1
|
Qin D, Huang W, Shen D, Chong L, Yang Z, Wei B, Li X, Li R, Liu W. GelMA microneedle-loaded bio-derived nanovaccine shows therapeutic potential for gliomas. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2426444. [PMID: 39555051 PMCID: PMC11565659 DOI: 10.1080/14686996.2024.2426444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Glioma is the most common primary malignant tumor of the central nervous system in adults. Although immunotherapy, especially tumor vaccines, has made some progress in the treatment of gliomas compared with surgery and radiotherapy. However, the lack of specific or relevant tumor antigens severely limits the further development of tumor vaccines. Here, we report a bio-derived vaccine (TMV@CpG) derived from glioma cell membrane vesicles and carrying TLR9 agonist CpG as adjuvant, which was loaded onto the GelMA microneedle to obtain the microneedle vaccine (MN-TMV@CpG). Microneedle vaccine fully utilize the innate immune cells rich in the skin, inducing stronger cellular immune responses. In subcutaneous tumor models, MN-TMV@CpG reversed the immune-suppressing microenvironment of tumor, and effectively inhibited tumor progression. In an intracranial tumor model, MN-TMV@CpG significantly prolonged the survival duration and induced stronger immune memory responses in tumor bearing mice when combined with anti-PD1 mAb. These results suggest that bio-derived nanovaccines can be used as a potential antitumor immunotherapy strategy.
Collapse
Affiliation(s)
- Deguang Qin
- Department of Neurosurgery, Huangpu People’s Hospital of Zhongshan, Zhongshan, China
| | - Wenyong Huang
- Department of Neurosurgery, Huangpu People’s Hospital of Zhongshan, Zhongshan, China
| | - Dengke Shen
- Department of Neurosurgery, Huangpu People’s Hospital of Zhongshan, Zhongshan, China
| | - Longyi Chong
- Department of Neurosurgery, Huangpu People’s Hospital of Zhongshan, Zhongshan, China
| | - Zeyu Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Andrew Awuah W, Shah MH, Tan JK, Ranganathan S, Sanker V, Darko K, Tenkorang PO, Adageba BB, Ahluwalia A, Shet V, Aderinto N, Kundu M, Abdul‐Rahman T, Atallah O. Immunotherapeutic advances in glioma management: The rise of vaccine-based approaches. CNS Neurosci Ther 2024; 30:e70013. [PMID: 39215399 PMCID: PMC11364516 DOI: 10.1111/cns.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma multiforme (GBM), are highly aggressive brain tumors that present significant challenges in oncology due to their rapid progression and resistance to conventional therapies. Despite advancements in treatment, the prognosis for patients with GBM remains poor, necessitating the exploration of novel therapeutic approaches. One such emerging strategy is the development of glioma vaccines, which aim to stimulate the immune system to target and destroy tumor cells. AIMS This review aims to provide a comprehensive evaluation of the current landscape of glioma vaccine development, analyzing the types of vaccines under investigation, the outcomes of clinical trials, and the challenges and opportunities associated with their implementation. The goal is to highlight the potential of glioma vaccines in advancing more effective and personalized treatments for glioma patients. MATERIALS AND METHODS This narrative review systematically assessed the role of glioma vaccines by including full-text articles published between 2000 and 2024 in English. Databases such as PubMed/MEDLINE, EMBASE, the Cochrane Library, and Scopus were searched using key terms like "glioma," "brain tumor," "glioblastoma," "vaccine," and "immunotherapy." The review incorporated both pre-clinical and clinical studies, including descriptive studies, animal-model studies, cohort studies, and observational studies. Exclusion criteria were applied to omit abstracts, case reports, posters, and non-peer-reviewed studies, ensuring the inclusion of high-quality evidence. RESULTS Clinical trials investigating various glioma vaccines, including peptide-based, DNA/RNA-based, whole-cell, and dendritic-cell vaccines, have shown promising results. These vaccines demonstrated potential in extending survival rates and managing adverse events in glioma patients. However, significant challenges remain, such as therapeutic resistance due to tumor heterogeneity and immune evasion mechanisms. Moreover, the lack of standardized guidelines for evaluating vaccine responses and issues related to ethical considerations, regulatory hurdles, and vaccine acceptance among patients further complicate the implementation of glioma vaccines. DISCUSSION Addressing the challenges associated with glioma vaccines involves exploring combination therapies, targeted approaches, and personalized medicine. Combining vaccines with traditional therapies like radiotherapy or chemotherapy may enhance efficacy by boosting the immune system's ability to fight tumor cells. Personalized vaccines tailored to individual patient profiles present an opportunity for improved outcomes. Furthermore, global collaboration and equitable distribution are critical for ensuring access to glioma vaccines, especially in low- and middle-income countries with limited healthcare resources CONCLUSION: Glioma vaccines represent a promising avenue in the fight against gliomas, offering hope for improving patient outcomes in a disease that is notoriously difficult to treat. Despite the challenges, continued research and the development of innovative strategies, including combination therapies and personalized approaches, are essential for overcoming current barriers and transforming the treatment landscape for glioma patients.
Collapse
Affiliation(s)
| | | | | | | | - Vivek Sanker
- Department of NeurosurgeryTrivandrum Medical CollegeTrivandrumKeralaIndia
| | - Kwadwo Darko
- Department of NeurosurgeryKorle Bu Teaching HospitalAccraGhana
| | | | - Bryan Badayelba Adageba
- Kwame Nkrumah University of Science and Technology School of Medicine and DentistryKumasiGhana
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | - Nicholas Aderinto
- Department of Internal MedicineLAUTECH Teaching HospitalOgbomosoNigeria
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM HospitalBhubaneswarOdishaIndia
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
5
|
Rumler S. Non-cellular immunotherapies in pediatric central nervous system tumors. Front Immunol 2023; 14:1242911. [PMID: 37885882 PMCID: PMC10598668 DOI: 10.3389/fimmu.2023.1242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer and the most common cause of cancer death in pediatric patients. New therapies are desperately needed for some of the most malignant of all cancers. Immunotherapy has emerged in the past two decades as an additional avenue to augment/replace traditional therapies (such as chemotherapy, surgery, and radiation therapy). This article first discusses the unique nature of the pediatric CNS immune system and how it interacts with the systemic immune system. It then goes on to review three important and widely studied types of immune therapies: checkpoint inhibitors, vaccines, and radiation therapy, and touches on early studies of antibody-mediated immunogenic therapies, Finally, the article discusses the importance of combination immunotherapy for pediatric CNS tumors, and addresses the neurologic toxicities associated with immunotherapies.
Collapse
Affiliation(s)
- Sarah Rumler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int J Mol Sci 2023; 24:15037. [PMID: 37894718 PMCID: PMC10606063 DOI: 10.3390/ijms242015037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence. Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor. Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic review is to assess the current strategies and future perspectives of the GBM immunotherapy strategies. A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "glioblastomas," "immunotherapies," and "treatment." The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research topic (627), insufficient method and results details (12), and being case-series or cohort studies (22), systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between 2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%, 12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm. Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling 34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells with improved specificity exemplifies their adaptability.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Camilla Tedeschi
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
7
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Van Gool SW, Makalowski J, Kampers LFC, Van de Vliet P, Sprenger T, Schirrmacher V, Stücker W. Dendritic cell vaccination for glioblastoma multiforme patients: has a new milestone been reached? Transl Cancer Res 2023; 12:2224-2228. [PMID: 37701100 PMCID: PMC10493805 DOI: 10.21037/tcr-23-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
|
10
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
11
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
12
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
13
|
Yuan B, Wang G, Tang X, Tong A, Zhou L. Immunotherapy of glioblastoma: recent advances and future prospects. Hum Vaccin Immunother 2022; 18:2055417. [PMID: 35344682 PMCID: PMC9248956 DOI: 10.1080/21645515.2022.2055417] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) stands out as the most common, aggressive form of primary malignant brain tumor conferring a devastatingly poor prognosis. Despite aggressive standard-of-care in surgical resection and chemoradiation with temozolomide, the median overall survival of patients still remains no longer than 15 months, due to significant tumor heterogeneity, immunosuppression induced by the tumor immune microenvironment and low mutational burden. Advances in immunotherapeutic approaches have revolutionized the treatment of various cancer types and become conceptually attractive for glioblastoma. In this review, we provide an overview of the basic knowledge underlying immune targeting and promising immunotherapeutic strategies including CAR T cells, oncolytic viruses, cancer vaccines, and checkpoint blockade inhibitors that have been recently investigated in glioblastoma. Current clinical trials and previous clinical trial findings are discussed, shedding light on novel strategies to overcome various limitations and challenges.
Collapse
Affiliation(s)
- Boyang Yuan
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
15
|
Shamshiripour P, Nikoobakht M, Mansourinejad Z, Ahmadvand D, Akbarpour M. A comprehensive update to DC therapy for glioma; a systematic review and meta-analysis. Expert Rev Vaccines 2022; 21:513-531. [DOI: 10.1080/14760584.2022.2027759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of medical imaging technology and molecular imaging, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - zahra Mansourinejad
- Department of systems biology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Davoud Ahmadvand
- Department of medical imaging technology and molecular imaging, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago 60637 IL, USA
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN), Chicago, USA
| |
Collapse
|
16
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Turk OM, Woodall RC, Gutova M, Brown CE, Rockne RC, Munson JM. Delivery strategies for cell-based therapies in the brain: overcoming multiple barriers. Drug Deliv Transl Res 2021; 11:2448-2467. [PMID: 34718958 PMCID: PMC8987295 DOI: 10.1007/s13346-021-01079-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Cell-based therapies to the brain are promising for the treatment of multiple brain disorders including neurodegeneration and cancers. In order to access the brain parenchyma, there are multiple physiological barriers that must be overcome depending on the route of delivery. Specifically, the blood-brain barrier has been a major difficulty in drug delivery for decades, and it still presents a challenge for the delivery of therapeutic cells. Other barriers, including the blood-cerebrospinal fluid barrier and lymphatic-brain barrier, are less explored, but may offer specific challenges or opportunities for therapeutic delivery. Here we discuss the barriers to the brain and the strategies currently in place to deliver cell-based therapies, including engineered T cells, dendritic cells, and stem cells, to treat diseases. With a particular focus on cancers, we also highlight the current ongoing clinical trials that use cell-based therapies to treat disease, many of which show promise at treating some of the deadliest illnesses.
Collapse
Affiliation(s)
- Olivia M Turk
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Ryan C Woodall
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope, Duarte, CA, USA
| | - Christine E Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
18
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
19
|
Dapash M, Castro B, Hou D, Lee-Chang C. Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:4548. [PMID: 34572775 PMCID: PMC8467991 DOI: 10.3390/cancers13184548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic, translational, and clinical research, the treatment outcomes for patients with GBM are virtually unchanged over the past 15 years. GBM is one of the most immunologically "cold" tumors, in which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM characteristics contribute to the poor results obtained from immunotherapy. However, as indicated by an ongoing and expanding number of clinical trials, and despite the mostly disappointing results to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investigated immunotherapeutic strategies. This review article aims to provide a general overview of the current state of glioblastoma immunotherapy. Information was compiled through a literature search conducted on PubMed and clinical trials between 1961 to 2021.
Collapse
Affiliation(s)
- Mark Dapash
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Wang X, Lu J, Guo G, Yu J. Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death Dis 2021; 12:299. [PMID: 33741903 PMCID: PMC7979733 DOI: 10.1038/s41419-021-03568-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GB) is the most common high-grade intracranial malignant tumor with highly malignant biological behavior and a high recurrence rate. Although anti-PD-1/PD-L1 antibodies have achieved significant survival benefits in several kinds of solid tumors, the phase III clinical trial Checkmate 143 demonstrated that nivolumab, which targets PD-1, did not achieve survival benefits compared with bevacizumab in recurrent glioblastoma (rGB) patients. Nevertheless, neoadjuvant anti-PD-1 therapy followed by surgery and adjuvant anti-PD-1 therapy could effectively activate local and systemic immune responses and significantly improve the OS of rGB patients. Furthermore, several studies have also confirmed the progress made in applying tumor-specific peptide vaccination or chimeric antigen receptor-T (CAR-T) cell therapy to treat rGB patients, and successes with antibodies targeting other inhibitory checkpoints or costimulatory molecules have also been reported. These successes inspired us to explore candidate combination treatments based on anti-PD-1/PD-L1 antibodies. However, effective predictive biomarkers for clinical efficacy are urgently needed to avoid economic waste and treatment delay. Attempts to prolong the CAR-T cell lifespan and increase T cell infiltration through engineering techniques are addressing the challenge of strengthening T cell function. In this review, we describe the immunosuppressive molecular characteristics of rGB; clinical trials exploring anti-PD-1/PD-L1 therapy, tumor-specific peptide vaccination, and CAR-T cell therapy; candidate combination strategies; and issues related to strengthening T cell function.
Collapse
Affiliation(s)
- Xin Wang
- Departmenlt of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Jie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250117, Shandong Province, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital Zhengzhou University, People's Hospital Henan University, Zhengzhou, 450003, Henan, China
| | - Jinming Yu
- Departmenlt of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
21
|
Olsen HE, Lynn GM, Valdes PA, Cerecedo Lopez CD, Ishizuka AS, Arnaout O, Bi WL, Peruzzi PP, Chiocca EA, Friedman GK, Bernstock JD. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol Adv 2021; 3:vdab027. [PMID: 33860227 PMCID: PMC8034661 DOI: 10.1093/noajnl/vdab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conventional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and vaccine platform optimization can be translated into clinical practice to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Hannah E Olsen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian D Cerecedo Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Avidea Technologies, Inc., Baltimore, Maryland, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers (Basel) 2020; 13:cancers13010032. [PMID: 33374196 PMCID: PMC7796083 DOI: 10.3390/cancers13010032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Although multiple meta-analyses on active specific immunotherapy treatment for glioblastoma multiforme (GBM) have demonstrated a significant prolongation of overall survival, no single research group has succeeded in demonstrating the efficacy of this type of treatment in a prospective, double-blind, placebo-controlled, randomized clinical trial. In this paper, we explain how the complexity of the tumor biology and tumor–host interactions make proper stratification of a control group impossible. The individualized characteristics of advanced therapy medicinal products for immunotherapy contribute to heterogeneity within an experimental group. The dynamics of each tumor and in each patient aggravate comparative stable patient groups. Finally, combinations of immunotherapy strategies should be integrated with first-line treatment. We illustrate the complexity of a combined first-line treatment with individualized multimodal immunotherapy in a group of 70 adults with GBM and demonstrate that the integration of immunogenic cell death treatment within maintenance chemotherapy followed by dendritic cell vaccines and maintenance immunotherapy might provide a step towards improving the overall survival rate of GBM patients. Abstract Immunotherapies represent a promising strategy for glioblastoma multiforme (GBM) treatment. Different immunotherapies include the use of checkpoint inhibitors, adoptive cell therapies such as chimeric antigen receptor (CAR) T cells, and vaccines such as dendritic cell vaccines. Antibodies have also been used as toxin or radioactive particle delivery vehicles to eliminate target cells in the treatment of GBM. Oncolytic viral therapy and other immunogenic cell death-inducing treatments bridge the antitumor strategy with immunization and installation of immune control over the disease. These strategies should be included in the standard treatment protocol for GBM. Some immunotherapies are individualized in terms of the medicinal product, the immune target, and the immune tumor–host contact. Current individualized immunotherapy strategies focus on combinations of approaches. Standardization appears to be impossible in the face of complex controlled trial designs. To define appropriate control groups, stratification according to the Recursive Partitioning Analysis classification, MGMT promotor methylation, epigenetic GBM sub-typing, tumor microenvironment, systemic immune functioning before and after radiochemotherapy, and the need for/type of symptom-relieving drugs is required. Moreover, maintenance of a fixed treatment protocol for a dynamic, deadly cancer disease in a permanently changing tumor–host immune context might be inappropriate. This complexity is illustrated using our own data on individualized multimodal immunotherapies for GBM. Individualized medicines, including multimodal immunotherapies, are a rational and optimal yet also flexible approach to induce long-term tumor control. However, innovative methods are needed to assess the efficacy of complex individualized treatments and implement them more quickly into the general health system.
Collapse
|
23
|
Guerra-García P, Marshall LV, Cockle JV, Ramachandran PV, Saran FH, Jones C, Carceller F. Challenging the indiscriminate use of temozolomide in pediatric high-grade gliomas: A review of past, current, and emerging therapies. Pediatr Blood Cancer 2020; 67:e28011. [PMID: 31617673 DOI: 10.1002/pbc.28011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/26/2023]
Abstract
Pediatric high-grade gliomas (pHGG) constitute 8% to 12% of primary brain tumors in childhood. The most widely utilized treatment encompasses surgical resection followed by focal radiotherapy and temozolomide. However, experiences over past decades have not demonstrated improved outcomes. pHGG have been classified into different molecular subgroups defined by mutations in histone 3, IDH gene, MAPK pathway, and others, thereby providing a rationale for various targeted therapies. Additionally, immunotherapy and drug repurposing have also become attractive adjunctive treatments. This review focuses on past, present, and emerging treatments for pHGG integrating molecular research with the mainstream pediatric drug development in Europe and the United States to sketch a way forward in the development of novel therapeutic approaches. The implementation of randomized clinical trials with adaptive designs, underpinned by a robust biological rationale, and harnessing collaboration between the pharmaceutical industry, academia, regulators and patients/parents organizations will be essential to improve the outcomes for these children.
Collapse
Affiliation(s)
- Pilar Guerra-García
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Paediatric Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Lynley V Marshall
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Julia V Cockle
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Frank H Saran
- Department of Radiation Oncology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Department of Radiation Oncology, Auckland District Health Board, Auckland, New Zealand
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Carceller
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
24
|
de Bruijn S, Anguille S, Verlooy J, Smits EL, van Tendeloo VF, de Laere M, Norga K, Berneman ZN, Lion E. Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers (Basel) 2019; 11:cancers11091396. [PMID: 31546858 PMCID: PMC6770385 DOI: 10.3390/cancers11091396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Dendritic cell-based and other vaccination strategies that use the patient’s own immune system for the treatment of cancer are gaining momentum. Most studies of therapeutic cancer vaccination have been performed in adults. However, since cancer is one of the leading causes of death among children past infancy in the Western world, the hope is that this form of active specific immunotherapy can play an important role in the pediatric population as well. Since children have more vigorous and adaptable immune systems than adults, therapeutic cancer vaccines are expected to have a better chance of creating protective immunity and preventing cancer recurrence in pediatric patients. Moreover, in contrast to conventional cancer treatments such as chemotherapy, therapeutic cancer vaccines are designed to specifically target tumor cells and not healthy cells or tissues. This reduces the likelihood of side effects, which is an important asset in this vulnerable patient population. In this review, we present an overview of the different therapeutic cancer vaccines that have been studied in the pediatric population, with a main focus on dendritic cell-based strategies. In addition, new approaches that are currently being investigated in clinical trials are discussed to provide guidance for further improvement and optimization of pediatric cancer vaccines.
Collapse
Affiliation(s)
- Sévérine de Bruijn
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Joris Verlooy
- Division of Pediatric Hemato-Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Evelien L Smits
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Oncological Research, Faculty of Medicine & Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Viggo F van Tendeloo
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Maxime de Laere
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Koenraad Norga
- Division of Pediatric Hemato-Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Zwi N Berneman
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Eva Lion
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
25
|
Kristin Schmitz A, Sorg RV, Stoffels G, Grauer OM, Galldiks N, Steiger HJ, Kamp MA, Langen KJ, Sabel M, Rapp M. Diagnostic impact of additional O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET following immunotherapy with dendritic cell vaccination in glioblastoma patients. Br J Neurosurg 2019; 35:736-742. [DOI: 10.1080/02688697.2019.1639615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ann Kristin Schmitz
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Oliver M. Grauer
- Department of Neurology, Faculty of Medicine, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcel A. Kamp
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl-Josef Langen
- Department of Neurology, Faculty of Medicine, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael Sabel
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials. Cancers (Basel) 2019; 11:cancers11040537. [PMID: 30991681 PMCID: PMC6521200 DOI: 10.3390/cancers11040537] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal primary central nervous system malignancy in adults with a median survival of less than 15 months. Surgery, radiation, and chemotherapy are the standard of care and provide modest benefits in survival, but tumor recurrence is inevitable. The poor prognosis of GBM has made the development of novel therapies targeting GBM of paramount importance. Immunotherapy via dendritic cells (DCs) has garnered attention and research as a potential strategy to boost anti-tumor immunity in recent years. As the “professional” antigen processing and presenting cells, DCs play a key role in the initiation of anti-tumor immune responses. Pre-clinical studies in GBM have shown long-term tumor survival and immunological memory in murine models with stimulation of DC activity with various antigens and costimulatory molecules. Phase I and II clinical trials of DC vaccines in GBM have demonstrated some efficacy in improving the median overall survival with minimal to no toxicity with promising initial results from the first Phase III trial. However, there remains no standardization of vaccines in terms of which antigens are used to pulse DCs ex vivo, sites of DC injection, and optimal adjuvant therapies. Future work with DC vaccines aims to elucidate the efficacy of DC-based therapy alone or in combination with other immunotherapy adjuvants in additional Phase III trials.
Collapse
|
27
|
Administration of Dendritic Cells and Anti-PD-1 Antibody Converts X-ray Irradiated Tumors Into Effective In situ Vaccines. Int J Radiat Oncol Biol Phys 2019; 103:958-969. [DOI: 10.1016/j.ijrobp.2018.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
|
28
|
Cuoco JA, Benko MJ, Busch CM, Rogers CM, Prickett JT, Marvin EA. Vaccine-Based Immunotherapeutics for the Treatment of Glioblastoma: Advances, Challenges, and Future Perspectives. World Neurosurg 2018; 120:302-315. [PMID: 30196171 DOI: 10.1016/j.wneu.2018.08.202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Glioblastoma is a highly aggressive neoplasm with an extremely poor prognosis. Despite maximal gross resection and chemoradiotherapy, these grade IV astrocytomas consistently recur. Glioblastoma cells exhibit numerous pathogenic mechanisms to decrease tumor immunogenicity while promoting gliomagenesis, which manifests clinically as a median survival of less than 2 years and few long-term survivors. Recent clinical trials of vaccine-based immunotherapeutics against glioblastoma have demonstrated encouraging results in prolonging progression-free survival and overall survival. Several vaccine-based treatments have been trialed, such as peptide and heat-shock proteins, dendritic cell-based vaccines, and viral-based immunotherapy. In this literature review, we discuss the immunobiology of glioblastoma, significant current and completed vaccine-based immunotherapy clinical trials, and broad clinical challenges and future directions of glioblastoma vaccine-based immunotherapeutics.
Collapse
Affiliation(s)
- Joshua A Cuoco
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, New York, USA.
| | - Michael J Benko
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Christopher M Busch
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Joshua T Prickett
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Eric A Marvin
- Carilion Clinic, Section of Neurosurgery, Roanoke, Virginia, USA; Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA; Virginia Tech School of Neuroscience, Blacksburg, Virginia, USA; Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
29
|
Eagles ME, Nassiri F, Badhiwala JH, Suppiah S, Almenawer SA, Zadeh G, Aldape KD. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag 2018; 14:1299-1313. [PMID: 30100728 PMCID: PMC6067774 DOI: 10.2147/tcrm.s135865] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal primary adult brain tumor. To date, various promising chemotherapeutic regimens have been trialed for use in GBM; however, temozolomide (TMZ) therapy remains the only US Food and Drug Administration-approved first-line chemotherapeutic option for newly diagnosed GBM. Despite maximal therapy with surgery and combined concurrent chemoradiation and adjuvant TMZ therapy, the median overall survival remains approximately 14 months. Given the failure of conventional chemotherapeutic strategies in GBM, there has been renewed interest in the role of immunotherapy in GBM. Dendritic cells are immune antigen-presenting cells that play a role in both the innate and adaptive immune system, thereby making them prime vehicles for immunotherapy via dendritic cell vaccinations (DCVs) in various cancers. There is great enthusiasm surrounding the use of DCVs for GBM with multiple ongoing trials. In this review, we comprehensively summarize the safety, efficacy, and quality of life results from 33 trials reporting on DCV for high-grade gliomas.
Collapse
Affiliation(s)
- Matthew E Eagles
- Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada, .,MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Suganth Suppiah
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Saleh A Almenawer
- Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, University Health Network, Toronto, ON, Canada
| | - Kenneth D Aldape
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
30
|
Rapp M, Grauer OM, Kamp M, Sevens N, Zotz N, Sabel M, Sorg RV. A randomized controlled phase II trial of vaccination with lysate-loaded, mature dendritic cells integrated into standard radiochemotherapy of newly diagnosed glioblastoma (GlioVax): study protocol for a randomized controlled trial. Trials 2018; 19:293. [PMID: 29801515 PMCID: PMC5970474 DOI: 10.1186/s13063-018-2659-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Despite the combination of surgical resection, radio- and chemotherapy, median survival of glioblastoma multiforme (GBM) patients only slightly increased in the last years. Disease recurrence is definite with no effective therapy existing after tumor removal. Dendritic cell (DC) vaccination is a promising active immunotherapeutic approach. There is clear evidence that it is feasible, results in immunological anti-tumoral responses, and appears to be beneficial for survival and quality of life of GBM patients. Moreover, combining it with the standard therapy of GBM may allow exploiting synergies between the treatment modalities. In this randomized controlled trial, we seek to confirm these promising initial results. Methods One hundred and thirty-six newly diagnosed, isocitrate dehydrogenase wildtype GBM patients will be randomly allocated (1:1 ratio, stratified by O6-methylguanine-DNA-methyltransferase promotor methylation status) after near-complete resection in a multicenter, prospective phase II trial into two groups: (1) patients receiving the current therapeutic “gold standard” of radio/temozolomide chemotherapy and (2) patients receiving DC vaccination as an add-on to the standard therapy. A recruitment period of 30 months is anticipated; follow-up will be 2 years. The primary objective of the study is to compare overall survival (OS) between the two groups. Secondary objectives are comparing progression-free survival (PFS) and 6-, 12- and 24-month OS and PFS rates, the safety profile, overall and neurological performance and quality of life. Discussion Until now, close to 500 GBM patients have been treated with DC vaccination in clinical trials or on a compassionate-use basis. Results have been encouraging, but cannot provide robust evidence of clinical efficacy because studies have been non-controlled or patient numbers have been low. Therefore, a prospective, randomized phase II trial with a sufficiently large number of patients is now mandatory for clear evidence regarding the impact of DC vaccination on PFS and OS in GBM. Trial registration Protocol code: GlioVax, date of registration: 17. February 2017. Trial identifier: EudraCT-Number 2017–000304-14. German Registry for Clinical Studies, ID: DRKS00013248 (approved primary register in the WHO network) and at ClinicalTrials.gov, ID: NCT03395587. Registered on 11 March 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Rapp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany. .,Department of Neurosurgery, Heinrich Heine University Hospital Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Oliver M Grauer
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marcel Kamp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Natalie Sevens
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Nikola Zotz
- Coordination Center for Clinical Trials, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
31
|
Filley AC, Dey M. Dendritic cell based vaccination strategy: an evolving paradigm. J Neurooncol 2017; 133:223-235. [PMID: 28434112 DOI: 10.1007/s11060-017-2446-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Malignant gliomas (MG), tumors of glial origin, are the most commonly diagnosed primary intracranial malignancies in adults. Currently available treatments have provided only modest improvements in overall survival and remain limited by inevitable local recurrence, necessitating exploration of novel therapies. Among approaches being investigated, one of the leading contenders is immunotherapy, which aims to modulate immune pathways to stimulate the selective destruction of malignant cells. Dendritic cells (DCs) are potent initiators of adaptive immune responses and therefore crucial players in the development and success of immunotherapy. Clinical trials of various DC-based vaccinations have demonstrated the induction of anti-tumor immune responses and prolonged survival in the setting of many cancers. In this review, we summarize current literature regarding DCs and their role in the tumor microenvironment, their application and current clinical use in immunotherapy, current challenges limiting their efficacy in anti-cancer therapy, and future avenues for developing successful anti-tumor DC-based vaccines.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Purdue University Indianapolis (IUPUI), 320 W 15th Street, Neuroscience Building NB400A, Indianapolis, IN, 46202, USA.
| |
Collapse
|
32
|
Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor Vaccines for Malignant Gliomas. Neurotherapeutics 2017; 14:345-357. [PMID: 28389997 PMCID: PMC5398993 DOI: 10.1007/s13311-017-0522-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.
Collapse
Affiliation(s)
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol 2017; 39:225-239. [PMID: 28138787 DOI: 10.1007/s00281-016-0616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.
Collapse
|
34
|
Ion-Mărgineanu A, Van Cauter S, Sima DM, Maes F, Sunaert S, Himmelreich U, Van Huffel S. Classifying Glioblastoma Multiforme Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI Features. Front Neurosci 2017; 10:615. [PMID: 28123355 PMCID: PMC5225114 DOI: 10.3389/fnins.2016.00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
Purpose: The purpose of this paper is discriminating between tumor progression and response to treatment based on follow-up multi-parametric magnetic resonance imaging (MRI) data retrieved from glioblastoma multiforme (GBM) patients. Materials and Methods: Multi-parametric MRI data consisting of conventional MRI (cMRI) and advanced MRI [i.e., perfusion weighted MRI (PWI) and diffusion kurtosis MRI (DKI)] were acquired from 29 GBM patients treated with adjuvant therapy after surgery. We propose an automatic pipeline for processing advanced MRI data and extracting intensity-based histogram features and 3-D texture features using manually and semi-manually delineated regions of interest (ROIs). Classifiers are trained using a leave-one-patient-out cross validation scheme on complete MRI data. Balanced accuracy rate (BAR)–values are computed and compared between different ROIs, MR modalities, and classifiers, using non-parametric multiple comparison tests. Results: Maximum BAR–values using manual delineations are 0.956, 0.85, 0.879, and 0.932, for cMRI, PWI, DKI, and all three MRI modalities combined, respectively. Maximum BAR–values using semi-manual delineations are 0.932, 0.894, 0.885, and 0.947, for cMRI, PWI, DKI, and all three MR modalities combined, respectively. After statistical testing using Kruskal-Wallis and post-hoc Dunn-Šidák analysis we conclude that training a RUSBoost classifier on features extracted using semi-manual delineations on cMRI or on all MRI modalities combined performs best. Conclusions: We present two main conclusions: (1) using T1 post-contrast (T1pc) features extracted from manual total delineations, AdaBoost achieves the highest BAR–value, 0.956; (2) using T1pc-average, T1pc-90th percentile, and Cerebral Blood Volume (CBV) 90th percentile extracted from semi-manually delineated contrast enhancing ROIs, SVM-rbf, and RUSBoost achieve BAR–values of 0.947 and 0.932, respectively. Our findings show that AdaBoost, SVM-rbf, and RUSBoost trained on T1pc and CBV features can differentiate progressive from responsive GBM patients with very high accuracy.
Collapse
Affiliation(s)
- Adrian Ion-Mărgineanu
- Department of Electrical Engineering (ESAT), Signal Processing and Data Analytics, STADIUS Center for Dynamical Systems, KU LeuvenLeuven, Belgium; imecLeuven, Belgium
| | - Sofie Van Cauter
- Department of Radiology, University Hospitals of Leuven Leuven, Belgium
| | - Diana M Sima
- Department of Electrical Engineering (ESAT), Signal Processing and Data Analytics, STADIUS Center for Dynamical Systems, KU LeuvenLeuven, Belgium; imecLeuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering (ESAT), PSI Center for Processing Speech and Images, KU Leuven Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals of Leuven Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), Signal Processing and Data Analytics, STADIUS Center for Dynamical Systems, KU LeuvenLeuven, Belgium; imecLeuven, Belgium
| |
Collapse
|
35
|
Müller I, Altherr D, Eyrich M, Flesch B, Friedmann KS, Ketter R, Oertel J, Schwarz EC, Technau A, Urbschat S, Eichler H. Tumor antigen-specific T cells for immune monitoring of dendritic cell-treated glioblastoma patients. Cytotherapy 2016; 18:1146-61. [PMID: 27424145 DOI: 10.1016/j.jcyt.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS CD8(+) T cells are part of the adaptive immune system and, as such, are responsible for the elimination of tumor cells. Dendritic cells (DC) are professional antigen-presenting cells (APC) that activate CD8(+) T cells. Effector CD8(+) T cells in turn mediate the active immunotherapeutic response of DC vaccination against the aggressive glioblastoma (GBM). The lack of tumor response assays complicates the assessment of treatment success in GBM patients. METHODS A novel assay to identify specific cytotoxicity of activated T cells by APC was evaluated. Tumor antigen-pulsed DCs from HLA-A*02-positive GBM patients were cultivated to stimulate autologous cytotoxic T lymphocytes (CTL) over a 12-day culture period. To directly correlate antigen specificity and cytotoxic capacity, intracellular interferon (IFN)-γ fluorescence flow cytometry-based measurements were combined with anti-GBM tumor peptide dextramer staining. IFN-γ response was quantified by real-time polymerase chain reaction (PCR), and selected GBM genes were compared with healthy human brain cDNA by single specific primer PCR characterization. RESULTS Using CTL of GBM patients stimulated with GBM lysate-pulsed DCs increased IFN-γ messenger RNA levels, and intracellular IFN-γ protein expression was positively correlated with specificity against GBM antigens. Moreover, the GBM peptide-specific CD8(+) T-cell response correlated with specific GBM gene expression. Following DC vaccination, GBM patients showed 10-fold higher tumor-specific signals compared with unvaccinated GBM patients. DISCUSSION These data indicate that GBM tumor peptide-dextramer staining of CTL in combination with intracellular IFN-γ staining may be a useful tool to acquire information on whether a specific tumor antigen has the potential to induce an immune response in vivo.
Collapse
Affiliation(s)
- Isabelle Müller
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany.
| | - Dominik Altherr
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| | - Matthias Eyrich
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Brigitte Flesch
- Immungenetic/HLA, German Red Cross Blood Service, Bad Kreuznach, Germany
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Ralf Ketter
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Antje Technau
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
36
|
Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW. Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines. Front Immunol 2016; 6:663. [PMID: 26834740 PMCID: PMC4712296 DOI: 10.3389/fimmu.2015.00663] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/26/2015] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings.
Collapse
Affiliation(s)
- Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven , Leuven , Belgium
| | - Jochen Belmans
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven , Leuven , Belgium
| | - Matthias Van Woensel
- Laboratory of Experimental and Neuroanatomy, Department of Neurosciences, KU Leuven University of Leuven, Leuven, Belgium; Laboratory of Pharmaceutics and Biopharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Riva
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Department of Neurosurgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Stefaan W Van Gool
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Kinderklinik, RWTH, Aachen, Germany; Immunologic-Oncologic Centre Cologne (IOZK), Köln, Germany
| |
Collapse
|
37
|
Finocchiaro G, Pellegatta S. Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies. Cancer Immunol Immunother 2016; 65:101-9. [PMID: 26377689 PMCID: PMC11029491 DOI: 10.1007/s00262-015-1754-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/23/2015] [Indexed: 01/18/2023]
Abstract
Different approaches have been explored to raise effective antitumor responses against glioblastoma (GBM), the deadliest of primary brain tumors. In many clinical studies, cancer vaccines have been based on dendritic cells (DCs) loaded with peptides, representing one or more specific tumor antigens or whole lysates as a source of multiple antigens. Randomized clinical trials using DCs are ongoing, and results of efficacy are not yet available. Such strategies are feasible and safe; however, immune-suppressive microenvironment, absence of appropriate specific epitopes to target, and cancer immunoediting can limit their efficacy. The aim of this review is to describe how the definition of novel and more specific targets may increase considerably the possibility of successful DC immunotherapy. By proposing to target glioblastoma stem-like cells (GSCs), the immune response will be pointed to eradicating factors and pathways highly relevant to GBM biology. Preclinical observations on efficacy, and preliminary results of immunotherapy trials, encourage exploring the clinical efficacy of DC immunotherapy in GBM patients using high-purity, GSC-loaded DC vaccines.
Collapse
Affiliation(s)
- Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
38
|
Immunomonitoring in glioma immunotherapy: current status and future perspectives. J Neurooncol 2015; 127:1-13. [PMID: 26638171 DOI: 10.1007/s11060-015-2018-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Given the continued poor clinical outcomes and refractory nature of glioblastoma multiforme to traditional interventions, immunotherapy is gaining traction due to its potential for specific tumor-targeting and long-term antitumor protective surveillance. Currently, development of glioma immunotherapy relies on overall survival as an endpoint in clinical trials. However, the identification of surrogate immunologic biomarkers can accelerate the development of successful immunotherapeutic strategies. Immunomonitoring techniques possess the potential to elucidate immunological mechanisms of antitumor responses, monitor disease progression, evaluate therapeutic effect, identify candidates for immunotherapy, and serve as prognostic markers of clinical outcome. Current immunomonitoring assays assess delayed-type hypersensitivity, T cell proliferation, cytotoxic T-lymphocyte function, cytokine secretion profiles, antibody titers, and lymphocyte phenotypes. Yet, no single immunomonitoring technique can reliably predict outcomes, relegating immunological markers to exploratory endpoints. In response, the most recent immunomonitoring assays are incorporating emerging technologies and novel analysis techniques to approach the goal of identifying a competent immunological biomarker which predicts therapy responsiveness and clinical outcome. This review addresses the current status of immunomonitoring in glioma vaccine clinical trials with emphasis on correlations with clinical response.
Collapse
|
39
|
Polyzoidis S, Ashkan K. DCVax®-L--developed by Northwest Biotherapeutics. Hum Vaccin Immunother 2015; 10:3139-45. [PMID: 25483653 DOI: 10.4161/hv.29276] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell (DC) immunotherapy is emerging as a potential addition to the standard of care in the treatment of glioblastoma multiforme (GBM). In the last decade or so various research groups have conducted phase I and II trials of DC-immunotherapy on patients with newly diagnosed (ND) and recurrent GBM and other high-grade gliomas in an attempt to improve the poor prognosis. Results show an increase in overall survival (OS), while vaccination-related side effects are invariably mild. Northwest Biotherapeutics, Inc., Bethesda, Maryland, U.S.A. (NWBT) developed the DCVax®-L vaccine as an adjunct to the treatment of GBM. It is currently under evaluation in a phase III trial in patients with ND-GBM, which is the only ongoing trial of its kind. In this review current data and perspectives of this product are examined.
Collapse
Key Words
- BBB, blood brain barrier
- CNS, central nervous system
- CTL, cytotoxic T-lymphocyte
- DC, dendritic cell
- DCVax®-L
- DTH, delayed tissue hypersensitivity
- EORTC, European Organization for Research and Treatment of Cancer
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HGG, high-grade glioma
- IL-4, interleukin-4
- IMP, investigational medicinal product
- MHRA, Medicines and Healthcare products Regulatory Agency
- MRI, magnetic resonance imaging
- ND, newly diagnosed
- NIHR, National Institute for Health Research
- NWBT, Northwest Biotherapeutics Inc.
- OS, overall survival
- PEI, Paul-Ehrlich-Institute
- PFS, progression-free survival
- TAAs, tumor-associated antigens
- UCLA, University of California, Los Angeles, U.S.A., United States of America
- dendritic cells
- glioblastoma multiforme
- immunotherapy
- overall survival
- side effects
- vaccine
Collapse
Affiliation(s)
- Stavros Polyzoidis
- a Department of Neurosurgery; King's College Hospital; King's College ; London , UK
| | | |
Collapse
|
40
|
Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, Agostinis P, De Vleeschouwer S, Van Gool SW. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology 2015; 5:e1083669. [PMID: 27057467 PMCID: PMC4801426 DOI: 10.1080/2162402x.2015.1083669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines.
Collapse
Affiliation(s)
- Lien Vandenberk
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Abhishek D Garg
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Tina Verschuere
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Carolien Koks
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Jochen Belmans
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Monique Beullens
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Biosignaling and Therapeutics , Leuven, Belgium
| | - Patrizia Agostinis
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Steven De Vleeschouwer
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy , Leuven, Belgium
| | - Stefaan W Van Gool
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| |
Collapse
|
41
|
Tumour Relapse Prediction Using Multiparametric MR Data Recorded during Follow-Up of GBM Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:842923. [PMID: 26413548 PMCID: PMC4564625 DOI: 10.1155/2015/842923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Purpose. We have focused on finding a classifier that best discriminates between tumour progression and regression based on multiparametric MR data retrieved from follow-up GBM patients. Materials and Methods. Multiparametric MR data consisting of conventional and advanced MRI (perfusion, diffusion, and spectroscopy) were acquired from 29 GBM patients treated with adjuvant therapy after surgery over a period of several months. A 27-feature vector was built for each time point, although not all features could be obtained at all time points due to missing data or quality issues. We tested classifiers using LOPO method on complete and imputed data. We measure the performance by computing BER for each time point and wBER for all time points. Results. If we train random forests, LogitBoost, or RobustBoost on data with complete features, we can differentiate between tumour progression and regression with 100% accuracy, one time point (i.e., about 1 month) earlier than the date when doctors had put a label (progressive or responsive) according to established radiological criteria. We obtain the same result when training the same classifiers solely on complete perfusion data. Conclusions. Our findings suggest that ensemble classifiers (i.e., random forests and boost classifiers) show promising results in predicting tumour progression earlier than established radiological criteria and should be further investigated.
Collapse
|
42
|
Nair SK, Driscoll T, Boczkowski D, Schmittling R, Reynolds R, Johnson LA, Grant G, Fuchs H, Bigner DD, Sampson JH, Gururangan S, Mitchell DA. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J Neurooncol 2015; 125:65-74. [PMID: 26311248 DOI: 10.1007/s11060-015-1890-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/08/2015] [Indexed: 12/30/2022]
Abstract
Generation of patient-derived, autologous dendritic cells (DCs) is a critical component of cancer immunotherapy with ex vivo-generated, tumor antigen-loaded DCs. An important factor in the ability to generate DCs is the potential impact of prior therapies on DC phenotype and function. We investigated the ability to generate DCs using cells harvested from pediatric patients with medulloblastoma for potential evaluation of DC-RNA based vaccination approach in this patient population. Cells harvested from medulloblastoma patient leukapheresis following induction chemotherapy and granulocyte colony stimulating factor mobilization were cryopreserved prior to use in DC generation. DCs were generated from the adherent CD14+ monocytes using standard procedures and analyzed for cell recovery, phenotype and function. To summarize, 4 out of 5 patients (80%) had sufficient monocyte recovery to permit DC generation, and we were able to generate DCs from 3 out of these 4 patient samples (75%). Overall, we successfully generated DCs that met phenotypic requisites for DC-based cancer therapy from 3 out of 5 (60%) patient samples and met both phenotypic and functional requisites from 2 out of 5 (40%) patient samples. This study highlights the potential to generate functional DCs for further clinical treatments from refractory patients that have been heavily pretreated with myelosuppressive chemotherapy. Here we demonstrate the utility of evaluating the effect of the currently employed standard-of-care therapies on the ex vivo generation of DCs for DC-based clinical studies in cancer patients.
Collapse
Affiliation(s)
- Smita K Nair
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA.
| | - Timothy Driscoll
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
| | - Robert Schmittling
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
| | - Renee Reynolds
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Department of Neurosurgery, University of Buffalo, Buffalo, NY, 14222, USA.
| | - Laura A Johnson
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Gerald Grant
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, 94303, USA.
| | - Herbert Fuchs
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Darell D Bigner
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - John H Sampson
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Sridharan Gururangan
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA
| | - Duane A Mitchell
- Department of Surgery, Duke University School of Medicine, Box 103035, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Durham, NC, USA.
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, 32605, USA.
| |
Collapse
|
43
|
Nava S, Lisini D, Pogliani S, Dossena M, Bersano A, Pellegatta S, Parati E, Finocchiaro G, Frigerio S. Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients. Stem Cells Transl Med 2015; 4:1164-72. [PMID: 26273063 DOI: 10.5966/sctm.2015-0091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Cell therapy based on dendritic cells (DCs) pulsed with tumor lysate is a promising approach in addition to conventional therapy for the treatment of patients with glioblastoma (GB). The success of this approach strongly depends on the ability to generate high-quality, functionally mature DCs (mDCs), with a high level of standardization and in compliance with Good Manufacturing Practices. In the cell factory of the Carlo Besta Foundation, two phase I clinical trials on immunotherapy with tumor lysate-loaded DCs as treatment for GB are ongoing. From 2010 to 2014, 54 patients were enrolled in the studies and 54 batches of DCs were prepared. We retrospectively analyzed the results of the quality control tests carried out on each produced batch, evaluating yield of mDCs and their quality in terms of microbiological safety and immunological efficacy. The number of mDCs obtained allowed the treatment of all the enrolled patients. All 54 batches were sterile, conformed to acceptable endotoxin levels, and were free of Mycoplasma species and adventitious viruses. During culture, cells maintained a high percentage of viability (87%-98%), and all batches showed high viability after thawing (mean±SD: 94.6%±2.9%). Phenotype evaluation of mDCs showed an evident upregulation of markers typical of DC maturation; mixed lymphocyte reaction tests for the functional evaluation of DCs demonstrated that all batches were able to induce lymphocyte responses. These results demonstrated that our protocol for DC preparation is highly reproducible and permits generation of large numbers of safe and functional DCs for in vivo use in immunotherapy approaches. SIGNIFICANCE Cell therapy based on antigen-pulsed dendritic cells (DCs) is a promising approach for the treatment of glioblastoma patients. The success of this approach strongly depends on the ability to generate high-quality, functional DCs with a high level of standardization, ensuring reproducibility, efficacy, and safety of the final product. This article summarizes the results of the quality controls on 54 batches, to demonstrate the feasibility of producing a therapeutic cell-based vaccine via a well-controlled Good Manufacturing Practices (GMP)-compliant production process. The findings may be of scientific interest to those working in the field of preparation of GMP-compliant products for cell-therapy applications.
Collapse
Affiliation(s)
- Sara Nava
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Pogliani
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Dossena
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Serena Pellegatta
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eugenio Parati
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gaetano Finocchiaro
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
44
|
Van Gool SW. Brain Tumor Immunotherapy: What have We Learned so Far? Front Oncol 2015; 5:98. [PMID: 26137448 PMCID: PMC4470276 DOI: 10.3389/fonc.2015.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme patients. The developmental program allows further improvements related to newest scientific insights. Finally, we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.
Collapse
|
45
|
Hargrave D. Pediatric diffuse intrinsic pontine glioma: can optimism replace pessimism? CNS Oncol 2015; 1:137-48. [PMID: 25057864 DOI: 10.2217/cns.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis that has not seen a change in outcome despite multiple clinical trials. Possible reasons for failure to make progress in this aggressive childhood brain tumor include: poor understanding of the underlying molecular biology due to lack of access to tumor material; absence of accurate and relevant DIPG preclinical models for drug development; ill-defined therapeutic targets for novel agents; and inadequate drug delivery to the brainstem. This review will demonstrate that systematic studies to identify solutions for each of these barriers is starting to deliver progress that can turn pessimism to optimism in DIPG.
Collapse
Affiliation(s)
- Darren Hargrave
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
46
|
Rhun EL, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 2015; 6:S9-S44. [PMID: 25722939 PMCID: PMC4338495 DOI: 10.4103/2152-7806.151331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neuro-oncology, Roger Salengro Hospital, University Hospital, Lille, and Neurology, Department of Medical Oncology, Oscar Lambret Center, Lille, France, Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Lille 1 University, Villeneuve D’Ascq, France
| | - Sophie Taillibert
- Neurology, Mazarin and Radiation Oncology, Pitié Salpétrière Hospital, University Pierre et Marie Curie, Paris VI, Paris, France
| | - Marc C. Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
47
|
Polyzoidis S, Tuazon J, Brazil L, Beaney R, Al-Sarraj ST, Doey L, Logan J, Hurwitz V, Jarosz J, Bhangoo R, Gullan R, Mijovic A, Richardson M, Farzaneh F, Ashkan K. Active dendritic cell immunotherapy for glioblastoma: Current status and challenges. Br J Neurosurg 2014; 29:197-205. [PMID: 25541743 DOI: 10.3109/02688697.2014.994473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cell (DC) immunotherapy is developing as a promising treatment modality for patients with glioblastoma multiforme (GBM). The aim of this article is to review the data from clinical trials and prospective studies evaluating the safety and efficacy of DC vaccines for newly diagnosed (ND)- and recurrent (Rec)-GBM and for other high-grade gliomas (HGGs). By searching all major databases we identified and reviewed twenty-two (n=22) such studies, twenty (n=20) of which were phase I and II trials, one was a pilot study towards a phase I/II trial and one was a prospective study. GBM patients were exclusively recruited in 12/22 studies, while 10/22 studies enrolled patients with any diagnosis of a HGG. In 7/22 studies GBM was newly diagnosed. In the vast majority of studies the vaccine was injected subcutaneously or intradermally and consisted of mature DCs pulsed with tumour lysate or peptides. Median overall survival ranged between 16.0 and 38.4 months for ND-GBM and between 9.6 and 35.9 months for Rec-GBM. Vaccine-related side effects were in general mild (grade I and II), with serious adverse events (grade III, IV and V) reported only rarely. DC immunotherapy therefore appears to have the potential to increase the overall survival in patients with HGG, with an acceptable side effect profile. The findings will require confirmation by the ongoing and future phase III trials.
Collapse
|
48
|
Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro Oncol 2014; 16:1441-58. [PMID: 25190673 DOI: 10.1093/neuonc/nou212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for patients with glioblastoma, the most common high-grade primary CNS tumor, remains poor despite multiple therapeutic interventions including intensifying cytotoxic therapy, targeting dysregulated cell signaling pathways, and blocking angiogenesis. Exciting, durable clinical benefits have recently been demonstrated for a number of other challenging cancers using a variety of immunotherapeutic approaches. Much modern research confirms that the CNS is immunoactive rather than immunoprivileged. Preliminary results of clinical studies demonstrate that varied vaccine strategies have achieved encouraging evidence of clinical benefit for glioblastoma patients, although multiple variables will likely require systematic investigation before optimal outcomes are realized. Initial preclinical studies have also revealed promising results with other immunotherapies including cell-based approaches and immune checkpoint blockade. Clinical studies to evaluate a wide array of immune therapies for malignant glioma patients are being rapidly developed. Important considerations going forward include optimizing response assessment and identifiying correlative biomarkers for predict therapeutic benefit. Finally, the potential of complementary combinatorial immunotherapeutic regimens is highly exciting and warrants expedited investigation.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Gordon Freeman
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Catherine Wu
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - E Antonio Chiocca
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Kai W Wucherpfennig
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Edward F Fritsch
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - William T Curry
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - John H Sampson
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Glenn Dranoff
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| |
Collapse
|
49
|
Jouanneau E, Black KL, Veiga L, Cordner R, Goverdhana S, Zhai Y, Zhang XX, Panwar A, Mardiros A, Wang H, Gragg A, Zandian M, Irvin DK, Wheeler CJ. Intrinsically de-sialylated CD103(+) CD8 T cells mediate beneficial anti-glioma immune responses. Cancer Immunol Immunother 2014; 63:911-24. [PMID: 24893855 PMCID: PMC11029428 DOI: 10.1007/s00262-014-1559-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 05/16/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer vaccines reproducibly cure laboratory animals and reveal encouraging trends in brain tumor (glioma) patients. Identifying parameters governing beneficial vaccine-induced responses may lead to the improvement of glioma immunotherapies. CD103(+) CD8 T cells dominate post-vaccine responses in human glioma patients for unknown reasons, but may be related to recent thymic emigrant (RTE) status. Importantly, CD8 RTE metrics correlated with beneficial immune responses in vaccinated glioma patients. METHODS We show by flow cytometry that murine and human CD103(+) CD8 T cells respond better than their CD103(-) counterparts to tumor peptide-MHC I (pMHC I) stimulation in vitro and to tumor antigens on gliomas in vivo. RESULTS Glioma responsive T cells from mice and humans both exhibited intrinsic de-sialylation-affecting CD8 beta. Modulation of CD8 T cell sialic acid with neuraminidase and ST3Gal-II revealed de-sialylation was necessary and sufficient for promiscuous binding to and stimulation by tumor pMHC I. Moreover, de-sialylated status was required for adoptive CD8 T cells and lymphocytes to decrease GL26 glioma invasiveness and increase host survival in vivo. Finally, increased tumor ST3Gal-II expression correlated with clinical vaccine failure in a meta-analysis of high-grade glioma patients. CONCLUSIONS Taken together, these findings suggest that de-sialylation of CD8 is required for hyper-responsiveness and beneficial anti-glioma activity by CD8 T cells. Because CD8 de-sialylation can be induced with exogenous enzymes (and appears particularly scarce on human T cells), it represents a promising target for clinical glioma vaccine improvement.
Collapse
Affiliation(s)
- Emmanuel Jouanneau
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
- Present Address: Department of Neurosurgery, Neurological Hospital and INSERM 842 Research Unit, Claude Bernard University, Lyon, France
| | - Keith L. Black
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Lucia Veiga
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Ryan Cordner
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Shyam Goverdhana
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Yuying Zhai
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Xiao-xue Zhang
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Akanksha Panwar
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Armen Mardiros
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
- Present Address: Department of Cancer Immunotherapeutics and Tumor Immunology, City of Hope National Medical Center, Duarte, CA 91010 USA
| | - HongQiang Wang
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Ashley Gragg
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Mandana Zandian
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Dwain K. Irvin
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| | - Christopher J. Wheeler
- Department of Neurosurgery, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd, Suite A8113, Los Angeles, CA 90048 USA
| |
Collapse
|
50
|
Eyrich M, Schreiber SC, Rachor J, Krauss J, Pauwels F, Hain J, Wölfl M, Lutz MB, de Vleeschouwer S, Schlegel PG, Van Gool SW. Development and validation of a fully GMP-compliant production process of autologous, tumor-lysate-pulsed dendritic cells. Cytotherapy 2014; 16:946-64. [DOI: 10.1016/j.jcyt.2014.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/04/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
|