DOI: 10.4049/jimmunol.2400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Type I IFNs play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-β Abs from PBMCs of individuals treated with IFN-α or IFN-β, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-β1a-specific signaling and able to block lipopolysaccharide or S100 calcium-binding protein A14-induced IFN-β signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-β suggests potential for diverse research and clinical applications.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Lily Lu
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Matthew Fair
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Isabela Oliva
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Joel Cassel
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Sonali Majumdar
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
| | - Jay R. Kostman
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
- John Bell Health Center, Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, 19107, USA
| | - Pablo Tebas
- Department of Medicine, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
- Current Address: GeneOne Life Science Inc, Fort Washington, Pennsylvania, 19034, USA
| | - Luis J. Montaner
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
9
|
Ketharanathan T, Pereira A, Sundram S. Gene expression changes in Brodmann's Area 46 differentiate epidermal growth factor and immune system interactions in schizophrenia and mood disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:76. [PMID: 39242583 PMCID: PMC11379811 DOI: 10.1038/s41537-024-00488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/16/2024] [Indexed: 09/09/2024]
Abstract
How early in life stress-immune related environmental factors increase risk predisposition to schizophrenia remains unknown. We examined if pro-inflammatory changes perturb the brain epidermal growth factor (EGF) system, a system critical for neurodevelopment and mature CNS functions including synaptic plasticity. We quantified genes from key EGF and immune system pathways for mRNA levels and eight immune proteins in post-mortem dorsolateral prefrontal (DLPFC; Brodmann's Area (BA) 46) and orbitofrontal (OFC; BA11) cortices from people with schizophrenia, mood disorders and neurotypical controls. In BA46, 64 genes were differentially expressed, predominantly in schizophrenia, where attenuated expression of the MAPK-ERK, NRG1-PI3K-AKT and mTOR cascades indicated reduced EGF system signalling, and similarly diminished immune molecular expression, notably in TLR, TNF and complement pathways, along with low NF-κB1 and elevated IL12RB2 protein levels were noted. There was nominal evidence for altered convergence between ErbB-PI3K-AKT-mTOR and TLR pathways in BA46 in schizophrenia. Comparatively minimal changes were noted in BA11. Overall, distinct pathway gene expression changes may reflect variant pathological processes involving immune and EGF system signalling between schizophrenia and mood disorder, particularly in DLPFC. Further, the abnormal convergence between innate immune signalling and candidate EGF signalling pathways may indicate a pathologically important interaction in the developing brain in response to environmental stressors.
Collapse
Affiliation(s)
- Tharini Ketharanathan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia.
- Northern Health, Epping, VIC 3076, Australia.
| | - Avril Pereira
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
11
|
Huang S, Kang Y, Zheng R, Yang L, Gao J, Tang W, Jiang J, He J, Xie J. Two cytokine receptor family B (CRFB) members in orange-spotted grouper Epinephelus coioides, EcCRFB3 and EcCRFB4, negatively regulate interferon immune responses to assist nervous necrosis virus replication. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109718. [PMID: 38909635 DOI: 10.1016/j.fsi.2024.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Smeets MWE, Steeghs EMP, Orsel J, Stalpers F, Vermeeren MMP, Veltman CHJ, Slenders L, Nierkens S, Van de Ven C, Den Boer ML. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/β response in bone marrow-derived mesenchymal stroma. Haematologica 2024; 109:2073-2084. [PMID: 38426282 PMCID: PMC11215384 DOI: 10.3324/haematol.2023.283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can hijack the normal bone marrow microenvironment to create a leukemic niche which facilitates blast cell survival and promotes drug resistance. Bone marrow-derived mesenchymal stromal cells (MSC) mimic this protective environment in ex vivo co-cultures with leukemic cells obtained from children with newly diagnosed BCP-ALL. We examined the potential mechanisms of this protection by RNA sequencing of flow-sorted MSC after co-culture with BCP-ALL cells. Leukemic cells induced an interferon (IFN)-related gene signature in MSC, which was partially dependent on direct cell-cell signaling. The signature was selectively induced by BCP-ALL cells, most profoundly by ETV6-RUNX1-positive ALL cells, as co-culture of MSC with healthy immune cells did not provoke a similar IFN signature. Leukemic cells and MSC both secreted IFNα and IFNβ, but not IFNγ. In line, the IFN gene signature was sensitive to blockade of IFNα/β signaling, but less to that of IFNγ. The viability of leukemic cells and level of resistance to three chemotherapeutic agents was not affected by interference with IFN signaling using selective IFNα/β inhibitors or silencing of IFN-related genes. Taken together, our data suggest that the leukemia-induced expression of IFNα/β-related genes by MSC does not support survival of BCP-ALL cells but may serve a different role in the pathobiology of BCP-ALL.
Collapse
Affiliation(s)
- Mandy W E Smeets
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - Jan Orsel
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | | | | | | | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center, Utrecht
| | | | - Monique L Den Boer
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht.
| |
Collapse
|
13
|
Viox EG, Bosinger SE, Douek DC, Schreiber G, Paiardini M. Harnessing the power of IFN for therapeutic approaches to COVID-19. J Virol 2024; 98:e0120423. [PMID: 38651899 PMCID: PMC11092331 DOI: 10.1128/jvi.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Papasavvas E, Lu L, Fair M, Oliva I, Cassel J, Majumdar S, Mounzer K, Kostman JR, Tebas P, Bar-Or A, Muthumani K, Montaner LJ. Cloning and functional characterization of novel human neutralizing anti-interferon-alpha and anti-interferon-beta antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.591636. [PMID: 38746170 PMCID: PMC11092762 DOI: 10.1101/2024.05.05.591636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-β antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-β, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-β1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-β signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-β suggests potential for diverse research and clinical applications.
Collapse
|
15
|
Montenegro AFL, Clementino MAF, Yaochite JNU. Type I interferon pathway genetic variants in severe COVID-19. Virus Res 2024; 342:199339. [PMID: 38354910 PMCID: PMC10901847 DOI: 10.1016/j.virusres.2024.199339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. According to the World Health Organization (WHO), there have been over 760 million reported cases and over 6 million deaths caused by this disease worldwide. The severity of COVID-19 is based on symptoms presented by the patient and is divided as asymptomatic, mild, moderate, severe, and critical. The manifestations are interconnected with genetic variations. The innate immunity is the quickest response mechanism of an organism against viruses. Type I interferon pathway plays a key role in antiviral responses due to viral replication inhibition in infected cells and adaptive immunity stimulation induced by interferon molecules. Thus, variants in type I interferon pathway's genes are being studied in different COVID-19 manifestations. This review summarizes the role of variants in type I interferon pathway's genes on prognosis and severity progression of COVID-19.
Collapse
Affiliation(s)
- A F L Montenegro
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil
| | - M A F Clementino
- Laboratório de Toxinologia Molecular, NUBIMED - Núcleo de Biomedicina, Universidade Federal do Ceará - UFC. Fortaleza, Ceará, Brasil
| | - J N U Yaochite
- Laboratório de Imunologia Celular e Molecular, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará - UFC, Rua Pastor Samuel Munguba, 1210 - Rodolfo Teófilo, Fortaleza, Ceará, Brasil.
| |
Collapse
|
16
|
Maler MD, Zwick S, Kallfass C, Engelhard P, Shi H, Hellig L, Zhengyang P, Hardt A, Zissel G, Ruzsics Z, Jahnen-Dechent W, Martin SF, Nielsen PJ, Stolz D, Lopatecka J, Bastyans S, Beutler B, Schamel WW, Fejer G, Freudenberg MA. Type I Interferon, Induced by Adenovirus or Adenoviral Vector Infection, Regulates the Cytokine Response to Lipopolysaccharide in a Macrophage Type-Specific Manner. J Innate Immun 2024; 16:226-247. [PMID: 38527452 PMCID: PMC11023693 DOI: 10.1159/000538282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αβ) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-β was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αβ, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αβR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αβ by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αβ-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αβ-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-β pretreatment enhances the subsequent induction of IFN-αβ in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αβ overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.
Collapse
Affiliation(s)
- Mareike D. Maler
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Allergy Research Group, Department of Dermatology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sophie Zwick
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Carsten Kallfass
- Institute of Virology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peggy Engelhard
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura Hellig
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Pang Zhengyang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annika Hardt
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Willi Jahnen-Dechent
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Stefan F. Martin
- Allergy Research Group, Department of Dermatology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Jess Nielsen
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Daiana Stolz
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Justyna Lopatecka
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Sarah Bastyans
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - György Fejer
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Marina Alexandra Freudenberg
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
17
|
Yang Y, Zhang Q, Cai H, Feng Y, Wen A, Yang Y, Wen M. RNA-seq analysis of chlorogenic acid intervention in duck embryo fibroblasts infected with duck plague virus. Virol J 2024; 21:60. [PMID: 38454409 PMCID: PMC10921813 DOI: 10.1186/s12985-024-02312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Chlorogenic acid, the primary active component in Chinese medicines like honeysuckle, exhibits anti-inflammatory and antiviral effects. It has been demonstrated that chlorogenic acid effectively prevents and treats Duck enteritis virus (DEV) infection. This study aims to further elucidate the mechanism by which chlorogenic acid prevents DEV infection. METHODS Duck embryo fibroblast (DEF) cells were pre-treated with chlorogenic acid before being infected with DEV. Cell samples were collected at different time points for transcriptomic sequencing, while qPCR was used to detect the proliferation of DEV. Additionally, 30-day-old ducks were treated with chlorogenic acid, and their lymphoid organs were harvested for histopathological sections to observe pathological damage. The proliferation of DEV in the lymphoid organs was also detected using qPCR Based on the transcriptomic sequencing results, NF-κB1 gene was silenced by RNAi technology to analyze the effect of NF-κB1 gene on DEV proliferation. RESULTS Compared to the viral infection group, DEF cells in the chlorogenic acid intervention group exhibited significantly reduced DEV load (P < 0.05). Transcriptomic sequencing results suggested that chlorogenic acid inhibited DEV proliferation in DEF cells by regulating NF-κB signaling pathway. The results of RNAi silencing suggested that in the three treatment groups, compared with the DEV experimental group, there was no significant difference in the effect of pre-transfection after transfection on DEV proliferation, while both the pre-transfection after transfection and the simultaneous transfection group showed significant inhibition on DEV proliferation Furthermore, compared to the virus infection group, ducks in the chlorogenic acid intervention group showed significantly decreased DEV load in their lymphoid organs (P < 0.05), along with alleviated pathological damage such as nuclear pyretosis and nuclear fragmentation. CONCLUSIONS Chlorogenic acid effectively inhibits DEV proliferation in DEF and duck lymphatic organs, mitigates viral-induced pathological damage, and provides a theoretical basis for screening targeted drugs against DEV.
Collapse
Affiliation(s)
- Yunyun Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Qiandong Zhang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Haiqing Cai
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Yi Feng
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Anlin Wen
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ying Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ming Wen
- School of Animal Science, Guizhou University, Guiyang, China.
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China.
| |
Collapse
|
18
|
Savino F, Dini M, Clemente A, Calvi C, Pau A, Galliano I, Gambarino S, Bergallo M. Nasopharyngeal and Peripheral Blood Type II Interferon Signature Evaluation in Infants during Respiratory Syncytial Virus Infection. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:259. [PMID: 38399546 PMCID: PMC10890591 DOI: 10.3390/medicina60020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: In this study, we applied one-step real time rt-PCR technology type II INF signature to blood and nasopharyngeal (NPS) swabs of acute early recovery children < 1 years hospitalized for bronchiolitis with laboratory-confirmed RSV infection. Materials and Methods: A prospective observational case-control study was conducted in 2021-2022. The study took place in Children Hospital "Regina Margherita", Torino Italy. The study included 66 infants, of which 30 patients were hospitalized for bronchiolitis due to RSV infection and 36 age-matched controls. Inclusion criteria included a positive RSV test for infants with bronchiolitis. We collected peripheral blood and nasopharyngeal swabs for relative quantification of type II Interferon signature by One-Step Multiplex PCR real time. Results: IFN levels were downregulated in the peripheral blood of bronchiolitis patients; these data were not confirmed in the nasopharyngeal swab. There was no correlation between NPS and the type II IFN score in peripheral blood. Conclusions: our study shows for the first time that type II IFN score was significant reduced in peripheral blood of infants with bronchiolitis by RSV compared to age-matched healthy controls; in the NPS swab this resulted downregulation was not statistically significant and the type II IFN score in the NPS swab can be used as marker of resolution of infection or improvement of clinical conditions.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Maddalena Dini
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
| | - Anna Clemente
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
| | - Cristina Calvi
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Anna Pau
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
| | - Ilaria Galliano
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Stefano Gambarino
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
| | - Massimiliano Bergallo
- Paediatric Laboratory, Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10136 Turin, Italy; (M.D.); (A.C.); (C.C.); (A.P.); (I.G.)
- BioMole srl, Via Quarello 15/A, 10135 Turin, Italy
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| |
Collapse
|
19
|
de Weerd NA, Kurowska A, Mendoza JL, Schreiber G. Structure-function of type I and III interferons. Curr Opin Immunol 2024; 86:102413. [PMID: 38608537 PMCID: PMC11057355 DOI: 10.1016/j.coi.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton 3168, Victoria, Australia
| | - Aleksandra Kurowska
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Juan L. Mendoza
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel, 76100
| |
Collapse
|
20
|
Hormann FM, Mooij EJ, van de Mheen M, Beverloo HB, den Boer ML, Boer JM. The impact of an additional copy of chromosome 21 in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23217. [PMID: 38087879 DOI: 10.1002/gcc.23217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024] Open
Abstract
A common finding in pediatric B-cell precursor acute lymphoblastic leukemia (BCPALL) is that chromosome 21 is never lost and an extra chromosome 21 is often gained. This implies an important role for chromosome 21 in the pathobiology of BCPALL, emphasized by the increased risk of BCPALL in children with Down syndrome. However, model systems of chromosome 21 gain are lacking. We therefore developed a BCPALL cell line (Nalm-6, DUX4-rearranged) with an additional chromosome 21 by means of microcell-mediated chromosome transfer. FISH, PCR, multiplex ligation-dependent probe amplification, and whole exome sequencing showed that an additional chromosome 21 was successfully transferred to the recipient cells. Transcription of some but not all genes on chromosome 21 was increased, indicating tight transcriptional regulation. Nalm-6 cells with an additional chromosome 21 proliferated slightly slower compared with parental Nalm-6 and sensitivity to induction chemotherapeutics was mildly increased. The extra copy of chromosome 21 did not confer sensitivity to targeted signaling inhibitors. In conclusion, a BCPALL cell line with an additional human chromosome 21 was developed, validated, and subjected to functional studies, which showed a minor but potentially relevant effect in vitro. This cell line offers the possibility to study further the role of chromosome 21 in ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eva J Mooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
21
|
Karakoese Z, Le-Trilling VTK, Schuhenn J, Francois S, Lu M, Liu J, Trilling M, Hoffmann D, Dittmer U, Sutter K. Targeted mutations in IFNα2 improve its antiviral activity against various viruses. mBio 2023; 14:e0235723. [PMID: 37874130 PMCID: PMC10746204 DOI: 10.1128/mbio.02357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The potency of interferon (IFN)α to restrict viruses was already discovered in 1957. However, until today, only IFNα2 out of the 12 distinct human IFNα subtypes has been therapeutically used against chronic viral infections. There is convincing evidence that other IFNα subtypes are far more efficient than IFNα2 against many viruses. In order to identify critical antiviral residues within the IFNα subtype sequence, we designed hybrid molecules based on the IFNα2 backbone with individual sequence motifs from the more potent subtypes IFNα6 and IFNα14. In different antiviral assays with HIV or HBV, residues binding to IFNAR1 as well as combinations of residues in the IFNAR1 binding region, the putative tunable anchor, and residues outside these regions were identified to be crucial for the antiviral activity of IFNα. Thus, we designed artificial IFNα molecules, based on the clinically approved IFNα2 backbone, but with highly improved antiviral activity against several viruses.
Collapse
Affiliation(s)
- Zehra Karakoese
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
| | | | - Jonas Schuhenn
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Sandra Francois
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Mengji Lu
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Hoffmann
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Mutua F, Su RC, Mesa C, Lopez C, Ball TB, Kiazyk S. Type I interferons and Mycobacterium tuberculosis whole cell lysate induce distinct transcriptional responses in M. tuberculosis infection. Tuberculosis (Edinb) 2023; 143:102409. [PMID: 37729851 DOI: 10.1016/j.tube.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Type I interferon (IFN)-induced genes have the potential for distinguishing active tuberculosis (ATB) from latent TB infection (LTBI) and healthy controls (HC), monitoring treatment, and detection of individuals at risk of progression to active disease. We examined the differential effects of IFN-α, IFN-β and Mycobacterium tuberculosis whole cell lysate (Mtb WCL) stimulation on the expression of selected IFN-stimulated genes in peripheral blood mononuclear cells from individuals with either LTBI, ATB, and healthy controls. Stimulation with IFN-α and IFN-β induced a higher expression of the interrogated genes while Mtb WCL stimulation induced expression similar to that observed at baseline, with the exception of IL-1A and IL-1B genes that were downregulated. The expression of IFN-α-induced FCGR1A gene, IFN-β-induced FCGR1A, FCGR1B, and SOCS3 genes, and Mtb WCL-induced IFI44, IFI44L, IFIT1, and IFITM3 genes differed significantly between LTBI and ATB. These findings suggest stimulation-driven gene expression patterns could potentially discriminate LTBI and ATB. Mechanistic studies are necessary to define the processes through which distinct type I IFNs and downstream ISGs determine infection outcomes and identify potential host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Florence Mutua
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; Department of Medical Microbiology and Immunology, Kenyatta National Hospital Campus, University of Nairobi, Kenya
| | - Ruey-Chyi Su
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Christine Mesa
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Carmen Lopez
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Sandra Kiazyk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada.
| |
Collapse
|
23
|
Okuma N, Ito MA, Shimizu T, Hasegawa A, Ohmori S, Yoshida K, Matsuoka I. Amplification of poly(I:C)-induced interleukin-6 production in human bronchial epithelial cells by priming with interferon-γ. Sci Rep 2023; 13:21067. [PMID: 38030681 PMCID: PMC10687102 DOI: 10.1038/s41598-023-48422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Proinflammatory cytokine interleukin (IL)-6 was associated with disease severity in patients with COVID-19. The mechanism underlying the excessive IL-6 production by SARS-Cov-2 infection remains unclear. Respiratory viruses initially infect nasal or bronchial epithelial cells that produce various inflammatory mediators. Here, we show that pretreatment of human bronchial epithelial cells (NCl-H292) with interferon (IFN)-γ (10 ng/mL) markedly increased IL-6 production induced by the toll-like receptor (TLR) 3 agonist poly(I:C) (1 µg/mL) from 0.4 ± 0.1 to 4.1 ± 0.4 ng/mL (n = 3, P < 0.01). A similar effect was observed in human alveolar A549 and primary bronchial epithelial cells. TLR3 knockdown using siRNA in NCl-H292 cells diminished the priming effects of IFN-γ on poly(I:C)-induced IL-6 production. Furthermore, the Janus kinase (JAK) inhibitor tofacitinib (1 µM) inhibited IFN-γ-induced upregulation of TLR3, and suppressed poly(I:C)-induced IL-6 production. Quantitative chromatin immunoprecipitation revealed that IFN-γ stimulated histone modifications at the IL-6 gene locus. Finally, IFN-γ priming significantly increased lung IL-6 mRNA and protein levels in poly(I:C)-administrated mice. Thus, priming bronchial epithelial cells with IFN-γ increases poly(I:C)-induced IL-6 production via JAK-dependent TLR3 upregulation and chromatin remodeling at the IL-6 gene locus. These mechanisms may be involved in severe respiratory inflammation following infection with RNA viruses.
Collapse
Affiliation(s)
- Norikazu Okuma
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
- Department of Pharmacy, Japan Community Health Care Organization Gunma Chuo Hospital, Maebashi-shi, Gunma, 371-0025, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan.
| | - Tomoyoshi Shimizu
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
| | - Atsuya Hasegawa
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
| | - Shin'ya Ohmori
- Laboratory of Allergy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
24
|
Roussel L, Pham-Huy A, Yu AC, Venkateswaran S, Perez A, Bourdel G, Sun Y, Villavicencio ST, Bernier S, Li Y, Kazimerczak-Brunet M, Alattar R, Déry MA, Shapiro AJ, Penner J, Vinh DC. A Novel Homozygous Mutation Causing Complete TYK2 Deficiency, with Severe Respiratory Viral Infections, EBV-Driven Lymphoma, and Jamestown Canyon Viral Encephalitis. J Clin Immunol 2023; 43:2011-2021. [PMID: 37695435 DOI: 10.1007/s10875-023-01580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Autosomal recessive tyrosine kinase 2 (TYK2) deficiency is characterized by susceptibility to mycobacterial and viral infections. Here, we report a 4-year-old female with severe respiratory viral infections, EBV-driven Burkitt-like lymphoma, and infection with the neurotropic Jamestown Canyon virus. A novel, homozygous c.745C > T (p.R249*) variant was found in TYK2. The deleterious effects of the TYK2 lesion were confirmed by immunoblotting; by evaluating functional responses to IFN-α/β, IL-10, and IL-23; and by assessing its scaffolding effect on the cell surface expression of cytokine receptor subunits. The effects of the mutation could not be pharmacologically circumvented in vitro, suggesting that alternative modalities, such as hematopoietic stem cell transplantation or gene therapy, may be needed. We characterize the first patient from Canada with a novel homozygous mutation in TYK2.
Collapse
Affiliation(s)
- Lucie Roussel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Andrea C Yu
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Anna Perez
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourdel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yichun Sun
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stephanya Tellez Villavicencio
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stéphane Bernier
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yongbiao Li
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Makayla Kazimerczak-Brunet
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Rolan Alattar
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Marc-André Déry
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Adam J Shapiro
- Division of Respirology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Justin Penner
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, Qikiqtani General Hospital, Iqaluit, NT, Canada
| | - Donald C Vinh
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada.
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
25
|
Wu X, Yang W, Cheng JG, Luo Y, Fu WL, Zhou L, Wu J, Wang Y, Zhong ZJ, Yang ZX, Yao XP, Ren MS, Li YM, Liu J, Ding H, Chen JN. Molecular cloning, prokaryotic expression and its application potential evaluation of interferon (IFN)-ω of forest musk deer. Sci Rep 2023; 13:10625. [PMID: 37391585 PMCID: PMC10313714 DOI: 10.1038/s41598-023-37437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Forest musk deer (Moschus berezovskii) are currently a threatened species under conservation, and the development of captive populations is restricted by health problems. To evaluate the application potential of interferon (IFN)-ω in the prevention and control of forest musk deer disease, 5 forest musk deer IFN-ω (fmdIFNω) gene sequences were successfully obtained by homologous cloning method for the first time. FmdIFNω5 was selected and recombinant fmdIFNω protein (rIFNω) was successfully expressed by pGEX-6P-1 plasmid and E. coli expression system. The obtained protein was used to stimulate forest musk deer lung fibroblasts cells FMD-C1 to determine its regulatory effect on interferon-stimulated genes (ISGs). In addition, an indirect ELISA method based on anti-rIFNω serum was established to detect endogenous IFN-ω levels in 8 forest musk deer. The results showed that there were 18 amino acid differences among the 5 fmdIFNω subtypes, all of which had the basic structure to exert the activity of type I IFN and were close to Cervus elaphus IFN-ω in the phylogenetic tree. The protein expressed was 48 kDa, and the transcription levels of all ISGs were increased in FMD-C1 cells stimulated by rIFNω, and the amount of transcription accumulation was time-dependent. Meanwhile, Anti-rIFNω serum of mice could react with both rIFNω and forest musk deer serum, and the OD450nm value of forest musk deer serum with the most obvious symptoms was the highest, suggesting that the level of natural IFN-ω in different forest musk deer could be monitored by the rIFNω-based ELISA method. These results indicate that fmdIFNω has the potential as an antiviral drug and an early indication of innate immunity, which is of great significance for the prevention and control of forest musk deer diseases.
Collapse
Affiliation(s)
- Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jian-Guo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China.
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China.
| | - Wen-Long Fu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Jie Wu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Zhi-Jun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Ze-Xiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Xue-Ping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Mei-Shen Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Yi-Meng Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jie Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Hui Ding
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jia-Nan Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| |
Collapse
|
26
|
Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J 2023:e112907. [PMID: 37367474 DOI: 10.15252/embj.2022112907] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
28
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
29
|
Li S, Bai J, Fan G, Liu R. Total glucosides of paeony alleviates scleroderma by inhibiting type I interferon responses. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115897. [PMID: 36334818 DOI: 10.1016/j.jep.2022.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type I interferon (IFN) is believed to play a pathogenic role in systemic sclerosis (SSc, also called scleroderma), which is an autoimmune rheumatic disease. Our previous studies have found that Chinese medicine formula Si-Ni-San (SNS, composed of Glycyrrhiza uralensis Fisch., Bupleurum chinense DC., Paeonia lactiflora Pall., and Citrus aurantium L.) had inhibitory effects on type I IFN responses. Among these herbal products, Paeonia lactiflora Pall. has been traditionally used to treat inflammation-related diseases, yet its therapeutic effects against type I IFN-related diseases and potential bioactive ingredients are not characterized. AIM OF THE STUDY We aim to identify bioactive ingredient with anti-type I IFN activity from herbal products in SNS and further elucidate its therapeutic effect against scleroderma and underlying mechanisms. MATERIALS AND METHODS We constructed a Gaussia-luciferase (Gluc) reporter assay system to identify ingredients with anti-type I IFN activities from SNS. In RAW264.7 cells, real-time PCR (RT-PCR) and western blotting were used to investigate the induction of type I IFN pathway. Additionally, in a bleomycin (BLM)-induced experimental scleroderma model, the expression of fibrotic genes, type I IFN-related genes, inflammatory cytokines, and cytotoxic granules were measured by RT-PCR, and the histopathological changes were determined by H&E staining, Masson's staining and immunohistochemistry analysis. RESULTS Our data demonstrated that total glucosides of paeony (TGP) was the bioactive component of SNS that selectively inhibited TLR3-mediated type I IFN responses and blocked type I IFN-induced downstream JAK-STAT signaling pathways. In the BLM-induced scleroderma mouse model, TGP ameliorated skin fibrosis by inhibiting multiple targets in the upstream and downstream of type I IFN signaling. Further research found that TGP hindered polarization of M2 macrophages and their profibrotic effects and reduced cytotoxic T lymphocytes and their cytotoxic granules by suppressing Cxcl9 and Cxcl10 in the skin tissue of scleroderma mice. CONCLUSIONS Our study not only sheds novel lights into the immunoregulative effects of TGP but also provides convincing evidence to develop TGP-based therapies in the treatment of scleroderma and other autoimmune diseases associated with type I IFN signatures. CLASSIFICATION Skin.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jinzhao Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
30
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
31
|
Erazo-Martínez V, Tobón GJ, Cañas CA. Circulating and skin biopsy-present cytokines related to the pathogenesis of cutaneous lupus erythematosus. Autoimmun Rev 2023; 22:103262. [PMID: 36563771 DOI: 10.1016/j.autrev.2022.103262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a common disease that may appear as a separate entity from systemic lupus erythematosus (SLE), precede SLE development, or occur as a manifestation of this systemic disease. It has a complex pathophysiology that involves genetic, environmental, and immune-mediated factors creating a self-amplification pro-inflammatory cycle. CLE is characterized by prominent type I interferons (IFNs) inflammation which are considered as the first precursors of the inflammatory cascade generated within the pathophysiology of CLE. TNF-α enhances the production of antibodies through the activation of B cells, and favors the expression of surface nuclear antigens on keratinocytes. UV light exposure favors keratinocyte apoptosis or necroptosis, which results in the release of multiple proinflammatory cytokines, including IL-6, IL-1α, IL-1β, TNF-α, IFNs, and CXCL10. Serum levels of IL-17 are elevated in patients with ACLE, SCLE, and DLE. Evidence suggests IL-22 plays a role primarily in tissue repair rather than in inflammation. High expression of BAFF and its receptors have been found in lesioned keratinocytes of patients with CLE, and patients with CLE have lower serum levels of the regulatory cytokines TGF-β and IL-10. The chemokines CXCL9 and CXCL10 (CXCR3 ligands) have an increased expression among these patients, and their expression is correlated with IFNs levels. CXCR3 ligands recruit cytotoxic type I cells through this receptor, further supporting the death of keratinocytes via necroptosis with the subsequent release of eNAs perpetuating the inflammatory cycle. Interface dermatitis is characterized by the presence of CXCR3-positive lymphocytes. This review describes the leading cytokines and chemokines present in the circulation and skin that play a fundamental role in the pathogenesis of CLE.
Collapse
Affiliation(s)
- Valeria Erazo-Martínez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Gabriel J Tobón
- Southern Illinois University School of Medicine, Department of Medical Microbiology, Immunology and Cell Biology, Springfield, IL, USA
| | - Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Calle 18 No. 122-135, Cali, Colombia; Fundación Valle del Lili, Unidad de Reumatología, Cra 98 No. 18-49, Cali 760032, Colombia.
| |
Collapse
|
32
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
33
|
Yang P, Zhang P, Deng Y, Liao Y, Guo X, Sun M, Yin L, Liu R. Comprehensive proteomic and phosphoproteomic reveal that Microcystin-LR contributed to the malignant progression of gastric cancer by estrogenic potency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120744. [PMID: 36436660 DOI: 10.1016/j.envpol.2022.120744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread cyanotoxins in drinking water pose a threat to public health induced by Microcystins (MCs). MC-LR, a predominant toxic form of MCs, has been found to play critical roles in cancer progression. The role of MC-LR in hepatocarcinogenesis has attracted extensive attention. However, as a critical digestive organ, the precise mechanism of MC-LR-induced gastric cancer is still unclear. We found that 100 nM MC-LR promoted the proliferation, migration, invasion, and anti-apoptosis of SGC-7901 cells. Quantitative proteome and phosphoproteome analysis identified differential expression patterns and aberrant pathways of SGC-7901 cells exposed to MC-LR. The results indicated that 48,109 unique peptides from 6320 proteins and 1375 phosphoproteins with 3473 phosphorylation sites were detected after 24 h treatment of MC-LR. Proteome and phosphoproteome conjoint analysis indicated estrogen signaling pathway might play an essential step in MC-LR-treated molecular events. The mechanism underlying these changes may involve MC-LR excessively activating the estrogen signaling pathway by reducing Hsp90 phosphorylation, which results in nucleus translocation of activated ERα and Krt16 overexpression in gastric cells. In general, our results indicate multiple crucial signals triggered by MC-LR, among which MC-LR may promote the development of gastric cancer by exerting estrogenic potency.
Collapse
Affiliation(s)
- Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Yali Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Chattopadhyay G, Ahmed S, Srilatha NS, Asok A, Varadarajan R. Ter-Seq: A high-throughput method to stabilize transient ternary complexes and measure associated kinetics. Protein Sci 2023; 32:e4514. [PMID: 36382921 PMCID: PMC9793979 DOI: 10.1002/pro.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.
Collapse
Affiliation(s)
- Gopinath Chattopadhyay
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Institute for Evolutionary Biology and Environmental SciencesUniversity of ZurichZurichSwitzerland
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- St. Jude Children's Research HospitalTennesseeUSA
| | | | - Aparna Asok
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
35
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
36
|
Vázquez-Blomquist D, Hardy-Sosa A, Baez SC, Besada V, Palomares S, Guirola O, Ramos Y, Wiśniewski JR, González LJ, Bello-Rivero I. Proteomics and Phospho-Proteomics Profiling of the Co-Formulation of Type I and II Interferons, HeberFERON, in the Glioblastoma-Derived Cell Line U-87 MG. Cells 2022; 11:4068. [PMID: 36552831 PMCID: PMC9776974 DOI: 10.3390/cells11244068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
HeberFERON, a co-formulation of Interferon (IFN)-α2b and IFN-γ, has effects on skin cancer and other solid tumors. It has antiproliferative effects over glioblastoma multiform (GBM) clones and cultured cell lines, including U-87 MG. Here, we report the first label-free quantitative proteomic and phospho-proteomic analyses to evaluate changes induced by HeberFERON after 72 h incubation of U-87 MG that can explain the effect on cellular proliferation. LC-MS/MS, functional enrichment and networking analysis were performed. We identified 7627 proteins; 122 and 211 were down- and up-regulated by HeberFERON (fold change > 2; p < 0.05), respectively. We identified 23,549 peptides (5692 proteins) and 8900 phospho-peptides; 523 of these phospho-peptides (359 proteins) were differentially modified. Proteomic enrichment showed IFN signaling and its control, direct and indirect antiviral mechanisms were the main modulated processes. Phospho-proteome enrichment displayed the cell cycle as one of the most commonly targeted events together with cytoskeleton organization; translation/RNA splicing, autophagy and DNA repair, as represented biological processes. There is a high interconnection of phosphoproteins in a molecular network; mTOR occupies a centric hub with interactions with translation machinery, cytoskeleton and autophagy components. Novel phosphosites and others with unknown biological functionality in key players in the aforementioned processes were regulated by HeberFERON and involved CDK and ERK kinases. These findings open new experimental hypotheses regarding HeberFERON action. The results obtained contribute to a better understanding of HeberFERON effector mechanisms in the context of GBM treatment.
Collapse
Affiliation(s)
- Dania Vázquez-Blomquist
- Pharmacogenomic Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | - Saiyet C. Baez
- Département de Neurosciences, Université de Montréal, Montréal, QC H2L0A9, Canada
| | - Vladimir Besada
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Sucel Palomares
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Osmany Guirola
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Yassel Ramos
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany
| | - Luis Javier González
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Iraldo Bello-Rivero
- Clinical Assays Direction, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| |
Collapse
|
37
|
Zhu X, Wang J, Jia Z, Feng J, Wang B, Wang Z, Liu Q, Wu K, Huang W, Zhao X, Dang H, Zou J. Novel Dimeric Architecture of an IFN-γ-Related Cytokine Provides Insights into Subfunctionalization of Type II IFNs in Teleost Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2203-2214. [PMID: 36426983 DOI: 10.4049/jimmunol.2200334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Gene duplication leads to subfunctionalization of paralogs. In mammals, IFN-γ is the sole member of the type II IFN family and binds to a receptor complex consisting of IFN-γR1 and IFN-γR2. In teleost fish, IFN-γ and its receptors have been duplicated due to the teleost-specific whole-genome duplication event. In this study, the functions of an IFN-γ-related (IFN-γrel) cytokine were found to be partially retained relative to IFN-γ in grass carp (Ctenopharyngodon idella [CiIFN-γrel]). CiIFN-γrel upregulated the expression of proinflammatory genes but had lost the ability to activate genes involved in Th1 response. The results suggest that CiIFN-γrel could have been subfunctionalized from CiIFN-γ. Moreover, CiIFN-γrel induced STAT1 phosphorylation via interaction with duplicated homologs of IFN-γR1 (cytokine receptor family B [CRFB] 17 and CRFB13). Strikingly, CiIFN-γrel did not bind to the IFN-γR2 homolog (CRFB6). To gain insight into the subfunctionalization, the crystal structure of CiIFN-γrel was solved at 2.26 Å, revealing that it forms a homodimer that is connected by two pairs of disulfide bonds. Due to the spatial positions of helix A, loop AB, and helix B, CiIFN-γrel displays a unique topology that requires elements from two identical monomers to form a unit that is similar to IFN-γ. Further, mutagenesis analyses identified key residues interacting with CiIFN-γrel receptors and those required for the biological functions. Our study can help understand the subfunctionalization of duplicated IFN-γ paralogs in fish.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
39
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
40
|
Yang Z, Sun B, Xiang J, Wu H, Kan S, Hao M, Chang L, Liu H, Wang D, Liu W. Role of epigenetic modification in interferon treatment of hepatitis B virus infection. Front Immunol 2022; 13:1018053. [PMID: 36325353 PMCID: PMC9618964 DOI: 10.3389/fimmu.2022.1018053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small, enveloped DNA virus that causes acute and chronic hepatitis. Chronic hepatitis B (CHB) is associated with hepatocellular carcinoma pathogenesis. Interferons (IFNs) have been used for the treatment of CHB for a long time, with advantages including less treatment duration and sustained virological response. Presently, various evidence suggests that epigenetic modification of the viral covalently closed circular DNA (cccDNA) and the host genome is crucial for the regulation of viral activity. This modification includes histone acetylation, DNA methylation, N6-methyladenosine, and non-coding RNA modification. IFN treatment for CHB can stimulate multiple IFN-stimulated genes for inhibiting virus replication. IFNs can also affect the HBV life cycle through epigenetic modulation. In this review, we summarized the different mechanisms through which IFN-α inhibits HBV replication, including epigenetic regulation. Moreover, the mechanisms underlying IFN activity are discussed, which indicated its potential as a novel treatment for CHB. It is proposed that epigenetic changes such as histone acetylation, DNA methylation, m6A methylation could be the targets of IFN, which may offer a novel approach to HBV treatment.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| |
Collapse
|
41
|
Kirou KA, Dall`Era M, Aranow C, Anders HJ. Belimumab or anifrolumab for systemic lupus erythematosus? A risk-benefit assessment. Front Immunol 2022; 13:980079. [PMID: 36119023 PMCID: PMC9472122 DOI: 10.3389/fimmu.2022.980079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of systemic lupus erythematosus (SLE) currently employs agents with relatively unselective immunosuppressive properties. However, two target-specific biological drugs have been approved: belimumab (anti-B-cell-activating factor/BAFF) and anifrolumab (anti-interferon alpha receptor-1/IFNAR1). Here, we performed a comparative risk-benefit assessment for both drugs based on the role of BAFF and IFNAR1 in host defense and the pathogenesis of SLE and by considering the available data on safety and efficacy. Due to differences in target expression sites, anti-IFNAR1, but not anti-BAFF, might elicit organ-specific effects, consistent with clinical efficacy data. The IFNAR1 is specifically involved in innate and adaptive antiviral immunity in most cells of the body. Consistent with this observation, the available safety data obtained from patients negatively selected for LN and neuropsychiatric SLE, primary immunodeficiencies, splenectomy and chronic HIV, HBV, HCV infections suggest an increased risk for some viral infections such as varicella zoster and perhaps influenza. In contrast, BAFF is mainly involved in adaptive immune responses in lymphoid tissues, thus anti-BAFF therapy modulates SLE activity and prevents SLE flares without interfering with local innate host defense mechanisms and should only marginally affect immune memory to previous pathogen exposures consistent with the available safety data from SLE patients without chronic HIV, HBV or HCV infections. When using belimumab and anifrolumab, careful patient stratification and specific precautions may minimize risks and maximize beneficial treatment effects for patients with SLE.
Collapse
Affiliation(s)
- Kyriakos A. Kirou
- Department of Medicine, Hospital for Special Surgery and Weill Cornell Medical College, New York, NY, United States
| | - Maria Dall`Era
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Cynthia Aranow
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Hans-Joachim Anders
- Department of Medicine IV, University Hospital of the Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
42
|
Tsao SY. Potential of mRNA vaccines to become versatile cancer vaccines. World J Clin Oncol 2022; 13:663-674. [PMID: 36160466 PMCID: PMC9476609 DOI: 10.5306/wjco.v13.i8.663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
For centuries, therapeutic cancer vaccines have been developed and tried clinically. Way back in the late 19th century, the Father of Immunotherapy, William Coley had discovered that bacterial toxins were effective for inoperable sarcomas. In the 1970s, the Bacillus Calmette-Guérin (BCG) vaccine was repurposed, e.g., for advanced melanomas. Then, therapeutic cancer vaccines based on tumor-associated antigens (found on the surfaces of cancer cells) were tried clinically but apparently have not made a really significant clinical impact. For repurposed pathogen vaccines, only the BCG vaccine was approved in 1989 for local application to treat nonmuscle-invading bladder cancers. Although the mildly toxic vaccine adjuvants deliberately added to conventional pathogen vaccines are appropriate for seasonal applications, when repurposed for continual oncology usage, toxicity may be problematic. In 2010, even with the approval of sipuleucel-T as the very first cancer vaccine (dendritic cell) developed for designated prostate cancers, it has also not made a really significant clinical impact. Perhaps more "user friendly" cancer vaccines should be explored. As from approximately 30 years ago, the safety and effectiveness of mRNA vaccination for oncology had already been studied, the current coronavirus disease 2019 pandemic, though disastrous, has given such progressively advancing technology a kickstart. For oncology, other virtues of mRNA vaccines seem advantageous, e.g., rapid and versatile development, convenient modular design, and entirely cell-free synthesis, are being progressively recognized. Moreover, mRNAs encoding various oncology antigens for vaccination may also be tested with the combi-nation of relatively non-toxic modalities of oncology treatments, e.g., metformin or metronomic (low-dose, prolonged administration) chemotherapy. Admittedly, robust clinical data obtained through good quality clinical trials are mandatory.
Collapse
Affiliation(s)
- Shiu-Ying Tsao
- Department of Oncology, Hong Kong SAR Oncology Centre, Hong Kong SAR 999077, China
| |
Collapse
|
43
|
Xiong J, Jiang Y, Zhang J, Chen Y, Hu Y. CK1α upregulates the IFNAR1 expression to prompt the anti-HBV effect of type I IFN in hepatoma carcinoma cells. Virol Sin 2022; 37:894-903. [PMID: 35985475 PMCID: PMC9797371 DOI: 10.1016/j.virs.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/08/2022] [Indexed: 01/01/2023] Open
Abstract
Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.
Collapse
|
44
|
Liu X, Lin L, Lv T, Lu L, Li X, Han Y, Qiu Z, Li X, Li Y, Song X, Cao W, Li T. Combined multi-omics and network pharmacology approach reveals the role of Tripterygium Wilfordii Hook F in treating HIV immunological non-responders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154103. [PMID: 35468451 DOI: 10.1016/j.phymed.2022.154103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The HIV-1 infected immunological non-responders (INRs) are characterized by poor immune reconstitution after long-term treatment. Tripterygium Wilfordii Hook F (TwHF) pill is a traditional Chinese patent drug with extensive immunosuppressive effects and has been clinically proven efficacy in treating INRs. PURPOSE The therapeutic mechanism of TwHF pills in the treatment of INRs was investigated by the combined multi-omics analysis on clinical samples and network pharmacology approach. METHODS Clinically, the peripheral blood mononuclear cells (PBMC) samples of TwHF-treated INRs from different time points were collected to conduct the transcriptomic and proteomic profiling. Key effector pathways of TwHF were enriched and analyzed by the ingenuity pathway analysis (IPA). Computationally, the TwHF-related compounds were obtained from traditional Chinese medicine databases, and literature search and structural prediction were performed to identify TwHF-related targets. Integrated with the INR-related targets, the 'TwHF-compounds-targets-INR' network was constructed to analyze core effector targets by centrality measurement. Experimentally, the effects of TwHF compounds on the T cells activation and expression of identified targets were evaluated with in vitro cell culture. RESULTS 33 INRs were included and treated with TwHF pills for 17 (IQR, 12-24) months. These patients experienced rapid growth in the CD4+ T cell counts and decreased T cell activation. The multi-omics analysis showed that the interferon (IFN)-signaling pathway was significantly inhibited after taking TwHF pills. The network pharmacology predicted the central role of the signal transducer and activator of transcription 1 (STAT1) in the 'TwHF-compounds-targets-INR' network. Further bioinformatic analysis predicted STAT1 would regulate over 58.8% of identified down-regulated genes. Cell experiments validated that triptolide (TPL) would serve as the major bioactivity compound of TwHF pills to inhibit the immune cell activation, the production of IFN-γ, the expression of downstream IFN-stimulated genes, and the phosphorylation of STAT1. CONCLUSION Our research is the first to systemic verify the mechanisms of TwHF in treating INRs. The IFN signaling pathway and the STAT1 would be the major effector targets of TwHF pills in treating INRs. The TPL would be the major bioactive compound to inhibit the IFN response and the phosphorylation of STAT1. Our observations suggest the basis for further application of TPL analogous in treating INRs.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxia Lv
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhifeng Qiu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanling Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Li C, Marton I, Harari D, Shemesh M, Kalchenko V, Pardo M, Schreiber G, Rudich Y. Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomater Sci Eng 2022; 8:2553-2563. [PMID: 35608934 PMCID: PMC9159517 DOI: 10.1021/acsbiomaterials.2c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
Collapse
Affiliation(s)
- Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ira Marton
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Harari
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Maya Shemesh
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vyacheslav Kalchenko
- Department
of Veterinary Resources, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
The role of IFNL4 in liver inflammation and progression of fibrosis. Genes Immun 2022; 23:111-117. [PMID: 35585257 DOI: 10.1038/s41435-022-00173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The discovery that genetic variation within the interferon lambda locus has a profound effect on the outcome of hepatitis C virus (HCV) treatment and spontaneous clearance of HCV is one of the great triumphs of genomic medicine. Subsequently, the IFNL4 gene was discovered and proposed as the causal gene underlying this association. However, there has been a lively debate within the field concerning the causality, which has been further complicated by a change in naming. This review summarizes the genetic data available for the IFNL3/IFNl4 loci and provides an in-depth discussion of causality. We also discuss a new series of interesting data suggesting that the genetic variation at the IFNL4 loci influences the evolution of the HCV virus and the implication this relationship between our genetic makeup and virus evolution has upon our understanding of the IFNL4 system. Finally, new data support an influence of the IFNL4 gene upon liver inflammation and fibrosis that is independent of etiology, thereby linking the IFNL4 gene to some of the major liver diseases of today.
Collapse
|
47
|
Shi W, Yao X, Fu Y, Wang Y. Interferon‑α and its effects on cancer cell apoptosis (Review). Oncol Lett 2022; 24:235. [PMID: 35720476 PMCID: PMC9185151 DOI: 10.3892/ol.2022.13355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN)-α is a cytokine that exhibits a wide range of biological activities and is used in various cancer treatments. It regulates numerous genes that serve roles in antiviral, antiproliferative and proapoptotic activities. For decades, one of the main aspects of clinical oncology has been the development of anticancer therapeutics that promote the effective elimination of cancer cells via apoptosis. However, the updated available information concerning IFN-α-induced cancer cell apoptosis needs to be assembled, so as to provide an improved theoretical reference for the basic scientific research and clinical treatment of malignant tumors. Therefore, the present review focuses on the potential effects of IFN-α in inducing cancer cell apoptosis. The biological characteristics of IFN-α, the apoptotic signaling pathways and molecular mechanisms of apoptosis caused by IFN-α are discussed in different types of cancer cells. The present review provided a comprehensive understanding of the effects of IFN-α on cancer cell apoptosis, which will aid in developing more efficient strategies to effectively control the progression of certain cancers.
Collapse
Affiliation(s)
- Weiye Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Xu Yao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
48
|
Li P, Han M, Zhao X, Ren G, Mei S, Zhong C. Abnormal Epigenetic Regulations in the Immunocytes of Sjögren's Syndrome Patients and Therapeutic Potentials. Cells 2022; 11:1767. [PMID: 35681462 PMCID: PMC9179300 DOI: 10.3390/cells11111767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren's syndrome (SjS), characterized by keratoconjunctivitis sicca and dry mouth, is a common autoimmune disease, especially in middle-aged women. The immunopathogenesis of SjS is caused by the sequential infiltration of T and B cells into exocrine glands, including salivary and lacrimal glands. Effector cytokines produced by these immunocytes, such as interferons (IFNs), IL-17, IL-22, IL-21, IL-4, TNF-α, BAFF and APRIL, play critical roles in promoting autoimmune responses and inducing tissue damages. Epigenetic regulations, including DNA methylation, histone modification and non-coding RNAs, have recently been comprehensively studied during the activation of various immunocytes. The deficiency of key epigenetic enzymes usually leads to aberrant immune activation. Epigenetic modifications in T and B cells are usually found to be altered during the immunopathogenesis of SjS, and they are closely correlated with autoimmune responses. In particular, the important role of methylation in activating IFN pathways during SjS progression has been revealed. Thus, according to the involvement of epigenetic regulations in SjS, target therapies to reverse the altered epigenetic modifications in auto-responsive T and B cells are worthy of being considered as a potential therapeutic strategy for SjS.
Collapse
Affiliation(s)
- Peng Li
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Mengwei Han
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Xingyu Zhao
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Guanqun Ren
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Si Mei
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
| | - Chao Zhong
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; (P.L.); (M.H.); (X.Z.); (G.R.); (S.M.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
49
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Lodi L, Mastrolia MV, Bello F, Rossi GM, Angelotti ML, Crow YJ, Romagnani P, Vaglio A. Type I interferon-related kidney disorders. Kidney Int 2022; 101:1142-1159. [PMID: 35339535 DOI: 10.1016/j.kint.2022.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN-I) mediates tissue damage in a wide range of kidney disorders, directly affecting the biology and function of several renal cell types including podocytes, mesangial, endothelial and parietal epithelial cells (PECs).Enhanced IFN-I signalling is observed in the context of viral infections, autoimmunity (e.g., systemic lupus erythematosus, SLE), and the type 1 interferonopathies (T1Is), rare monogenic disorders characterised by constitutive activation of the IFN-I pathway. All of these IFN I-related disorders can cause renal dysfunction, and share pathogenic and histopathological features. Collapsing glomerulopathy, a histopathological lesion characterised by podocyte loss, collapse of the vascular tuft and PEC proliferation, is commonly associated with viral infections, has been described in T1Is such as Aicardi-Goutières syndrome and STING-associated vasculopathy with onset in infancy (SAVI), and can also be induced by recombinant IFN-therapy. In all of these conditions, podocytes and PECs seem to be the primary target of IFN I-mediated damage. Additionally, immune-mediated glomerular injury is common to viral infections, SLE, and T1Is such as COPA syndrome and DNASE1L3 deficiency, diseases in which IFN-I apparently promotes immune-mediated kidney injury. Finally, kidney pathology primarily characterised by vascular lesions (e.g., thrombotic microangiopathy, vasculitis) is a hallmark of the T1I ADA2 deficiency as well as of SLE, viral infections and IFN-therapy.Defining the nosology, pathogenic mechanisms and histopathological patterns of IFN I-related kidney disorders has diagnostic and therapeutic implications, especially considering the likely near-term availability of novel drugs targeting the IFN-I pathway.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Department of Health Sciences, University of Firenze; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Maria V Mastrolia
- Rheumatology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | | | - Maria L Angelotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy.
| |
Collapse
|