1
|
Pisapia P, Iaccarino A, Troncone G, Malapelle U. Liquid Biopsy in Solid Tumours: An Overview. Cytopathology 2025; 36:296-302. [PMID: 40219616 DOI: 10.1111/cyt.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
The advent of personalised and precision medicine has radically modified the management and the clinical outcome of cancer patients. However, the expanding number of predictive, prognostic, and diagnostic biomarkers has raised the need for simple, noninvasive, quicker, but equally efficient tests for molecular profiling. In this complex scenario, the adoption of liquid biopsy, particularly circulating tumour DNA (ctDNA), has been a real godsend for many cancer patients who would otherwise have been denied the benefits of targeted treatments. Undeniably, ctDNA analysis has several advantages over conventional tissue-based analysis. One advantage is that it can guide treatment decision making, especially when tissue samples are scarce or totally unavailable. Indeed, a simple blood test can inform clinicians on patients' response or resistance to targeted therapies, help them monitor minimal residual disease (MRD) after surgical resections, and facilitate them with early cancer detection and interception. Finally, an equally important advantage is that ctDNA analysis can help decipher temporal and spatial tumour heterogeneity, a mechanism highly responsible for therapeutic resistance. In this review, we gathered and analysed current evidence on the clinical usefulness of ctDNA analysis in solid tumours.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Aredo JV, Jamali A, Zhu J, Heater N, Wakelee HA, Vaklavas C, Anagnostou V, Lu J. Liquid Biopsy Approaches for Cancer Characterization, Residual Disease Detection, and Therapy Monitoring. Am Soc Clin Oncol Educ Book 2025; 45:e481114. [PMID: 40305739 DOI: 10.1200/edbk-25-481114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Liquid biopsy encompasses a variety of molecular approaches to detect circulating tumor DNA (ctDNA) and has become a powerful tool in the diagnosis and treatment of solid tumors. Current applications include comprehensive genomic profiling for identifying targetable mutations and therapeutic resistance mechanisms, with emerging applications in minimal residual disease detection and treatment response monitoring. Increasingly, the potential for liquid biopsy in guiding treatment decisions is under active investigation through prospective clinical trials using ctDNA-adaptive interventions in patients with early-stage and metastatic cancers. Limitations arise on the basis of the sensitivity and feasibility of individual liquid biopsy assays; nonetheless, emerging technologies set the stage for improving these shortcomings. As the global oncology community continues to ascertain the clinical value of liquid biopsy across the continuum of patient care, this minimally invasive approach heralds a significant advancement in the promise of precision oncology.
Collapse
Affiliation(s)
- Jacqueline V Aredo
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Amna Jamali
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jessica Zhu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Natalie Heater
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Heather A Wakelee
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The Johns Hopkins Molecular Tumor Board, Johns Hopkins School of Medicine, Baltimore, MD
- Lung Cancer Precision Medicine Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD
- The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Janice Lu
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Circulating Tumor Cell (CTC) Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
3
|
Richard M, Koch C, Trojan J. [Chemotherapy, targeted therapy and immunotherapy of metastatic colorectal cancer : What is new?]. RADIOLOGIE (HEIDELBERG, GERMANY) 2025; 65:443-449. [PMID: 40274654 DOI: 10.1007/s00117-025-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
In recent years the treatment options for metastatic colorectal cancer have significantly improved. This progress has particularly benefited specific subgroups of patients identified by certain biomarkers, such as those with a microsatellite instability, patients with B‑Raf (BRAF) V600E mutation, Kirsten rat sarcoma (KRAS) G12C mutation or v‑erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2) amplification. Additionally, targeted anti-epidermal growth factor (EGF) receptor therapy can be more effectively utilized through further patient selection. For patients who no longer respond to treatment, the new standard trifluridine/tipiracil in combination with bevacizumab has become established as the new third-line option. Furthermore, the selectively anti-angiogenic tyrosine kinase inhibitor fruquintinib has recently been approved as a last-line treatment. This article provides an overview of current standards and future developments in therapy.
Collapse
Affiliation(s)
- Mirjam Richard
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - Christine Koch
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
| | - Jörg Trojan
- Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| |
Collapse
|
4
|
Zhang L, Zhang Y, Chen L, Wang X, Liu Y, Huang Y, Song Y, Zhang Y, Tai J. Research trends and hotspots of circulating tumor DNA in colorectal cancer: a bibliometric study. Front Oncol 2025; 15:1492880. [PMID: 40438683 PMCID: PMC12116327 DOI: 10.3389/fonc.2025.1492880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths. The current standard of care for patients with early-stage CRC includes surgical resection and, in selected patients, adjuvant chemotherapy. Circulating tumor DNA (ctDNA) testing is an important component of liquid biopsy, and with the development of testing technology, its value for clinical application has attracted widespread attention. The aim of this study was to help researchers review what has been achieved and better understand the direction of future research through bibliometric analysis. Methods We used the Web of Science Core Collection database to search for ctDNA in CRC-related articles published between 2014 - 2023. Bibliometric analyses of major keywords, authors, countries, institutions, literature and journals in the field were performed using CiteSpace and VOSviewer. Results The number of publications in the field has continued to increase over the last decade. The United States has the highest number of publications, and Italian research scholars have made outstanding contributions. Cancers is the journal with the highest number of publications. Conclusion This study systematically summarizes the research findings in the field of ctDNA in CRC from 2014 to 2023 and describes the research hotspots and trends worldwide that can guide future research.
Collapse
Affiliation(s)
- Lele Zhang
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Lei Chen
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yulian Liu
- Department of Traditional Chinese Medicine, Chongqing Hospital of Jiangsu Province Hospital, Chongqing, China
| | - Yishan Huang
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Song
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jiandong Tai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Fukuda A, Mizuno T, Yoshida T, Sunami K, Kubo T, Koyama T, Yonemori K, Okusaka T, Kato K, Ohe Y, Yatabe Y, Yamamoto N. Upfront liquid biopsy in patients with advanced solid tumors who were not feasible for tissue-based next-generation sequencing. Jpn J Clin Oncol 2025:hyaf065. [PMID: 40251768 DOI: 10.1093/jjco/hyaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Liquid biopsy has been developed as an alternative to tissue-based sequencing for detecting genomic alterations in solid tumors. However, the clinical utility of liquid biopsy in patients with solid tumors for whom tissue-based next-generation sequencing (NGS) is infeasible has not been well-characterized, particularly in previously untreated individuals. METHODS This prospective study evaluated the clinical impact of liquid biopsy, focusing on six solid tumor types. Overall, 109 patients were enrolled and underwent liquid biopsy using Guardant360 (Guardant Health, Redwood City, CA, USA). Among these, 94 (86.3%) patients were previously untreated. RESULTS The most common cancer type was non-small cell lung cancer (n = 57, 52.3%), followed by pancreatic (n = 35, 32.1%), biliary tract (n = 8, 7.3%), gastric (n = 5, 4.6%), colorectal (n = 3, 2.8%), and triple-negative breast (n = 1, 0.9%) cancers. The success rate of liquid biopsy was 99.1%, and the median turnaround time from blood collection to results was 7 days (range: 5-22 days). Actionable alterations were detected in 31 (28.4%) patients, and 8.3% of them received matched therapy based on alterations identified by liquid biopsy. Among previously untreated patients, actionable mutations were identified in 29.8%, and 8.5% received matched therapy. CONCLUSIONS In patients with advanced solid tumors for which tissue-based NGS is not feasible, performing upfront liquid biopsy could lead to the detection of actionable alterations and help guide targeted therapies. CLINICAL TRIAL REGISTRY UMIN Clinical Trials Registry (UMIN000041722).
Collapse
Affiliation(s)
- Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Mizuno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kubo
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Aroldi F, Elez E, André T, Perkins G, Prenen H, Popovici V, Gallagher P, Houlden J, Collins L, Roberts C, Rolfo C, Di Nicolantonio F, Grayson M, Boyd R, Bettens K, Delfavero J, Coyle V, Lawler M, Khawaja H, Laurent-Puig P, Salto-Tellez M, Maughan TS, Tabernero J, Adams R, Jones R, Hennessy BT, Bardelli A, Peeters M, Middleton MR, Wilson RH, Van Schaeybroeck S. A Phase Ia/b study of MEK1/2 inhibitor binimetinib with MET inhibitor crizotinib in patients with RAS mutant advanced colorectal cancer (MErCuRIC). BMC Cancer 2025; 25:658. [PMID: 40211189 PMCID: PMC11984268 DOI: 10.1186/s12885-025-14068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Targeting RAS mutant (MT) colorectal cancer (CRC) remains a difficult challenge, mainly due to the pervasiveness of RAS/MEK-mediated feedback loops. Preclinical studies identified MET/STAT3 as an important mediator of resistance to KRAS-MEK1/2 blockade in RASMT CRC. This dose escalation/expansion study assessed safety and initial efficacy of the MEK1/2 inhibitor binimetinib with MET inhibitor crizotinib in RASMT advanced CRC patients. METHODS In the dose escalation phase, patients with advanced solid tumours received binimetinib with crizotinib, using a rolling- 6 design to determine the maximum tolerable dose (MTD) and safety/tolerability. A subsequent dose expansion in RASMT CRC patients assessed treatment response. Blood samples for pharmacokinetics, MET biomarker and ctDNA analyses, and skin/tumour biopsies for pharmacodynamics, c-MET immunohistochemistry (IHC), MET in situ hybridisation (ISH) and MET DNA-ISH analyses were collected. RESULTS Twenty patients were recruited in 3 cohorts in the dose escalation. The MTD was binimetinib 30 mg B.D, days 1-21 every 28 days, with crizotinib 250 mg O.D continuously. Dose-limiting toxicities included grade ≥ 3 transaminitis, creatinine phosphokinase increases and fatigue. Thirty-six RASMT metastatic CRC patients were enrolled in the dose expansion. Pharmacokinetic and pharmacodynamic parameters showed evidence of target engagement. Across the entire study, the most frequent treatment-related adverse events (TR-AE) were rash (80.4%), fatigue (53.4%) and diarrhoea (51.8%) with grade ≥ 3 TR-AE occurring in 44.6%. Best clinical response within the RASMT CRC cohort was stable disease in seven patients (24%). Tumour MET super-expression (IHC H-score > 180 and MET ISH + 3) was observed in 7 patients (24.1%), with MET-amplification only present in 1 of these patients. This patient discontinued treatment early during cycle 1 due to toxicity. Patients with high baseline RASMT allele frequency had a significant shorter median overall survival compared with that seen for patients with low baseline KRASMT allele frequency. CONCLUSIONS Combination binimetinib/crizotinib showed a poor tolerability with no objective responses observed in RASMT advanced CRC patients. EudraCT-Number: 2014-000463 - 40 (20/06/2014: A Sequential Phase I study of MEK1/2 inhibitors PD- 0325901 or Binimetinib combined with cMET inhibitor Crizotinib in RAS Mutant and RAS Wild Type with aberrant c-MET).
Collapse
Affiliation(s)
- Francesca Aroldi
- Department of Oncology, University of Oxford, Old Road Campus Research Building Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Elena Elez
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Thierry André
- Department of Medical Oncology, Sorbonne Université, Hôpital Saint Antoine, 75012, Paris, France
| | - Geraldine Perkins
- Department of GI Oncology, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Hans Prenen
- Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, 2610, Wilrijk, Belgium
| | - Vlad Popovici
- Faculty of Science, RECETOX, Masaryk University, 625 00, Brno, Czech Republic
| | - Peter Gallagher
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Jennifer Houlden
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, OX3 7LJ, UK
| | - Linda Collins
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, OX3 7LJ, UK
| | - Corran Roberts
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christian Rolfo
- Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, 2610, Wilrijk, Belgium
| | - Federica Di Nicolantonio
- Department of Oncology &, University of Torino, Candiolo Cancer Institute, 10060, Candiolo, TO, Italy
| | - Margaret Grayson
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
| | - Ruth Boyd
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
| | - Karolien Bettens
- Genomics, Diagnostics and Genomics Group, Agilent Technologies, 1831, Diegem, Belgium
| | - Jurgen Delfavero
- Genomics, Diagnostics and Genomics Group, Agilent Technologies, 1831, Diegem, Belgium
| | - Victoria Coyle
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Mark Lawler
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Hajrah Khawaja
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Pierre Laurent-Puig
- Institut National de La Sante Et de La Recherche Medicale (INSERM), Universite Paris Descartes, 75006, Paris, France
| | - Manuel Salto-Tellez
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Tim S Maughan
- Department of Oncology, University of Oxford, Old Road Campus Research Building Roosevelt Drive, Oxford, OX3 7DQ, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton St, Liverpool, L69 3GE, UK
| | - Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Richard Adams
- Cardiff University and Velindre University NHS Trust, Cardiff, CF14 2 TL, UK
| | - Robert Jones
- Cardiff University and Velindre University NHS Trust, Cardiff, CF14 2 TL, UK
| | - Bryan T Hennessy
- Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's, Green, Dublin, Ireland
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marc Peeters
- Department of Medical Oncology, University of Antwerp/Antwerp University Hospital, 2610, Wilrijk, Belgium
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Old Road Campus Research Building Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Richard H Wilson
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, BT9 7 AB, UK.
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, BT9 7AE, UK.
| |
Collapse
|
7
|
Kratz JD, Rehman S, Johnson KA, Gillette AA, Sunil A, Favreau PF, Pasch CA, Miller D, Zarling LC, Yeung AH, Clipson L, Anderson SJ, Steimle AK, Sprackling CM, Lemmon KK, Abbott DE, Burkard ME, Bassetti MF, Eickhoff JC, Foley EF, Heise CP, Kimple RJ, Lawson EH, LoConte NK, Lubner SJ, Mulkerin DL, Matkowskyj KA, Sanger CB, Uboha NV, Mcilwain SJ, Ong IM, Carchman EH, Skala MC, Deming DA. Subclonal response heterogeneity to define cancer organoid therapeutic sensitivity. Sci Rep 2025; 15:12072. [PMID: 40200028 PMCID: PMC11978853 DOI: 10.1038/s41598-025-96204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor heterogeneity is predicted to confer inferior clinical outcomes with precision-based strategies, however, modeling heterogeneity in a manner that still represents the tumor of origin remains a formidable challenge. Sequencing technologies are limited in their ability to identify rare subclonal populations and predict response to treatments for patients. Patient-derived organotypic cultures have significantly improved the modeling of cancer biology by faithfully representing the molecular features of primary malignant tissues. Patient-derived cancer organoid (PCO) cultures contain subclonal populations with the potential to recapitulate heterogeneity, although treatment response assessments commonly ignore diversity in the molecular profile or treatment response. Here, we demonstrate the advantage of evaluating individual PCO heterogeneity to enhance the sensitivity of these assays for predicting clinical response. Additionally, organoid subcultures identify subclonal populations with altered treatment response. Finally, dose escalation studies of PCOs to targeted anti-EGFR therapy are utilized which reveal divergent pathway expression when compared to pretreatment cultures. Overall, these studies demonstrate the importance of population-based organoid response assessments, the use of PCOs to identify molecular heterogeneity not observed with bulk tumor sequencing, and PCO heterogeneity for understanding therapeutic resistance mechanisms.
Collapse
Affiliation(s)
- Jeremy D Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Katherine A Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Amani A Gillette
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Aishwarya Sunil
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Peter F Favreau
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Devon Miller
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Lucas C Zarling
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Austin H Yeung
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | | | | | | | - Kayla K Lemmon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Daniel E Abbott
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Michael F Bassetti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Jens C Eickhoff
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eugene F Foley
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Charles P Heise
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Randall J Kimple
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Elise H Lawson
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Noelle K LoConte
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sam J Lubner
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Daniel L Mulkerin
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cristina B Sanger
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sean J Mcilwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Evie H Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
8
|
Fan S, Zhao Z, Wang H, Wang H, Niu W. Efficacy and safety of oxaliplatin-based chemotherapy as first-line treatment in elderly patients with metastatic colorectal cancer: a meta-analysis. Front Oncol 2025; 15:1567732. [PMID: 40260292 PMCID: PMC12009691 DOI: 10.3389/fonc.2025.1567732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Purpose The global burden of colorectal cancer (CRC) continues to rise, with elderly populations disproportionately affected. Despite oxaliplatin's established role in first-line metastatic CRC (mCRC) therapy, its clinical utility in older adults remains debated due to concerns over efficacy, toxicity, and survival outcomes. This meta-analysis evaluates the therapeutic benefits and risks of oxaliplatin-based regimens in elderly patients with mCRC, with emphasis on tumor response, survival endpoints, and treatment-related toxicities. Methods We systematically reviewed PubMed, Web of Science, Cochrane Library, and Chinese databases (CNKI, Wan Fang) through November 2024 for randomized controlled trials (RCTs) comparing oxaliplatin-based chemotherapy to non-oxaliplatin regimens in patients aged ≥65 with mCRC. Outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), complete response (CR), partial response (PR), disease control rate (DCR), and grade 3-4 adverse events. Data were pooled using random- or fixed-effects models in STATA 14.0 based on heterogeneity (I² statistic). Subgroup analyses explored heterogeneity sources, including chemotherapy combinations (e.g., bevacizumab, panitumumab). Results Seven RCTs (1,839 patients) met inclusion criteria. Oxaliplatin significantly improved tumor response rates versus control regimens: ORR (OR 2.18, 95% CI 1.75-2.72; P<0.001), CR (OR 2.57, 1.11-5.97; P=0.028), and PR (OR 1.69, 1.28-2.22; P<0.001). No significant survival benefit was observed for OS (HR 0.97, 0.86-1.08; P=0.58) or PFS (HR 0.90, 0.79-1.01; P=0.07), though trends favored oxaliplatin. Grade 3-4 neutropenia (RR 1.84, 1.32-2.57), diarrhea (RR 2.01, 1.45-2.78), and sensory neuropathy (RR 3.12, 1.98-4.91) were more frequent with oxaliplatin. Subgroup analysis attributed DCR heterogeneity (I²=66%) to regimen differences, with reduced variability in bevacizumab/pantiumumab-combined subgroups. Discussion This analysis demonstrates oxaliplatin's capacity to enhance tumor response in elderly mCRC patients, potentially alleviating symptoms and improving quality of life. However, the absence of significant survival gains underscores the complex interplay between tumor biology and therapeutic resistance. Mechanistically, chemotherapy-driven clonal selection may favor residual resistant subpopulations, as evidenced by liquid biopsy studies linking tumor evolution to disease progression. While toxicity profiles were manageable, the elevated risk of neurotoxicity and myelosuppression necessitates vigilant monitoring in this vulnerable cohort. Conclusion Oxaliplatin-based first-line therapy provides clinically meaningful tumor response improvements in elderly mCRC patients, though survival advantages remain elusive. Treatment decisions should balance response benefits against toxicity risks, prioritizing individualized strategies informed by geriatric assessments and molecular profiling. Future trials must integrate biomarker-driven approaches (e.g., ctDNA monitoring, RAS/RAF stratification) to optimize therapeutic precision in aging populations.
Collapse
Affiliation(s)
- Shaoqing Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zeming Zhao
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haiqian Wang
- Department of Nursing, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Handong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenbo Niu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Lindemann K, Siegenthaler F, Lande KT, Casas-Arozamena C, Nebdal D, Rau TT, Hoivik EA, Mueller MD, Gold RM, Imboden S, Davidson B, Krakstad C, Sørlie T. Prognostic value of assessing ctDNA in patients with endometrial carcinoma - an international multicenter study. Gynecol Oncol 2025; 195:98-105. [PMID: 40081113 DOI: 10.1016/j.ygyno.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE At present, no reliable blood-based biomarkers have been established for patients with endometrial cancer. Liquid biopsies, which can detect circulating tumor DNA (ctDNA), provide a non-invasive way to assess prognosis, monitor tumor evolution and treatment response. We aimed to examine the feasibility and performance of ctDNA as a prognostic tool in a multi-center cohort of EC patients with matched tumor samples. METHODS Blood plasma samples were collected preoperatively from 83 patients at three European cancer centers. Circulating cell-free DNA (cfDNA) was isolated and analyzed using the Oncomine™ Pan-Cancer cell-free assay. Tumor tissue from 56 of the 83 patients was subjected to whole-exome sequencing, and clinical data were collected for oncological outcome assessment. RESULTS The mean input of cfDNA was 8.17 ng (range 1.47-29.12 ng). Sixteen (19.3 %) patients were considered ctDNA positive with mutations in one or more genes. Most alterations detected in plasma were concordant with mutations found in the matched tumor for the paired cases. The preoperative presence of ctDNA was associated with a significantly higher rate of recurrence (37.5 % vs 11.9 %, P = 0.024). Although eight of the 14 (57 %) patients with recurrence were negative for ctDNA at diagnosis, positive ctDNA status remained an independent predictor of recurrence also when controlling for other known histopathologic risk factors (HR 5.49, 95 % CI 1.5-20, P = 0.010). CONCLUSIONS Our results demonstrated the feasibility of using an off-the-shelf gene panel to detect ctDNA in patients with endometrial cancer. ctDNA positivity was significantly associated with worse oncological outcomes.
Collapse
Affiliation(s)
- Kristina Lindemann
- Section for gynecological oncology, Department of surgical oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Franziska Siegenthaler
- Department of Obstetrics and Gynecology, Bern University Hospital, Switzerland; University of Bern, Bern, Switzerland
| | - Karin T Lande
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Carlos Casas-Arozamena
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Department of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tilman T Rau
- Institute of Pathology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Erling A Hoivik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Michael D Mueller
- Department of Obstetrics and Gynecology, Bern University Hospital, Switzerland; University of Bern, Bern, Switzerland
| | - Rose Meng Gold
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sara Imboden
- Department of Obstetrics and Gynecology, Bern University Hospital, Switzerland; University of Bern, Bern, Switzerland
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Therese Sørlie
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
El Hage M, Su Z, Linnebacher M. Addressing Challenges in Targeted Therapy for Metastatic Colorectal Cancer. Cancers (Basel) 2025; 17:1098. [PMID: 40227578 PMCID: PMC11988006 DOI: 10.3390/cancers17071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
This review article aims to address the challenges associated with targeted therapy for the treatment of metastatic colorectal cancer (mCRC). We will first provide an overview of approved targeted therapies for treating mCRC, which include antiangiogenic therapy, as well as inhibitors of EGFR, BRAFV600E, HER2 inhibitors, and immune checkpoints. Second, we discuss the different mechanisms of primary resistance, including tumor heterogeneity, both as inter-patient and intra-patient heterogeneity, and mechanisms of secondary resistance which include: driver oncogene alterations, downstream or parallel bypass signaling, presence of co-dominant driver oncogenes, tumor lineage plasticity, and epithelial to mesenchymal transition. Resistance mechanisms towards the different drug classes targeting mCRC are discussed in detail. Strategies to overcome resistance primarily involve combination of therapies, although this approach is typically linked to increased drug toxicity, manifesting as on and off-target effects. Moreover, the cost and accessibility of targeted therapies pose significant challenges for diverse populations. Addressing these challenges necessitates further research efforts aimed at optimizing the use of targeted therapy in mCRC. Integration of genomic biomarkers, such as sequencing and liquid biopsy, into routine clinical practice holds promise in enhancing treatment outcomes. In conclusion, this comprehensive review underscores the complex challenges encountered in targeted therapy for mCRC.
Collapse
Affiliation(s)
| | | | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (M.E.H.); (Z.S.)
| |
Collapse
|
11
|
Kim SE, Lee JS, Kim SY, Kim JE, Hong YS, Kim TW. Prognostic Relevance of ctDNA RAS Mutation in Patients With Metastatic Colorectal Cancer Treated With Cetuximab. Clin Colorectal Cancer 2025:S1533-0028(25)00029-5. [PMID: 40221249 DOI: 10.1016/j.clcc.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND RAS mutations are important biomarkers for predicting the efficacy of anti-EGFR treatment in metastatic colorectal cancer (mCRC). The emergence of RAS mutations is a known resistance mechanism. This study aimed to evaluate the prognostic significance of circulating tumor DNA (ctDNA) RAS mutations in patients with mCRC treated with cetuximab, focusing on the temporal dynamics of RAS mutation emergence. PATIENTS AND METHODS Patients with tissue-confirmed RAS wild-type mCRC were included in the study. ctDNA samples were collected at baseline, every 8 weeks during treatment, and after the final cetuximab dose. Cetuximab, combined with FOLFOX or FOLFIRI, was administered as first-line therapy. The primary objective was to assess the impact of emergent ctDNA RAS mutations on progression-free survival (PFS) during cetuximab-based treatment in the first-line setting. RESULTS A total of 49 patients contributed at least 1 ctDNA sample, with 320 samples collected in total. The baseline concordance rate between ctDNA and tissue RAS status was 89.1% (41/46). Among 41 baseline RAS wild-type cases, 22 (53.7%) demonstrated emergent RAS mutations. The median time to RAS emergence was 12.8 months, and the median PFS was 12.7 months. Temporal analysis revealed that a single detection of RAS mutation was not consistently associated with poor PFS and could resolve in subsequent tests. However, time-dependent analysis indicated that the presence of ctDNA RAS mutations at any time point was significantly associated with poorer PFS (adjusted HR = 2.24, P = .02). CONCLUSION The emergence of ctDNA RAS mutations during cetuximab-based first-line therapy exhibits temporal variability. Nevertheless, the presence of ctDNA RAS mutations at any time point is collectively associated with reduced PFS.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
13
|
Song J, Ye X, Xiao H. Liquid biopsy entering clinical practice: Past discoveries, current insights, and future innovations. Crit Rev Oncol Hematol 2025; 207:104613. [PMID: 39756526 DOI: 10.1016/j.critrevonc.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
In recent years, liquid biopsy has gained prominence as an emerging biomarker in cancer research, providing critical insights into tumor biology and metastasis. Technological advancements have enabled its integration into clinical practice, with ongoing trials demonstrating encouraging outcomes. Key applications of liquid biopsy include early cancer detection, cancer staging, prognosis evaluation, and real-time monitoring of tumor progression to optimize treatment decisions. In this review, we present a comprehensive conceptual framework for liquid biopsy, discuss the challenges in its research and clinical application, and highlight its significant potential in identifying therapeutic targets and resistance mechanisms across various cancer types. Furthermore, we explore the emerging role of liquid biopsy-based multicancer screening, which has shown promising advancements. Looking ahead, standardization, multi-omics coanalysis, and the advancement of precision medicine and personalized treatments are expected to drive the future development and integration of liquid biopsy into routine clinical workflows, enhancing cancer diagnosis and treatment management.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Singh S, Lin YW, Wang WJ, Chang YC, Chien YH, Li WP. Precise Methylation Detection of Tumor Suppressor Gene Promoters by Magnetic Enrichment and Nano Silver Adduct-Promoted Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407517. [PMID: 39520342 DOI: 10.1002/smll.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Noninvasive liquid biopsies can be used for early tumor diagnosis by identifying the methylation level of the tumor suppressor genes (TSGs)-a reliable index for cancer evaluation. However, identifying trace circulating genes from specimens remains challenging. This work introduces a novel method that combines magnetic isolation and surface-enhanced Raman scattering (SERS) to concentrate and detect the methylated TSG promotors. A superparamagnetic iron oxide nanoparticle modified with streptavidin is prepared as a universal magnetic bead. Biotin-terminated probe single-strand DNA (ssDNA) is immobilized on the magnetic beads through biotin-streptavidin bioconjugation. Artificial target ssDNA fragments with various methylation levels are applied as a promoter gene model. Concentrated double-strand DNA (dsDNA) is produced by a hybridizing probe and target ssDNA on magnetic nanobeads, as well as an additional magnetic isolation process. The well-prepared DNA adduct, which consists of 3 nm cisplatin-modified Ag nanoclusters, can specifically bind with guanine-cytosine base pairs of dsDNA. Ag-nanoparticle-induced localized SERS amplified signals of 5-methylcytosine (5-mC) from the dsDNA in Raman spectra, enabling accurate methylation level measurement in mixtures of 0-1 µm methylated DNA, with a detection limit of 0.05 µm. This method shows promise for enabling the methylation level evaluation of various TSGs and promoters in early cancer liquid biopsies.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Wei Lin
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, 407, Taiwan
| | - Yi-Hsin Chien
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, 407, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
15
|
Nguyen Phuong L, Salas S, Benzekry S. Computational Modeling for Circulating Cell-Free DNA in Clinical Oncology. JCO Clin Cancer Inform 2025; 9:e2400224. [PMID: 40020203 DOI: 10.1200/cci-24-00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 01/10/2025] [Indexed: 05/12/2025] Open
Abstract
PURPOSE Liquid biopsy, specifically circulating cell-free DNA (cfDNA), has emerged as a powerful tool for cancer early diagnosis, prognosis, and treatment monitoring over a wide range of cancer types. Computational modeling (CM) of cfDNA data is essential to harness its full potential for real-time, noninvasive insights into tumor biology, enhancing clinical decision making. DESIGN This work reviews CM-cfDNA methods applied to clinical oncology, emphasizing both machine learning (ML) techniques and mechanistic approaches. The latter integrate biological principles, enabling a deeper understanding of cfDNA dynamics and its relationship with tumor evolution. RESULTS Key findings highlight the effectiveness of CM-cfDNA approaches in improving diagnostic accuracy, identifying prognostic markers, and predicting therapeutic outcomes. ML models integrating cfDNA concentration, fragmentation patterns, and mutation detection achieve high sensitivity and specificity for early cancer detection. Mechanistic models describe cfDNA kinetics, linking them to tumor growth and response to treatment, for example, immune checkpoint inhibitors. Longitudinal data and advanced statistical constructs further refine these models for quantification of interindividual and intraindividual variability. CONCLUSION CM-cfDNA represents a pivotal advancement in precision oncology. It bridges the gap between extensive cfDNA data and actionable clinical insights, supporting its integration into routine cancer care. Future efforts should focus on standardizing protocols, validating models across populations, and exploring hybrid approaches combining ML with mechanistic modeling to improve biological understanding.
Collapse
Affiliation(s)
- Linh Nguyen Phuong
- Computational Pharmacology and Clinical Oncology Department, Centre Inria d'Université Côte d'Azur, Cancer Research Centre of Marseille, Paoli Calmettes Institute, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France
| | - Sébastien Salas
- Computational Pharmacology and Clinical Oncology Department, Centre Inria d'Université Côte d'Azur, Cancer Research Centre of Marseille, Paoli Calmettes Institute, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Timone Hospital, Aix Marseille University, Marseille, France
| | - Sébastien Benzekry
- Computational Pharmacology and Clinical Oncology Department, Centre Inria d'Université Côte d'Azur, Cancer Research Centre of Marseille, Paoli Calmettes Institute, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, Marseille, France
| |
Collapse
|
16
|
Puzzo M, De Santo M, Morelli C, Leggio A, Catalano S, Pasqua L. Colorectal Cancer: Current and Future Therapeutic Approaches and Related Technologies Addressing Multidrug Strategies Against Multiple Level Resistance Mechanisms. Int J Mol Sci 2025; 26:1313. [PMID: 39941081 PMCID: PMC11818749 DOI: 10.3390/ijms26031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and is associated with a poor prognosis. The mutation profile and related involved pathways of CRC have been, in broad terms, analyzed. The main current therapeutic approaches have been comprehensively reviewed here, and future possible therapeu-tic options and related technologies have been perspectively presented. The complex scenario represented by the multiple-level resistance mechanism in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, is discussed. Examples of engineered therapeutic approaches from the literature along with a drug combination tested in clinical trials are discussed. The encouraging results observed with the latter combination (the BEACON clinical trial), totally free from chemotherapy, prompted the authors to imagine a future possible nanotechnology-assisted therapeutic approach for bypassing multiple-level resistance mechanisms, hopefully allowing, in principle, a complete biological cancer remission.
Collapse
Affiliation(s)
- Marianna Puzzo
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
| | - Luigi Pasqua
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
17
|
Vitiello PP, Saoudi González N, Bardelli A. When molecular biology transforms clinical oncology: the EGFR journey in colorectal cancer. Mol Oncol 2025; 19:267-270. [PMID: 39470386 PMCID: PMC11792982 DOI: 10.1002/1878-0261.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
The discovery of growth factors and their involvement in cancer represents the foundation of precision oncology. The preclinical and clinical development of agents targeting epidermal growth factor receptor (EGFR) in colorectal cancer (CRC) were accompanied by big hype and hopes, though the clinical testing of such agents clashed with intrinsic and acquired resistance, greatly limiting their therapeutic value. However, a better understanding of the biology of the EGFR signaling pathway in CRC, coupled with the development of liquid biopsy methodologies to study cancer evolution in real time, fostered the clinical refinement of anti-EGFR treatment in CRC. Such a workflow, based on the co-evolution of biology knowledge and clinical development, allowed to couple the discovery of relevant therapy resistance mechanisms to the development of strategies to bypass this resistance. A broader application of this paradigm could prove successful and create an effective shortcut between the bench and the bedside for treatment strategies other than targeted therapy.
Collapse
Affiliation(s)
- Pietro Paolo Vitiello
- Department of OncologyUniversity of TorinoItaly
- IFOM ETS – The AIRC Institute of Molecular OncologyMilanItaly
| | - Nadia Saoudi González
- IFOM ETS – The AIRC Institute of Molecular OncologyMilanItaly
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Alberto Bardelli
- Department of OncologyUniversity of TorinoItaly
- IFOM ETS – The AIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
18
|
Klein‐Scory S, Baraniskin A, Schmiegel W, Mika T, Schroers R, Held S, Heinrich K, Tougeron D, Modest DP, Schwaner I, Eucker J, Pihusch R, Stauch M, Kaiser F, Kahl C, Karthaus M, Müller C, Burkart C, Stintzing S, Heinemann V. Evaluation of circulating tumor DNA as a prognostic and predictive biomarker in BRAF V600E mutated colorectal cancer-results from the FIRE-4.5 study. Mol Oncol 2025; 19:344-356. [PMID: 39630848 PMCID: PMC11793001 DOI: 10.1002/1878-0261.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The randomized FIRE-4.5 (AIO KRK0116) trial compared first-line therapy with FOLFOXIRI (folinic acid, fluorouracil, oxaliplatin, and irinotecan) plus either cetuximab or bevacizumab in B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E-mutant metastatic colorectal cancer (mCRC) patients. This study was accompanied by a prospective translational project analyzing cell-free circulating tumor DNA (ctDNA) in plasma to test whether ctDNA analysis may help to guide clinical treatment decision making. FIRE-4.5 included mCRC patients with BRAF V600E mutation detected by tissue-based analyses. Liquid biopsies (LBs) were collected at baseline (pre-treatment) and during therapy. Digital droplet PCR (ddPCR) technology was applied for determination of BRAF mutations and the in vitro diagnostics (IVD)-certified ONCOBEAM RAS procedure for analysis of RAS mutations. The BRAF V600E variants in ctDNA were analyzable in 66 patients at start of the therapy, at baseline. No BRAF V600E mutations were detected in 26% (17/66) of patients and was associated with a significantly longer progression-free survival (PFS: 13.2 vs 6.5 months; HR 0.47; P = 0.014) and overall survival (OS: 36.8 vs 13.2 months; HR 0.35; P = 0.02) as compared to ctDNA mutant patients. Patients with detectable BRAF mutations showed a clear superiority of FOLFOXIRI plus bevacizumab with regard to PFS (10.4 vs 5.7 months; HR 0.4; P = 0.009) and OS (16.6 vs 11.6 months; HR 0.5; P = 0.15), while this was not the case for BRAF wild-type patients. Follow-up LBs were obtained from 51 patients. Patients converting from BRAF V600E mutant to a BRAF V600 wild-type status (36%, N = 18) had a superior PFS (8.6 vs 2.3 months; P = 0.0002) and OS (17.4 vs 5.1 months; P < 0.0001) compared to patients with stable or increased mutational allele frequency (12%, N = 6). Those patients also achieved a significantly greater disease control rate (89% vs 20%; P = 0.008). In conclusion, LB evaluating ctDNA is informative and may help to guide treatment in patients with BRAF V600E-mutated mCRC.
Collapse
Affiliation(s)
- Susanne Klein‐Scory
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbHRuhr University BochumGermany
| | - Alexander Baraniskin
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbHRuhr University BochumGermany
- Department of Hematology, Oncology and Palliative CareEvangelisches Krankenhaus Hamm gGmbHGermany
| | - Wolff Schmiegel
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbHRuhr University BochumGermany
| | - Thomas Mika
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbHRuhr University BochumGermany
| | - Roland Schroers
- Department of Internal Medicine, Universitaetsklinikum Knappschaftskrankenhaus Bochum GmbHRuhr University BochumGermany
| | | | | | - David Tougeron
- Department of Hepato‐GastroenterologyPoitiers University Hospital and University of PoitiersFrance
| | - Dominik P. Modest
- Department of Hematology, Oncology, and Cancer Immunology (CCM)Charité—Universitaetsmedizin BerlinGermany
| | - Ingo Schwaner
- Onkologische Schwerpunktpraxis KurfürstendammBerlinGermany
| | - Jan Eucker
- Department of Hematology, Oncology, and Cancer Immunology (CBF)Charité—Universitaetsmedizin BerlinGermany
| | | | | | | | - Christoph Kahl
- Klinikum Magdeburg gGmbH, Department of HematologyOncology and Palliative Care MagdeburgGermany
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative CareRostock University Medical CenterGermany
| | - Meinolf Karthaus
- Department of Hematology, Oncology and Palliative CareMünchen Klinik Harlaching and NeuperlachGermany
| | | | | | - Sebastian Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM)Charité—Universitaetsmedizin BerlinGermany
- German Cancer Consortium (DKTK)German Cancer Research Centre (DKFZ), Site Berlin HeidelbergGermany
| | - Volker Heinemann
- Department of Medicine III, LMU KlinikumComprehensive Cancer Center MunichGermany
- German Cancer Consortium (DKTK)German Cancer Research Centre (DKFZ), Site Munich HeidelbergGermany
| |
Collapse
|
19
|
Crisafulli G. Liquid Biopsy and Challenge of Assay Heterogeneity for Minimal Residual Disease Assessment in Colon Cancer Treatment. Genes (Basel) 2025; 16:71. [PMID: 39858618 PMCID: PMC11765229 DOI: 10.3390/genes16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This review provides a comprehensive overview of the evolving role of minimal residual disease (MRD) for patients with Colon Cancer (CC). Currently, the standard of care for patients with non-metastatic CC is adjuvant chemotherapy (ACT) for all patients with stage III and high-risk stage II CC following surgical intervention. Despite a 5-20% improvement in long-term survival outcomes, this approach also results in a significant proportion of patients receiving ACT without any therapeutic benefit and being unnecessarily exposed to the risks of secondary side effects. This underscores an unmet clinical need for more precise stratification to distinguish patients who necessitate ACT from those who can be treated with surgery alone. By employing liquid biopsy, it is possible to discern MRD enabling the categorization of patients as MRD-positive or MRD-negative, potentially revolutionizing the management of ACT. This review aimed to examine the heterogeneity of methodologies currently available for MRD detection, encompassing the state-of-the-art technologies, their respective advantages, limitations, and the technological challenges and multi-omic approaches that can be utilized to enhance assay performance. Furthermore, a discussion was held regarding the clinical trials that employ an MRD assay focusing on the heterogeneity of the assays used. These differences in methodology, target selection, and performance risk producing inconsistent results that may not solely reflect biological/clinical differences but may be the consequence of the preferential use of particular products in studies conducted in different countries. Standardization and harmonization of MRD assays will be crucial to ensure the liquid revolution delivers reliable and clinically actionable outcomes for patients.
Collapse
|
20
|
Nakamura Y, Ozaki H, Ueno M, Komatsu Y, Yuki S, Esaki T, Taniguchi H, Sunakawa Y, Yamaguchi K, Kato K, Denda T, Nishina T, Takahashi N, Satoh T, Yasui H, Satake H, Oki E, Kato T, Ohta T, Matsuhashi N, Goto M, Okano N, Ohtsubo K, Yamazaki K, Yamashita R, Iida N, Yuasa M, Bando H, Yoshino T. Targeted therapy guided by circulating tumor DNA analysis in advanced gastrointestinal tumors. Nat Med 2025; 31:165-175. [PMID: 39284955 PMCID: PMC11750700 DOI: 10.1038/s41591-024-03244-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 01/23/2025]
Abstract
Although comprehensive genomic profiling has become standard in oncology for advanced solid tumors, the full potential of circulating tumor DNA (ctDNA)-based profiling in capturing tumor heterogeneity and guiding therapy selection remains underexploited, marked by a scarcity of evidence on its clinical impact and the assessment of intratumoral heterogeneity. The GOZILA study, a nationwide, prospective observational ctDNA profiling study, previously demonstrated higher clinical trial enrollment rates using liquid biopsy compared with tissue screening. This updated analysis of 4,037 patients further delineates the clinical utility of ctDNA profiling in advanced solid tumors, showcasing a significant enhancement in patient outcomes with a 24% match rate for targeted therapy. Patients treated with matched targeted therapy based on ctDNA profiling demonstrated significantly improved overall survival compared with those receiving unmatched therapy (hazard ratio, 0.54). Notably, biomarker clonality and adjusted plasma copy number were identified as predictors of therapeutic efficacy, reinforcing the value of ctDNA in reflecting tumor heterogeneity for precise treatment decisions. These new insights into the relationship between ctDNA characteristics and treatment outcomes advance our understanding beyond the initial enrollment benefits. Our findings advocate for the broader adoption of ctDNA-guided treatment, signifying an advancement in precision oncology and improving survival outcomes in advanced solid tumors.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Ozaki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Ina, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hironaga Satake
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, Japan
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kato
- Department of Surgery, NHO Osaka National Hospital, Osaka, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Koushiro Ohtsubo
- Department of Medical Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mihoko Yuasa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
- Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
21
|
Ohmura H, Hanamura F, Okumura Y, Ando Y, Masuda T, Mimori K, Akashi K, Baba E. Liquid biopsy for breast cancer and other solid tumors: a review of recent advances. Breast Cancer 2025; 32:33-42. [PMID: 38492205 DOI: 10.1007/s12282-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Liquid biopsy using circulating tumor DNA (ctDNA) has been reported to be less invasive and effective for comprehensive genetic analysis of heterogeneous solid tumors, including decision-making for therapeutic strategies, predicting recurrence, and detecting genetic factors related to treatment resistance in various types of cancers. Breast cancer, colorectal cancer, and lung cancer are among the most prevalent malignancies worldwide, and clinical studies of liquid biopsy for these cancers are ongoing. Liquid biopsy has been used as a companion diagnostic tool in clinical settings, and research findings have accumulated, especially in cases of colorectal cancer after curative resection and non-small cell lung cancer (NSCLC) after curative chemoradiotherapy, in which ctDNA detection helps predict eligibility for adjuvant chemotherapy. Liquid biopsy using ctDNA shows promise across a wide range of cancer types, including breast cancer, and its clinical applications are expected to expand further through ongoing research. In this article, studies on liquid biopsy in breast cancer, colorectal cancer, and NSCLC are compared focusing on ctDNA.
Collapse
Affiliation(s)
- Hirofumi Ohmura
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Fumiyasu Hanamura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuta Okumura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
22
|
da Silva LFL, Saldanha EF, da Conceição LD, Noronha MM, da Silva MVMG, Peixoto RD'A. Anti-EGFR Rechallenge in Metastatic Colorectal Cancer and the Role of ctDNA: A Systematic Review and Meta-analysis. J Gastrointest Cancer 2024; 56:28. [PMID: 39623250 DOI: 10.1007/s12029-024-01152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) remains a significant clinical challenge. While anti-EGFR inhibitors have improved survival rates, their long-term efficacy is limited by disease progression, which is often associated with the development of acquired resistance mutations. However, some patients may regain sensitivity to anti-EGFR agents after alternative therapies, suggesting a potential benefit for rechallenge strategies. Our study aims to conduct a systematic review and meta-analysis to comprehensively evaluate the efficacy and safety of EGFR rechallenge in patients with mCRC. METHODS A systematic search of the MEDLINE, EMBASE, and Cochrane databases was conducted between October 28 and December 24, 2023, to identify clinical trials investigating treatment regimens incorporating panitumumab or cetuximab as a rechallenge strategy. Pooled proportions or hazard ratios (HR) were calculated using a random effects model. Inter-study heterogeneity was assessed using the I2. RESULTS Among the 2105 articles identified through the search, 13 met the predetermined inclusion criteria. Of these, 12 were phase II studies, encompassing 92.3% of the patient population. Cetuximab was administered to 302 patients (75.1%), whereas panitumumab was utilized in 100 patients (24.9%).A pooled analysis of eight studies demonstrated an objective response rate of 20.50% (95% CI 7.94 to 33.07) and a disease control rate of 67.35% (95% CI 58.60 to 76.09). The median progression-free survival was estimated at 3.5 months (95% CI 2.68-6.69), with a median OS of 9.8 months (95% CI 6.71-12.89). Patients exhibiting RAS wild-type status in circulating tumor DNA (ctDNA) analysis derived enhanced benefits from anti-EGFR rechallenge (HR: 0.41; 95% CI 0.28-0.60, I2 = 60%). Common grade 3 or higher treatment-related adverse events included neutropenia (22.8%) and rash (14.9%). CONCLUSION This meta-analysis underscores the efficacy and safety of anti-EGFR rechallenge as a promising therapeutic approach for a subset of patients afflicted with mCRC. The observed correlation between wild-type RAS status, as determined through ctDNA analysis, and improved OS signals the prospect of precision oncology in guiding treatment decisions.
Collapse
Affiliation(s)
| | - Erick Figueiredo Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer, University of Toronto, Toronto, Canada
| | | | | | | | - Renata D 'Alpino Peixoto
- Medical Oncology Department, BC Cancer Agency, University of British Columbia, Vancouver, Canada
- Centro Paulista de Oncologia, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Simhadri S, Carrick JN, Murphy S, Kothari OA, Al-Hraishami H, Kulkarni A, Jalloul N, Stefanik K, Bandari M, Chettur K, Yao M, Ginjala V, Groisberg R, Hochster H, Mehnert J, Riedlinger G, Khiabanian H, Verzi MP, Tong K, Ganesan S. Evolution of Rapid Clonal Dynamics and Non-Cross-Resistance in Response to Alternating Targeted Therapy and Chemotherapy in BRAF-V600E-Mutant Colon Cancer. JCO Precis Oncol 2024; 8:e2300260. [PMID: 39626159 PMCID: PMC11627326 DOI: 10.1200/po.23.00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2024] [Accepted: 09/27/2024] [Indexed: 12/11/2024] Open
Abstract
PURPOSE Combined BRAF, MEK, and EGFR inhibition can induce clinical responses in BRAF-V600E-mutant colon cancer, but rapid resistance often occurs. METHODS We use serial monitoring of circulating tumor DNA cell-free plasma DNA (cfDNA) in a patient case study in addition to organoids derived from mouse models of BRAF-V600E-mutant intestinal cancer, which emulated the patient's mutational profile to assess drug treatment efficacy. RESULTS We demonstrate dynamic evolution of resistance to combined EGFR/BRAF/MEK inhibition in a pediatric patient with metastatic BRAF-V600E-mutant, mismatch repair-stable colon cancer. Initial resistance to targeted therapy was associated with development of MET amplification. Sequential treatment with chemotherapy and targeted therapy resulted in clearing of the resistant MET-amplified clone. Rechallenge with combined BRAF/EGFR inhibition resulted in clinical and radiographic response, demonstrating these treatments may be non-cross-resistant. Tumor organoids were used to model clinical findings and demonstrated effectiveness of combined targeted therapy and chemotherapy. CONCLUSION These findings suggest rational strategies for combining sequential chemotherapy and BRAF-/EGFR-directed therapy in BRAF-V600E-mutant colon cancer to prevent resistance and improve outcome. The data demonstrate rapid clonal dynamics in response to effective therapies in BRAF-V600E-mutant colon cancer that can be monitored by serial cfDNA analysis. Moreover, in mismatch repair-proficient BRAF-V600E-mutant colon cancers, combined EGFR and BRAF/MEK therapy is not cross-resistant with standard chemotherapy, suggesting new rational combination treatment strategies.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Jillian N. Carrick
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Susan Murphy
- Department of Medicine, Pediatric Hematology/Oncology Program, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Om A. Kothari
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
| | - Husam Al-Hraishami
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Atul Kulkarni
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Nahed Jalloul
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Katarina Stefanik
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Department of Biology, The College of New Jersey, Ewing, NJ
| | - Manisha Bandari
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Kavya Chettur
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
- Tenafly High School, Tenafly, NJ
| | - Ming Yao
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Roman Groisberg
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Howard Hochster
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Janice Mehnert
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Gregory Riedlinger
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Hossein Khiabanian
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
| | - Kevin Tong
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Department of Biology, The College of New Jersey, Ewing, NJ
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, NJ
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
24
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
25
|
Tegeler CM, Hartkopf AD, Banys-Paluchowski M, Krawczyk N, Fehm T, Jaeger BAS. Circulating Tumor DNA in Early and Metastatic Breast Cance-Current Role and What Is Coming Next. Cancers (Basel) 2024; 16:3919. [PMID: 39682108 DOI: 10.3390/cancers16233919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
The progress that has been made in recent years in relation to liquid biopsies in general and circulating tumor DNA (ctDNA) in particular can be seen as groundbreaking for the future of breast cancer treatment, monitoring and early detection. Cell-free DNA (cfDNA) consists of circulating DNA fragments released by various cell types into the bloodstream. A portion of this cfDNA, known as ctDNA, originates from malignant cells and carries specific genetic mutations. Analysis of ctDNA provides a minimally invasive method for diagnosis, monitoring response to therapy, and detecting the emergence of resistance. Several methods are available for the analysis of ctDNA, each with distinct advantages and limitations. Quantitative polymerase chain reaction is a well-established technique widely used due to its high sensitivity and specificity, particularly for detecting known mutations. In addition to the detection of individual mutations, multigene analyses were developed that could detect several mutations at once, including rarer mutations. These methods are complementary and can be used strategically depending on the clinical question. In the context of metastatic breast cancer, ctDNA holds particular promise as it allows for the dynamic monitoring of tumor evolution. Through ctDNA analysis, mutations in the ESR1 or PIK3CA genes, which are associated with therapy resistance, can be identified. This enables the early adjustment of treatment and has the potential to significantly enhance clinical outcome. The application of ctDNA in early breast cancer is an ongoing investigation. In (neo)adjuvant settings, there is preliminary data indicating that ctDNA can be used for therapy monitoring and risk stratification to decide on post-neoadjuvant strategies. In the monitoring of aftercare, the detection of ctDNA appears to be several months ahead of routine imaging. However, the feasibility of implementing this approach in a clinical setting remains to be seen. While the use of ctDNA as a screening method for the asymptomatic population would be highly advantageous due to its minimally invasive nature, the available data on its clinical benefit are still insufficient. Nevertheless, ctDNA represents the most promising avenue for fulfilling this potential future need.
Collapse
Affiliation(s)
- Christian Martin Tegeler
- Department of Obstetrics and Gynecology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas Daniel Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany
| | - Natalia Krawczyk
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| | - Bernadette Anna Sophia Jaeger
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO) ABCD, 40225 Duesseldorf, Germany
| |
Collapse
|
26
|
Pesola G, Epistolio S, Cefalì M, Trevisi E, De Dosso S, Frattini M. Neo-RAS Wild Type or RAS Conversion in Metastatic Colorectal Cancer: A Comprehensive Narrative Review. Cancers (Basel) 2024; 16:3923. [PMID: 39682112 DOI: 10.3390/cancers16233923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The management of metastatic colorectal cancer in patients harboring RAS mutations primarily involves chemotherapy, often combined with bevacizumab, as a standard first-line treatment. However, emerging evidence suggests that tumors in a subset of these patients may experience a conversion from RAS-mutant status to RAS wild type (wt) during or after chemotherapy, a process referred to as "RAS conversion" or "neo-RAS wt". Understanding the mechanisms driving the neo-RAS wt phenomenon is crucial for its application in personalized medicine. Hypotheses suggest that selective pressure from chemotherapy may lead to a decrease in the number of mutant RAS clones or an outgrowth of pre-existing RAS wt clones. Further research is needed to validate these mechanisms and understand the impact of the neo-RAS wt phenomenon on long-term outcomes, such as overall survival and progression-free survival. This review provides a comprehensive overview of the current understanding of the neo-RAS wt phenomenon, including its incidence, potential mechanisms, and clinical implications.
Collapse
Affiliation(s)
- Guido Pesola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Samantha Epistolio
- Laboratory of Genetics and Molecular Pathology, Istituto Cantonale di Patologia EOC, 6600 Locarno, Switzerland
| | - Marco Cefalì
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Sara De Dosso
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Milo Frattini
- Laboratory of Genetics and Molecular Pathology, Istituto Cantonale di Patologia EOC, 6600 Locarno, Switzerland
| |
Collapse
|
27
|
Coelho MA, Strauss ME, Watterson A, Cooper S, Bhosle S, Illuzzi G, Karakoc E, Dinçer C, Vieira SF, Sharma M, Moullet M, Conticelli D, Koeppel J, McCarten K, Cattaneo CM, Veninga V, Picco G, Parts L, Forment JV, Voest EE, Marioni JC, Bassett A, Garnett MJ. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat Genet 2024; 56:2479-2492. [PMID: 39424923 PMCID: PMC11549056 DOI: 10.1038/s41588-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes. We identify four functional classes of protein variants modulating drug sensitivity and use single-cell transcriptomics to reveal how these variants operate through distinct mechanisms, including eliciting a drug-addicted cell state. We identify variants that can be targeted with alternative inhibitors to overcome resistance and functionally validate an epidermal growth factor receptor (EGFR) variant that sensitizes lung cancer cells to EGFR inhibitors. Our variant-to-function map has implications for patient stratification, therapy combinations and drug scheduling in cancer treatment.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Cancer Genome Editing, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Mamta Sharma
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Marie Moullet
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Daniela Conticelli
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jonas Koeppel
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Katrina McCarten
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Leopold Parts
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| |
Collapse
|
28
|
Giovino C, Subasri V, Telfer F, Malkin D. New Paradigms in the Clinical Management of Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med 2024; 14:a041584. [PMID: 38692744 PMCID: PMC11529854 DOI: 10.1101/cshperspect.a041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.
Collapse
Affiliation(s)
- Camilla Giovino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Frank Telfer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
29
|
Meng F, Li H, Jin R, Yang A, Luo H, Li X, Wang P, Zhao Y, Chervova O, Tang K, Cheng S, Hu B, Li Y, Sheng J, Yang F, Carbone D, Chen K, Wang J. Spatial immunogenomic patterns associated with lymph node metastasis in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:106. [PMID: 39468696 PMCID: PMC11514955 DOI: 10.1186/s40164-024-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with lymph node (LN) metastasis is linked to poor prognosis, yet the underlying mechanisms remain largely undefined. This study aimed to elucidate the immunogenomic landscape associated with LN metastasis in LUAD. METHODS We employed broad-panel next-generation sequencing (NGS) on a cohort of 257 surgically treated LUAD patients to delineate the molecular landscape of primary tumors and identify actionable driver-gene alterations. Additionally, we used multiplex immunohistochemistry (mIHC) on a propensity score-matched cohort, which enabled us to profile the immune microenvironment of primary tumors in detail while preserving cellular metaclusters, interactions, and neighborhood functional units. By integrating data from NGS and mIHC, we successfully identified spatial immunogenomic patterns and developed a predictive model for LN metastasis, which was subsequently validated independently. RESULTS Our analysis revealed distinct immunogenomic alteration patterns associated with LN metastasis stages. Specifically, we observed increased mutation frequencies in genes such as PIK3CG and ATM in LN metastatic primary tumors. Moreover, LN positive primary tumors exhibited a higher presence of macrophage and regulatory T cell metaclusters, along with their enriched neighborhood units (p < 0.05), compared to LN negative tumors. Furthermore, we developed a novel predictive model for LN metastasis likelihood, designed to inform non-surgical treatment strategies, optimize personalized therapy plans, and potentially improve outcomes for patients who are ineligible for surgery. CONCLUSIONS This study offers a comprehensive analysis of the genetic and immune profiles in LUAD primary tumors with LN metastasis, identifying key immunogenomic patterns linked to metastatic progression. The predictive model derived from these insights marks a substantial advancement in personalized treatment, underscoring its potential to improve patient management.
Collapse
Affiliation(s)
- Fanjie Meng
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Ruoyi Jin
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Airong Yang
- Kanghui Biotechnology Co., Ltd, Shenyang, China
| | - Hao Luo
- Cancer Center, Daping Hospital Army Medical University, Chongqing, China
| | - Xiao Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yaxing Zhao
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Olga Chervova
- University College London Cancer Institute, University College London, London, UK
| | - Kaicheng Tang
- Infinity Scope Biotechnology Co., Ltd., Hangzhou, China
| | - Sida Cheng
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - Jianpeng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China
| | - David Carbone
- James Thoracic Oncology Center, Ohio State University, Columbus, USA
| | - Kezhong Chen
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-Small Cell Lung Cancer, Peking University People's Hospital, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Institution of Thoracic Oncology, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, Xicheng District, China.
| |
Collapse
|
30
|
Pessei V, Macagno M, Mariella E, Congiusta N, Battaglieri V, Battuello P, Viviani M, Gionfriddo G, Lamba S, Lorenzato A, Oddo D, Idrees F, Cavaliere A, Bartolini A, Guarrera S, Linnebacher M, Monteonofrio L, Cardone L, Milella M, Bertotti A, Soddu S, Grassi E, Crisafulli G, Bardelli A, Barault L, Di Nicolantonio F. DNA demethylation triggers cell free DNA release in colorectal cancer cells. Genome Med 2024; 16:118. [PMID: 39385243 PMCID: PMC11462661 DOI: 10.1186/s13073-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.
Collapse
Affiliation(s)
- Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Elisa Mariella
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Vittorio Battaglieri
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Gionfriddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Simona Lamba
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, UMR, Rostock, Germany
| | - Laura Monteonofrio
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Luca Cardone
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Soddu
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Elena Grassi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
31
|
Lee SB, Kim JW, Kim HG, Hwang SH, Kim KJ, Lee JH, Seo J, Kang M, Jung EH, Suh KJ, Kim SH, Kim JW, Kim YJ, Kim JH, Kwon NJ, Lee KW. Longitudinal Comparative Analysis of Circulating Tumor DNA and Matched Tumor Tissue DNA in Patients with Metastatic Colorectal Cancer Receiving Palliative First-Line Systemic Anti-Cancer Therapy. Cancer Res Treat 2024; 56:1171-1182. [PMID: 38697850 PMCID: PMC11491242 DOI: 10.4143/crt.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE This study aimed to compare tumor tissue DNA (ttDNA) and circulating tumor DNA (ctDNA) to explore the clinical applicability of ctDNA and to better understand clonal evolution in patients with metastatic colorectal cancer undergoing palliative first-line systemic therapy. MATERIALS AND METHODS We performed targeted sequencing analysis of 88 cancer-associated genes using germline DNA, ctDNA at baseline (baseline-ctDNA), and ctDNA at progressive disease (PD-ctDNA). The results were compared with ttDNA data. RESULTS Among 208 consecutively enrolled patients, we selected 84 (41 males; median age, 59 years; range, 35 to 90 years) with all four sample types available. A total of 202 driver mutations were found in 34 genes. ttDNA exhibited the highest mutation frequency (n=232), followed by baseline-ctDNA (n=155) and PD-ctDNA (n=117). Sequencing ctDNA alongside ttDNA revealed additional mutations in 40 patients (47.6%). PD-ctDNA detected 13 novel mutations in 10 patients (11.9%) compared to ttDNA and baseline-ctDNA. Notably, seven mutations in five patients (6.0%) were missense or nonsense mutations in APC, TP53, SMAD4, and CDH1 genes. In baseline-ctDNA, higher maximal variant allele frequency (VAF) values (p=0.010) and higher VAF values of APC (p=0.012), TP53 (p=0.012), and KRAS (p=0.005) mutations were significantly associated with worse overall survival. CONCLUSION While ttDNA remains more sensitive than ctDNA, our ctDNA platform demonstrated validity and potential value when ttDNA was unavailable. Post-treatment analysis of PD-ctDNA unveiled new pathogenic mutations, signifying cancer's clonal evolution. Additionally, baseline-ctDNA's VAF values were prognostic after treatment.
Collapse
Affiliation(s)
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Sung-Hyun Hwang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ju Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Statistics, Hankuk University of Foreign Studies, Yongin, Korea
| | - Jeongmin Seo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Hee Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
32
|
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
33
|
Tivey A, Lee RJ, Clipson A, Hill SM, Lorigan P, Rothwell DG, Dive C, Mouliere F. Mining nucleic acid "omics" to boost liquid biopsy in cancer. Cell Rep Med 2024; 5:101736. [PMID: 39293399 PMCID: PMC11525024 DOI: 10.1016/j.xcrm.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
Collapse
Affiliation(s)
- Ann Tivey
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rebecca J Lee
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Steven M Hill
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Paul Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
34
|
Hsieh RW, Symonds LK, Siu J, Cohen SA. Identification of circulating tumor DNA as a biomarker for diagnosis and response to therapies in cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:43-93. [PMID: 39939078 DOI: 10.1016/bs.ircmb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The sampling of circulating biomarkers provides an opportunity for non-invasive evaluation and monitoring of cancer activity. In modern day practice, this has typically been in the form of circulating tumor DNA (ctDNA) detected in plasma. The field of ctDNA has been a burgeoning technology, with prominent applications for blood-based cancer screening and in disease status assessment, especially after curative-intent surgery to evaluate for minimal residual disease (MRD). Clinical applications for the latter show an incredibly high sensitivity in certain cancer types with a need for additional studies to determine how much clinical decision-making should be adapted based on ctDNA results and which cancer types, stages, and treatments are best informed by ctDNA results. This chapter provides an overview of ctDNA detection as tool for cancer screening, detecting MRD, and/or molecularly characterizing a cancer, highlighting the rapidly amassing research as a prognostic biomarker and emerging data on ctDNA as a predictive biomarker.
Collapse
Affiliation(s)
- Ronan W Hsieh
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lynn K Symonds
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jason Siu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Stacey A Cohen
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
35
|
Piercey O, Tie J, Hollande F, Wong HL, Mariadason J, Desai J. BRAF V600E-Mutant Metastatic Colorectal Cancer: Current Evidence, Future Directions, and Research Priorities. Clin Colorectal Cancer 2024; 23:215-229. [PMID: 38816264 DOI: 10.1016/j.clcc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BRAFV600E-mutant metastatic colorectal cancer represents a distinct molecular phenotype known for its aggressive biological behavior, resistance to standard therapies, and poor survival rates. Improved understanding of the biology of the BRAF oncogene has led to the development of targeted therapies that have paved the way for a paradigm shift in managing this disease. However, despite significant recent advancements, responses to targeted therapies are short-lived, and several challenges remain. In this review, we discuss how progress in treating BRAFV600E-mutant metastatic colorectal cancer has been made through a better understanding of its unique biological and clinical features. We provide an overview of the evidence to support current treatment approaches and discuss critical areas of need and future research strategies that hold the potential to refine clinical practice further. We also discuss some challenging aspects of managing this disease, particularly the complexity of acquired resistance mechanisms that develop under the selective pressure of targeted therapies and rational strategies being investigated to overcome them.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia.
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederic Hollande
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia
| | - Hui-Li Wong
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - John Mariadason
- Olivia Newton John Cancer Wellness and Research Centre, Heidelberg, Australia; School of Medicine, La Trobe University, Melbourne, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Radić J, Nikolić I, Kolarov-Bjelobrk I, Vasiljević T, Djurić A, Vidović V, Kožik B. Prognostic and Predictive Significance of Primary Tumor Localization and HER2 Expression in the Treatment of Patients with KRAS Wild-Type Metastatic Colorectal Cancer: Single-Centre Experience from Serbia. J Pers Med 2024; 14:879. [PMID: 39202071 PMCID: PMC11355236 DOI: 10.3390/jpm14080879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The treatment of patients with metastatic colorectal cancer (mCRC) is complex and is impacted by the location of the primary tumor (LPT). Our study aims to emphasize the importance of LPT as a prognostic and predictive marker as well as to examine the significance of HER2 overexpression in patients with mCRC, particularly in relation to the response to Epidermal Growth Factor Receptor Antibody treatment (anti-EGFR therapy). In this study, 181 patients with Kirsten RAS (KRAS) wild-type mCRC who received anti-EGFR therapy were included. Among them, 101 had left colon cancer (LCC) and 80 had right colon cancer (RCC). Results demonstrated that patients with KRAS wild-type LCC had better median overall survival (OS) (43 vs. 33 months, p = 0.005) and progression-free survival (PFS) (6 vs. 3 months, p < 0.001) compared to those with RCC. Multivariate analysis identified mucinous adenocarcinoma (p < 0.001), RCC location (p = 0.022), perineural invasion (p = 0.034), and tumors at the resection margin (p = 0.001) as independent predictors of OS, while mucinous adenocarcinoma (p = 0.001) and RCC location (p = 0.004) independently correlated with significantly shorter PFS. In addition, human epidermal growth factor receptor 2 (HER2) positive expression was significantly associated with worse PFS compared to HER2 negative results (p < 0.001). In conclusion, LPT is an important marker for predicting outcomes in the treatment of wild-type mCRC using anti-EGFR therapy, since patients with RCC have a statistically significantly shorter PFS and OS. Further investigation is needed to understand the role of HER2 overexpression in wild-type mCRC, as these patients also exhibit shorter survival.
Collapse
Affiliation(s)
- Jelena Radić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.R.); (I.N.); (I.K.-B.); (T.V.)
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia; (A.D.); (V.V.)
| | - Ivan Nikolić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.R.); (I.N.); (I.K.-B.); (T.V.)
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia; (A.D.); (V.V.)
| | - Ivana Kolarov-Bjelobrk
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.R.); (I.N.); (I.K.-B.); (T.V.)
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia; (A.D.); (V.V.)
| | - Tijana Vasiljević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.R.); (I.N.); (I.K.-B.); (T.V.)
- Department of Pathology and Laboratory Diagnostic, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia
| | - Aleksandar Djurić
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia; (A.D.); (V.V.)
| | - Vladimir Vidović
- Department of Medical Oncology, Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia; (A.D.); (V.V.)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
37
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
38
|
Wu FT, Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Drusbosky L, Renouf DJ, Jonker DJ, Tu D, Chen EX, Loree JM. Kinetic Profiling of RAS Mutations With Circulating Tumor DNA in the Canadian Cancer Trials Group CO.26 Trial Suggests the Loss of RAS Mutations in Neo- RAS-Wildtype Metastatic Colorectal Cancer Is Transient. JCO Precis Oncol 2024; 8:e2400031. [PMID: 39178370 PMCID: PMC11371075 DOI: 10.1200/po.24.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE In metastatic colorectal cancer (mCRC), RAS mutations drive resistance to anti-epidermal growth factor receptor antibodies. It is unclear whether RAS mutations ever become clonally undetectable. METHODS CO.26 was a phase II clinical trial that assessed durvalumab + tremelimumab in heavily pretreated mCRC. RAS mutation status was tracked over time using circulating tumor DNA (ctDNA) sequencing at baseline, week 8, and on progression. RESULTS Among the 95 patients with KRAS/NRAS mutations in their archival tumor tissue, 6.3% (6/95) had undetectable RAS mutations in ctDNA collected at baseline or week 8 of the CO.26 study. Of these, 67% (4/6) of disappearances were transient, with the same mutation reappearing with progressive disease. In three cases, the simultaneous persistence of other preexisting CRC-associated truncal mutations could not be demonstrated, suggestive of low tumor shedding of ctDNA, leaving the incidence of true clonal reversion to RAS-wildtype (WT) possibly as low as 3.2% (3/95). Fewer patients in the neo-RAS-WT group (33%) had greater than four lesions at trial baseline compared with patients with persistent RAS mutations (75%), P = .046. The likelihood of synchronous metastases at cancer diagnosis (33% v 63%; P = .15) or liver metastases at trial baseline (50% v 68.5%; P = .17) was not significantly different between patients with disappearing versus persistent RAS mutations. Overall survival from stage IV diagnosis (hazard ratio, 0.77 [95% CI, 0.35 to 1.72]; P = .52) was not significantly different between those with disappearing versus persistent RAS mutations. The disappearance of RAS mutations was not associated with primary tumor sidedness (P = .41), archival BRAF/MEK/ERK-mutant status (P = .16/1.00/.09), nor baseline ctDNA HER2 amplifications (P = 1.00). CONCLUSION We identified a 3.2%-6.3% prevalence of the neo-RAS-WT phenomenon in the CO.26 trial. However, 67% of apparent cases were transient with subsequent re-emergence.
Collapse
Affiliation(s)
- Florence T.H. Wu
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - James T. Topham
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Daniel J. Renouf
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Derek J. Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Kingston, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | |
Collapse
|
39
|
Fukuda K, Osumi H, Yoshinami Y, Ooki A, Takashima A, Wakatsuki T, Hirano H, Nakayama I, Ouchi K, Sawada R, Fukuoka S, Ogura M, Takahari D, Chin K, Shoji H, Okita N, Kato K, Ishizuka N, Boku N, Yamaguchi K, Shinozaki E. Efficacy of anti-epidermal growth factor antibody rechallenge in RAS/BRAF wild-type metastatic colorectal cancer: a multi-institutional observational study. J Cancer Res Clin Oncol 2024; 150:369. [PMID: 39066951 PMCID: PMC11283376 DOI: 10.1007/s00432-024-05893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To investigate circulating tumor DNA (ctDNA) RAS mutant (MT) incidence before salvage-line treatment and the clinicopathological features and molecular biological factors associated with the efficacy of anti-epithelial growth factor receptor (EGFR) monoclonal antibody (mAb) rechallenge for tissue RAS/BRAF wild type (WT) metastatic colorectal cancer (mCRC). METHODS This multi-institutional retrospective observational study included 74 patients with mCRC with tissue RAS/BRAF WT refractory to first-line chemotherapy containing anti-EGFR mAb. ctDNA RAS status was assessed using the OncoBEAM™ RAS CRC Kit. We explored the clinicopathological features associated with ctDNA RAS status and the factors related to anti-EGFR mAb rechallenge efficacy in multivariate Cox proportional hazard regression. RESULTS The incidence of RAS MT in ctDNA was 40.5% (30/74), which was associated with primary tumor resection (P = 0.016), liver metastasis (P < 0.001), and high tumor marker levels (P < 0.001). Among the 39 patients treated with anti-EGFR mAb rechallenge, those with ctDNA RAS WT showed significantly longer progression-free survival (PFS) than those with ctDNA RAS MT (median 4.1 vs. 2.7 months, hazard ratio [HR] = 0.39, P = 0.045). Patients who responded to first-line anti-EGFR mAb showed significantly longer PFS (HR = 0.21, P = 0.0026) and overall survival (OS) (HR = 0.23, P = 0.026) than those with stable disease. CONCLUSIONS The incidence of ctDNA RAS MT mCRC was 40.5%, which was associated with liver metastases and high tumor volumes. Anti-EGFR mAb rechallenge may be effective for patients with mCRC who responded to first-line chemotherapy containing anti-EGFR mAb. No patients with RAS MT in ctDNA responded to anti-EGFR mAb rechallenge.
Collapse
Affiliation(s)
- Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuri Yoshinami
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsuo Takashima
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Takeru Wakatsuki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hidekazu Hirano
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Izuma Nakayama
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Ryoichi Sawada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shota Fukuoka
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mariko Ogura
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Takahari
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hirokazu Shoji
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Naoki Ishizuka
- Center for Digital Transformation of Healthcare, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Narikazu Boku
- Department of Oncology and General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
40
|
Blanchard CE, Gomeiz AT, Avery K, Gazzah EE, Alsubaie AM, Sikaroodi M, Chiari Y, Ward C, Sanchez J, Espina V, Petricoin E, Baldelli E, Pierobon M. Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds. Cell Commun Signal 2024; 22:377. [PMID: 39061010 PMCID: PMC11282632 DOI: 10.1186/s12964-024-01742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology. METHODS Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance. RESULTS MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors. CONCLUSIONS MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.
Collapse
Affiliation(s)
- Claire E Blanchard
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Alison T Gomeiz
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Kyle Avery
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Emna El Gazzah
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Abduljalil M Alsubaie
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, 20110, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Chelsea Ward
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Jonathan Sanchez
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
41
|
Popescu I, Croitoru VM, Croitoru-Cazacu IM, Dudau AM, Herlea V, Dima SO, Croitoru AE. Dynamics of RAS Mutations in Liquid Biopsies in Metastatic Colorectal Cancer Patients-Case Series and Literature Review. J Pers Med 2024; 14:750. [PMID: 39064004 PMCID: PMC11278408 DOI: 10.3390/jpm14070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsies can accurately identify molecular alterations in patients with colorectal cancer with high concordance with tissue analysis and shorter turnaround times. Circulating tumor (ct) DNA analysis can be used for diagnosing and monitoring tumor evolution in patients with metastatic colorectal cancer who are treated with EGFR inhibitors. In this article, we reported three clinical cases to illustrate the relevance of RAS mutations identified in ctDNA samples of patients with wild-type metastatic colorectal cancer who received an EGFR inhibitor plus chemotherapy as first-line treatment. The identification of RAS mutations in these patients is one of the most frequently identified mechanisms of acquired resistance. However, detecting a KRAS mutation via liquid biopsy can be caused by inter-tumor heterogeneity or it can be a false positive due to clonal hematopoiesis. More research is needed to determine whether ctDNA monitoring may help guide therapy options in metastatic colorectal cancer patients. We performed a literature review to assess the technologies that are used for analysis of RAS mutations on ctDNA, the degree of agreement between tissue and plasma and the importance of tissue/plasma discordant cases.
Collapse
Affiliation(s)
- Ionut Popescu
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
| | - Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irina M. Croitoru-Cazacu
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
| | - Ana-Maria Dudau
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (I.P.); (V.M.C.)
- Department of Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
- Department of Pathology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Olimpia Dima
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (S.O.D.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | | |
Collapse
|
42
|
Osumi H, Shinozaki E, Nakamura Y, Esaki T, Yasui H, Taniguchi H, Satake H, Sunakawa Y, Komatsu Y, Kagawa Y, Denda T, Shiozawa M, Satoh T, Nishina T, Goto M, Takahashi N, Kato T, Bando H, Yamaguchi K, Yoshino T. Clinical features associated with NeoRAS wild-type metastatic colorectal cancer A SCRUM-Japan GOZILA substudy. Nat Commun 2024; 15:5885. [PMID: 39003289 PMCID: PMC11246505 DOI: 10.1038/s41467-024-50026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/11/2024] [Indexed: 07/15/2024] Open
Abstract
"NeoRAS WT" refers to the loss of RAS mutations (MTs) following first-line treatment in metastatic colorectal cancer (mCRC). We evaluate the incidence and clinicopathological characteristics of NeoRAS WT mCRC using next-generation sequencing of plasma circulating tumor DNA. Patients with mCRC enrolled in the GOZILA study initially diagnosed with tissue RAS MT mCRC and received subsequent systemic therapy are eligible. NeoRAS WT is defined as the absence of detectable RAS MT in plasma and assessed in all eligible patients (Group A) and in a subgroup with at least one somatic alteration detected in plasma (Group B). Overall, 478 patients are included. NeoRAS WT prevalence is 19.0% (91/478) in Group A and 9.8% (42/429) in Group B. Absence of liver or lymph node metastasis and tissue RAS MTs other than KRAS exon 2 MTs are significantly associated with NeoRAS WT emergence. Overall, 1/6 and 2/6 patients with NeoRAS WT treated with anti-EGFR monoclonal antibodies (mAbs) show partial response and stable disease for ≥6 months, respectively. NeoRAS WT mCRC is observed at a meaningful prevalence, and anti-EGFR mAb-based therapy may be effective.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroya Taniguchi
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hironaga Satake
- Department of Medical Oncology, Kochi Medical School, Kochi, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Manabu Shiozawa
- Department of Gastroenterological Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Taroh Satoh
- Palliative and Supportive Care Center, Osaka University Hospital, Suita, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Masahiro Goto
- Department of Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
43
|
Gómez-Peregrina D, Cicala CM, Serrano C. Monitoring advanced gastrointestinal stromal tumor with circulating tumor DNA. Curr Opin Oncol 2024; 36:282-290. [PMID: 38726808 DOI: 10.1097/cco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of circulating tumor (ct)DNA as a biomarker for clinical decision-making and monitoring purposes in metastatic gastrointestinal stromal tumor (GIST) patients. We discuss key insights from recent clinical trials and anticipate the future perspectives of ctDNA profiling within the clinical landscape of GIST. RECENT FINDINGS The identification and molecular characterization of KIT/platelet-derived growth factor receptor alpha (PDGFRA) mutations from ctDNA in metastatic GIST is feasible and reliable. Such identification through ctDNA serves as a predictor of clinical outcomes to tyrosine-kinase inhibitors (TKIs) in metastatic patients. Additionally, conjoined ctDNA analysis from clinical trials reveal the evolving mutational landscapes and increase in intratumoral heterogeneity across treatment lines. Together, this data positions ctDNA determination as a valuable tool for monitoring disease progression and guiding therapy in metastatic patients. These collective efforts culminated in the initiation of a ctDNA-based randomized clinical trial in GIST, marking a significant milestone in integrating ctDNA testing into the clinical care of GIST patients. SUMMARY The dynamic field of ctDNA technologies is rapidly evolving and holds significant promise for research. Several trials have successfully validated the clinical utility of ctDNA in metastatic GIST, laying the foundations for its prospective integration into the routine clinical management of GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo Maria Cicala
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
44
|
Bugazia D, Al-Najjar E, Esmail A, Abdelrahim S, Abboud K, Abdelrahim A, Umoru G, Rayyan HA, Abudayyeh A, Al Moustafa AE, Abdelrahim M. Pancreatic ductal adenocarcinoma: the latest on diagnosis, molecular profiling, and systemic treatments. Front Oncol 2024; 14:1386699. [PMID: 39011469 PMCID: PMC11247645 DOI: 10.3389/fonc.2024.1386699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth leading cause of death in the United States and is expected to be ranked second in the next 10 years due to poor prognosis and a rising incidence. Distant metastatic PDAC is associated with the worst prognosis among the different phases of PDAC. The diagnostic options for PDAC are convenient and available for staging, tumor response evaluation, and management of resectable or borderline resectable PDAC. However, imaging is crucial in PDAC diagnosis, monitoring, resectability appraisal, and response evaluation. The advancement of medical technologies is evolving, hence the use of imaging in PDAC treatment options has grown as well as the utilization of ctDNA as a tumor marker. Treatment options for metastatic PDAC are minimal with the primary goal of therapy limited to symptom relief or palliation, especially in patients with low functional capacity at the point of diagnosis. Molecular profiling has shown promising potential solutions that would push the treatment boundaries for patients with PDAC. In this review, we will discuss the latest updates from evidence-based guidelines regarding diagnosis, therapy response evaluation, prognosis, and surveillance, as well as illustrating novel therapies that have been recently investigated for PDAC, in addition to discussing the molecular profiling advances in PDAC.
Collapse
Affiliation(s)
- Doaa Bugazia
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Abdullah Esmail
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
| | - Saifudeen Abdelrahim
- Challenge Early College HS, Houston Community College, Houston, TX, United States
| | - Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | | | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, United States
| | - Hashem A Rayyan
- Department of Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
45
|
González NS, Marchese PV, Baraibar I, Ros J, Salvà F, Rodríguez M, Salvà C, Vaghi C, Alcaraz A, García A, Tabernero J, Élez E. Epidermal growth factor receptor antagonists in colorectal cancer: emerging strategies for precision therapy. Expert Opin Investig Drugs 2024; 33:613-625. [PMID: 38775361 DOI: 10.1080/13543784.2024.2349287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The global prevalence of colorectal cancer highlights the need to enhance treatment strategies for improved patient outcomes. The pivotal role of epidermal growth factor receptor (EGFR) signaling in regulating cellular processes for this disease pinpoints its value as a therapeutic target, despite the emergence of resistance mechanisms over time. AREAS COVERED This review discusses the clinical evidence supporting the use of EGFR inhibitors in molecularly-selected patients based on molecular characteristics (notably BRAF V600E and KRAS G12C) including combination approaches targeting different points in in the signaling pathway, as well as strategies such as EGFR inhibitor rechallenge. The role of HER2 inhibitors and emerging approaches such as bispecific antibodies are also reviewed. EXPERT OPINION Recently, inhibitors targeting the KRAS G12C variant have emerged, albeit with modest monotherapy activity compared to other tumor types, emphasizing the influence of histologic origins on the EGFR signaling pathway. Integration of EGFR inhibitors into precision medicine has facilitated tailored therapies addressing resistance mechanisms. Patient selection for EGFR inhibitor rechallenge guided by ctDNA findings is crucial, with ongoing investigations exploring novel combinations to enhance EGFR blockade, highlighting the transformative potential of precision medicine in shaping the future of mCRC treatment toward personalized and targeted approaches.
Collapse
Affiliation(s)
- Nadia Saoudi González
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | | | - Iosune Baraibar
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Francesc Salvà
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Marta Rodríguez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Clara Salvà
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Caterina Vaghi
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adriana Alcaraz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ariadna García
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Elena Élez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
46
|
Devalle S, Aran V, Bastos Júnior CDS, Pannain VL, Brackmann P, Gregório ML, Ferreira Manso JE, Moura Neto V. A panorama of colon cancer in the era of liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100148. [PMID: 40027146 PMCID: PMC11863817 DOI: 10.1016/j.jlb.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025]
Abstract
Colon cancer (CC) is one of the most frequent cancers worldwide being responsible for over 500 thousand deaths in 2022. Its financial and human burden is expected to increase in the next decades accompanying the growing and aging of the global population. Much of this burden could be alleviated considering that the lethality of CC is mostly due to its late diagnosis and failure in the individualized management of patients. Coordinated government actions and implementation of better diagnostic tools capable of detecting CC earlier and of tracking tumoral evolution are mandatory to achieve a reduction in CC's social impact. CtDNA-based liquid biopsy (LB) has great potential to contribute to patients' screening adhesion, CC earlier detection, and to longitudinal tumor follow-up. In this review, we will discuss the latest epidemiological data on CC disease, diagnostic, subtypes, genetics, and treatment management focusing on the advantages and limitations of ctDNA-based LB, including important bottlenecks and solutions necessary for its clinical translation. The latest ctDNA-directed CC clinical trials will also be examined.
Collapse
Affiliation(s)
- Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vera Lucia Pannain
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Brackmann
- Clínica de Coloproctologia do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - Marcelo Leal Gregório
- Instituto de Pesquisas Biomédicas do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Li Y, Wu J, Feng Y, Wang D, Tao H, Wen J, Jiang F, Qian P, Liu Y. Kinetics of plasma cell-free DNA as a prospective biomarker to predict the prognosis and radiotherapy effect of esophageal cancer. Cancer Radiother 2024; 28:242-250. [PMID: 38876937 DOI: 10.1016/j.canrad.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 06/16/2024]
Abstract
PURPOSE The lack of reliable biomarkers for the prognosis and radiotherapy efficacy in esophageal cancer (EC) necessitates further research. The aim of our study was to investigate the predictive utility of plasma cell-free DNA (cfDNA) kinetics in patients with EC. MATERIALS AND METHODS We retrospectively analyzed the clinical data and cfDNA levels (pre-radiotherapy [pre-RT] and post-radiotherapy [post-RT]) and the cfDNA kinetics (cfDNA ratio: post-RT cfDNA/pre-RT cfDNA) of 88 patients. We employed Kaplan-Meier curves to examine the relationship between cfDNA and overall survival (OS) as well as progression-free survival (PFS). Univariate and multivariate Cox regression analyses were executed to ascertain the independent risk factors in EC. RESULTS The pre-RT cfDNA levels were positively correlated with clinical stage (P=0.001). The pre-RT cfDNA levels (cutoff value=16.915ng/mL), but not the post-RT cfDNA levels, were linked to a diminished OS (P<0.001) and PFS (P=0.0137). CfDNA kinetics (cutoff value=0.883) were positively associated with OS (P=0.0326) and PFS (P=0.0020). Notably, we identified independent risk factors for OS in EC treated with RT, including cfDNA ratio (high/low) (HR=0.447 [0.221-0.914] P=0.025), ECOG (0/1/2) (HR=0.501 [0.285-0.880] p=0.016), and histological type (esophagal squamous cell carcinoma [ESCC]/non-ESCC) (HR=3.973 [1.074-14.692] P=0.039). CONCLUSION Plasma cfDNA kinetics is associated with prognosis and radiotherapy effect in EC undergoing RT, suggesting potential clinical application of a cheap and simple blood-based test.
Collapse
Affiliation(s)
- Y Li
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - J Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - Y Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - D Wang
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - H Tao
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - J Wen
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - F Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - P Qian
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China.
| | - Y Liu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China.
| |
Collapse
|
48
|
Boukovala M, Westphalen CB, Probst V. Liquid biopsy into the clinics: Current evidence and future perspectives. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100146. [PMID: 40027149 PMCID: PMC11863819 DOI: 10.1016/j.jlb.2024.100146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2025]
Abstract
As precision oncology has become a major part of the treatment landscape in oncology, liquid biopsies have developed as a particularly powerful tool as it surmounts several limitations of traditional tissue biopsies. These biopsies involve most commonly the isolation of circulating extracellular nucleic acids, including cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), as well as circulating tumor cells (CTCs), typically from blood. The clinical applications of liquid biopsies are diverse, encompassing the initial diagnosis and cancer detection, the application as a tool for prognostication in early and advanced tumor settings, the identification of potentially actionable alterations, the monitoring of response and resistance under systemic therapy and the detection of resistance mechanisms, the differentiation of distinct immune checkpoint blockade response patterns through serial samples, the prediction of immune checkpoint blockade responses based on initial liquid biopsy characteristics and the assessment of tumor heterogeneity. Moreover, molecular relapse monitoring in early-stage cancers and the personalization of adjuvant or additive therapy via MRD have become a major field of research in recent years. Compared to tissue biopsies, liquid biopsies are less invasive and can be collected serially, offering real-time molecular insights. Furthermore, liquid biopsies may allow for a more holistic evaluation of a patient's disease, as they assess material from all tumor sites and can theoretically reflect tumor heterogeneity. Furthermore, quicker turnaround-time also constitutes an advantage of liquid biopsies. Disadvantages or hurdles include the challenge of detecting low amounts of tumor deposits in peripheral blood or other fluids and the potential of different amounts tumor-shedding from different metastatic sites, as well as potentially false-positive from clonal hematopoietic mutations of indeterminate potential (CHIP) mutations. The clinical utility of liquid biopsies still must be validated in most settings and further research has to be done. Clinal trials including alternate bodily fluids and leveraging AI-technology are expected to revolutionize the field of liquid biopsies.
Collapse
|
49
|
Chen N, He L, Zou Q, Deng H. HER2 targeted therapy in colorectal Cancer: Current landscape and future directions. Biochem Pharmacol 2024; 223:116101. [PMID: 38442793 DOI: 10.1016/j.bcp.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Colorectal cancer (CRC) is one of the most common causes of tumor-related deaths globally. Despite recent improvements in the comprehensive therapy of malignancy, metastatic CRC continues to have a poor prognosis. Human epidermal growth factor receptor 2 (HER2) is an established oncogenic driver, which is successfully targeted for breast and gastric cancers. Approximately 5% of CRC patients carry somatic HER2 mutations or gene amplification. In 2019, the U.S. Food and Drug Administration have approved trastuzumab and pertuzumab in combination with chemotherapy for the treatment of HER2-positive metastatic CRC. This approval marked a significant milestone in the treatment of CRC, as HER2-positive patients now have access to targeted therapies that can improve their outcomes. Yet, assessment for HER2 overexpression/ amplification in CRC has not been standardized. The resistance mechanisms to anti-HER2 therapy have been not clearly investigated in CRC. Although many unknowns remain, an improved understanding of these anti-HER2 agents will be essential for advanced CRC. In this review, we provide an overview of the role of HER2 in CRC as an oncogenic driver, a prognostic and predictive biomarker, and a clinically actionable target, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China; Center of Science and Research, Chengdu Medical College, Chengdu, 610500, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiang Zou
- Center of Science and Research, Chengdu Medical College, Chengdu, 610500, China.
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
50
|
Zhang L, Yang J, Huang J, Yu Y, Ding J, Karges J, Xiao H. Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. Chem 2024; 10:1337-1356. [DOI: 10.1016/j.chempr.2023.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|