1
|
van der Leest P, Schuuring E. Critical Factors in the Analytical Work Flow of Circulating Tumor DNA-Based Molecular Profiling. Clin Chem 2024; 70:220-233. [PMID: 38175597 DOI: 10.1093/clinchem/hvad194] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Liquid biopsy testing, especially molecular tumor profiling of circulating tumor DNA (ctDNA) in cell-free plasma, has received increasing interest in recent years as it serves as a reliable alternative for the detection of tumor-specific aberrations to guide treatment decision-making in oncology. Many (commercially available) applications have been developed, however, broad divergences in (pre)analytical work flows and lack of universally applied guidelines impede routine clinical implementation. In this review, critical factors in the blood-based ctDNA liquid biopsy work flow are evaluated. CONTENT In the preanalytical phase, several aspects (e.g., blood collection tubes [BCTs], plasma processing, and extraction method) affect the quantity and quality of the circulating cell-free DNA (ccfDNA) applicable for subsequent molecular analyses and should meet certain standards to be applied in diagnostic work flows. Analytical considerations, such as analytical input and choice of assay, might vary based on the clinical application (i.e., screening, primary diagnosis, minimal residual disease [MRD], response monitoring, and resistance identification). In addition to practical procedures, variant interpretation and reporting ctDNA results should be harmonized. Collaborative efforts in (inter)national consortia and societies are essential for the establishment of standard operating procedures (SOPs) in attempts to standardize the plasma-based ctDNA analysis work flow. SUMMARY Development of universally applicable guidelines regarding the critical factors in liquid biopsy testing are necessary to pave the way to clinical implementation for routine diagnostics.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Zhang ZH, Bao YW, Zhao YJ, Wang JQ, Guo JT, Sun SY. Circulating tumor cells as potential prognostic biomarkers for early-stage pancreatic cancer: A systematic review and meta-analysis. World J Clin Oncol 2023; 14:504-517. [PMID: 38059182 PMCID: PMC10696218 DOI: 10.5306/wjco.v14.i11.504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Pancreatic cancer is difficult to be diagnosed early clinically, while often leads to poor prognosis. If optimal personalized treatment plan can be provided to pancreatic cancer patient at an earlier stage, this can greatly improve overall survival (OS). Circulating tumor cells (CTCs) are a collective term for various types of tumor cells present in the peripheral blood (PB), which are formed by detachment during the development of solid tumor lesions. Most CTCs undergo apoptosis or are phagocytosed after entering the PB, whereas a few can escape and anchor at distal sites to develop metastasis, increasing the risk of death for patients with malignant tumors. AIM To investigate the significance of CTCs in predicting the prognosis of early pancreatic cancer patients. METHODS The PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine, and ChinaInfo databases were searched for articles published through December 2022. Studies were considered qualified if they included patients with early pancreatic cancer, analyzed the prognostic value of CTCs, and were full papers reported in English or Chinese. Researches were selected and assessed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol and the Newcastle-Ottawa Scale criteria. We used a funnel plot to assess publication bias. RESULTS From 1595 publications, we identified eight eligible studies that collectively enrolled 355 patients with pancreatic cancer. Among these original studies, two were carried out in China; three in the United States; and one each in Italy, Spain, and Norway. All eight studies analyzed the relevance between CTCs and the prognosis of patients with early-stage pancreatic cancer after surgery. A meta-analysis showed that the patients that were positive pre-treatment or post-treatment for CTCs were associated with decreased OS [hazard ratio (HR) = 1.93, 95% confidence interval (CI): 1.197-3.126, P = 0.007] and decreased relapse-free/disease-free/progression-free survival (HR = 1.27, 95%CI: 1.137-1.419, P < 0.001) in early-stage pancreatic cancer. Additionally, the results suggest no statistically noticeable publication bias for overall, disease-free, progression-free, and recurrence-free survival. CONCLUSION This pooled meta-analysis shows that CTCs, as biomarkers, can afford reliable prognostic information for patients with early-stage pancreatic cancer and help develop individualized treatment plans.
Collapse
Affiliation(s)
- Zi-Han Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yi-Wen Bao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ya-Jun Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jian-Quan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
3
|
Yang L, Guo H, Hou T, Zhang J, Li F. Metal-mediated Fe 3O 4@polydopamine-aptamer capture nanoprobe coupling multifunctional MXene@Au@Pt nanozyme for direct and portable photothermal analysis of circulating breast cancer cells. Biosens Bioelectron 2023; 234:115346. [PMID: 37148800 DOI: 10.1016/j.bios.2023.115346] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Breast cancer (BC) is the most common cancer in the world and circulating tumor cells (CTCs) are reliable biomarkers for early breast cancer diagnosis in a non-invasive manner. However, effective isolation and sensitive detection of BC-CTCs by portable devices in human blood samples are extremely challenging. Herein, we proposed a highly sensitive and portable photothermal cytosensor for direct capture and quantification of BC-CTCs. To achieve efficient isolation of BC-CTCs, aptamer functionalized Fe3O4@PDA nanoprobe was facilely prepared through Ca2+-mediated DNA adsorption. To further detect the captured BC-CTCs with high sensitivity, multifunctional two-dimensional Ti3C2@Au@Pt nanozyme was synthesized, which not only possessed superior photothermal effect but also exhibited high peroxidase-like activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal characteristic, combining with Ti3C2@Au@Pt to synergistically amplify the temperature signal. Moreover, numerous Ti3C2@Au@Pt nanocomposites would be selectively attained on the BC-CTCs surface through multi-aptamer recognition and binding strategy, which further enhanced the specificity and facilitated signal amplification. Therefore, direct separation and highly sensitive detection of BC-CTCs was successfully achieved in human blood samples. More significantly, the controlled release of the captured BC-CTCs without affecting cell viability could be straightforwardly realized by a simple strand displacement reaction. Thus, with the distinct features of portability, high sensitivity, and easy operation, the current method holds great promise for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
4
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
5
|
Programmed Cell Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor of Treatment Response in Patients with Urothelial Carcinoma. BIOLOGY 2021; 10:biology10070674. [PMID: 34356529 PMCID: PMC8301435 DOI: 10.3390/biology10070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Programmed cell death ligand 1 (PD-L1) inhibitors are commonly used in treating advanced-stage urothelial carcinoma. Contrary to evaluating PD-L1 expression in tumor biopsy samples, this study assessed whether PD-L1 expression in circulating tumor cells (CTCs) can be a predictor of treatment response to PD-L1 inhibitors. The current study proved that there was no statistically significant correlation between the presence of PD-L1-positive CTCs and PD-L1 expression in tumor tissues. Moreover, PD-L1-positive CTCs at baseline could be used as a biomarker to identify patients suitable for PD-L1 blockade therapy. Dynamic changes in PD-L1-positive CTCs during the course of treatment are predictive factors of immunotherapy response and prognostic factors of disease control. Abstract Programmed cell death ligand 1 (PD-L1) inhibitors are commonly used in treating advanced-stage urothelial carcinoma (UC). Therefore, this study evaluated the relationship between PD-L1 expression in circulating tumor cells (CTCs) and treatment response to PD-L1 inhibitors using blood samples collected from patients with UC (n = 23). Subsequently, PD-L1 expression and its clinical correlation were analyzed. All patients had CTCs before PD-L1 inhibitory treatment, of which 15 had PD-L1-positive CTCs. However, PD-L1-positive expression in CTCs was not correlated with PD-L1 expression in tumor biopsy samples. Patients with PD-L1-positive CTCs had better disease control (DC) rates than those without PD-L1-positive CTCs. Moreover, changes in the proportion of PD-L1-positive CTCs were associated with disease outcomes. Furthermore, the PD-L1-positive CTC count in 9 of 11 patients who achieved DC had significantly decreased (p = 0.01). In four patients with progressive disease, this was higher or did not change. PD-L1-positive CTCs at baseline could be used as a biomarker to identify patients suitable for PD-L1 blockade therapy. Dynamic changes in PD-L1-positive CTCs during the course of treatment are predictive factors of immunotherapy response and prognostic factors of disease control. Hence, PD-L1-positive CTCs could be employed as a real-time molecular biomarker for individualized immunotherapy.
Collapse
|
6
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
7
|
Zhou J, Tu C, Liang Y, Huang B, Fang Y, Liang X, Ye X. The label-free separation and culture of tumor cells in a microfluidic biochip. Analyst 2020; 145:1706-1715. [PMID: 31895371 DOI: 10.1039/c9an02092f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) from liquid biopsy have shown a strong correlation to the clinical outcome of cancer patients. The enumeration and cytological analysis of CTCs have attracted increasing efforts for cancer disease management amid immunotherapy and personalized medicine. However, both enumeration and cytological analysis are challenging due to the rarity of CTCs and the lack of integrated solutions for the minimal risk of cell loss in the course of CTC procurement. We report a simple microfluidic chip permitting a one-stop solution for streamlining the on-chip cell separation, capture, immunofluorescence assay and/or in situ culture of isolated cells devoid of risky manual steps. Our results showed effective trapping of single cells, doublets and cell lumps isolated from blood in the same device. On-chip immunostaining revealed normal cell morphology and the characterization of cell expansion uncovered an altered cell growth curve with a reduced lag phase as compared to the conventional culture despite closely matching cell growth rates. The cells were viable and functional for as long as 11 days inside our chip and cell migration was also readily observed, with lumps showing greater aggressiveness than single cells. With these results, we expect promising applications of our one-stop solution for liquid biopsy via CTCs.
Collapse
Affiliation(s)
- Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China and Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China and State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Cheng KS, Pan R, Pan H, Li B, Meena SS, Xing H, Ng YJ, Qin K, Liao X, Kosgei BK, Wang Z, Han RP. ALICE: a hybrid AI paradigm with enhanced connectivity and cybersecurity for a serendipitous encounter with circulating hybrid cells. Am J Cancer Res 2020; 10:11026-11048. [PMID: 33042268 PMCID: PMC7532685 DOI: 10.7150/thno.44053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
A fully automated and accurate assay of rare cell phenotypes in densely-packed fluorescently-labeled liquid biopsy images remains elusive. Methods: Employing a hybrid artificial intelligence (AI) paradigm that combines traditional rule-based morphological manipulations with modern statistical machine learning, we deployed a next generation software, ALICE (Automated Liquid Biopsy Cell Enumerator) to identify and enumerate minute amounts of tumor cell phenotypes bestrewed in massive populations of leukocytes. As a code designed for futurity, ALICE is armed with internet of things (IOT) connectivity to promote pedagogy and continuing education and also, an advanced cybersecurity system to safeguard against digital attacks from malicious data tampering. Results: By combining robust principal component analysis, random forest classifier and cubic support vector machine, ALICE was able to detect synthetic, anomalous and tampered input images with an average recall and precision of 0.840 and 0.752, respectively. In terms of phenotyping enumeration, ALICE was able to enumerate various circulating tumor cell (CTC) phenotypes with a reliability ranging from 0.725 (substantial agreement) to 0.961 (almost perfect) as compared to human analysts. Further, two subpopulations of circulating hybrid cells (CHCs) were serendipitously discovered and labeled as CHC-1 (DAPI+/CD45+/E-cadherin+/vimentin-) and CHC-2 (DAPI+ /CD45+/E-cadherin+/vimentin+) in the peripheral blood of pancreatic cancer patients. CHC-1 was found to correlate with nodal staging and was able to classify lymph node metastasis with a sensitivity of 0.615 (95% CI: 0.374-0.898) and specificity of 1.000 (95% CI: 1.000-1.000). Conclusion: This study presented a machine-learning-augmented rule-based hybrid AI algorithm with enhanced cybersecurity and connectivity for the automatic and flexibly-adapting enumeration of cellular liquid biopsies. ALICE has the potential to be used in a clinical setting for an accurate and reliable enumeration of CTC phenotypes.
Collapse
|
9
|
Künzel J, Gribko A, Lu Q, Stauber RH, Wünsch D. Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biol Chem 2020; 400:1465-1479. [PMID: 30903749 DOI: 10.1515/hsz-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The establishment of novel biomarkers in liquid biopsies of cancer patients has come more into focus in prognostic and diagnostic research efforts. Due to their prognostic relevance disseminated tumor cells or circulating tumor cells are the subject of intensive research and are discussed as early diagnostic indicators for treatment failure and the formation of micrometastases. A potential association of this early-systemic tumor component with poor prognosis of cancer patients could be already demonstrated for various entities including breast, colon, lung, melanoma, ovarian and prostate cancers. Thus, the detection of circulating tumor cells seems to be also applicable for minimal-invasive monitoring of therapy progress in head and neck cancer patients. A major problem of the use in clinical routine is that circulating tumor cells could not be detected by modern imaging techniques. To overcome these limitations highly sensitive detection methods and techniques for their molecular characterization are urgently needed allowing mechanistic understanding and targeting of circulating tumor cells. Especially the medical application of nanotechnology (nanomedical methods) has made valuable contributions to the field. Here, we want to provide a comprehensive overview on (nanomedical) detection methods for circulating tumor cells and discuss their merits, pitfalls and future perspectives especially for head and neck solid squamous cell carcinoma (HNSCC) patients.
Collapse
Affiliation(s)
- Julian Künzel
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Alena Gribko
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| |
Collapse
|
10
|
Neves M, Azevedo R, Lima L, Oliveira MI, Peixoto A, Ferreira D, Soares J, Fernandes E, Gaiteiro C, Palmeira C, Cotton S, Mereiter S, Campos D, Afonso LP, Ribeiro R, Fraga A, Tavares A, Mansinho H, Monteiro E, Videira PA, Freitas PP, Reis CA, Santos LL, Dieguez L, Ferreira JA. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N Biotechnol 2018; 49:77-87. [PMID: 30273682 DOI: 10.1016/j.nbt.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.
Collapse
Affiliation(s)
- Manuel Neves
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rita Azevedo
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Luís Lima
- Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Andreia Peixoto
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | | | - Janine Soares
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Elisabete Fernandes
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Cristiana Gaiteiro
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | - Sofia Cotton
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Stefan Mereiter
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Diana Campos
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | | | - Ricardo Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Avelino Fraga
- Hospital Centre- Hospital of Santo António of Porto, Portugal
| | - Ana Tavares
- Portuguese Institute of Oncology, Porto, Portugal
| | - Hélder Mansinho
- Hemato-Oncology Clinic, Hospital Garcia de Orta, EPE, Almada, Portugal; Gupo de Investigação do Cancro Digestivo-GICD, Portugal
| | | | - Paula A Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; INESC - Microsistemas e Nanotecnologias, Lisboa, Lisbon, Portugal
| | - Celso A Reis
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; UFP: School of Health Sciences, Fernando Pessoa University of Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José Alexandre Ferreira
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal.
| |
Collapse
|
11
|
Li J, Han X, Yu X, Xu Z, Yang G, Liu B, Xiu P. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:213. [PMID: 30176913 PMCID: PMC6122633 DOI: 10.1186/s13046-018-0893-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant disease with a poor prognosis and high mortality due to a low early diagnosis rate, resistance to systemic treatments and progression to late-stage liver disease. Owing to limitations in the detection of HCC and the lack of awareness of healthcare systems, fewer than 40% of HCC patients are eligible for surgery due to advanced stages of the disease at the time of diagnosis and the occurrence of multiple lesions in the cirrhotic or fibrotic liver. At present, the updated American Association for the Study of Liver Disease (AASLD) guidelines no longer recommend alpha-fetoprotein (AFP) testing as a part of diagnostic evaluation. Thus, it is imperative to establish a novel diagnostic strategy with high sensitivity and reliability to monitor risk factors to detect HCC at an early stage. In recent years, “liquid biopsy,” (including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)), has emerged as a technique for the characterization of circulating cells, providing a strong basis for the individualized treatment of patients. As a noninvasive detection method, liquid biopsy is expected to play an important role in the early diagnosis, dynamic monitoring of cancer patients and drug screening. In this review, we will focus on the clinical applications, recent studies and future prospects of liquid biopsy, particularly focusing on HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Xu Han
- Department of Hepatobiliary Surgery, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Xiaona Yu
- Department of General Medicine, Weifang Rongfu Military Hospital, Weifang, 261000, Shandong, China
| | - Zongzhen Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Guangsheng Yang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Bingqi Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Peng Xiu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China.
| |
Collapse
|
12
|
Azevedo R, Soares J, Peixoto A, Cotton S, Lima L, Santos LL, Ferreira JA. Circulating tumor cells in bladder cancer: Emerging technologies and clinical implications foreseeing precision oncology. Urol Oncol 2018. [PMID: 29530466 DOI: 10.1016/j.urolonc.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Circulating tumor cells (CTC) in peripheral blood of cancer patients provide an opportunity for real-time liquid biopsies capable of aiding early intervention, therapeutic decision, response to therapy, and prognostication. Nevertheless, the rare and potentially heterogeneous molecular nature of CTC has delayed the standardization of robust high-throughput capture/enrichment and characterization technologies. OBJECTIVE This review aims to systematize emerging solutions for CTC analysis in bladder cancer (BC), their opportunities and limitations, while providing key insights on specific technologic aspects that may ultimately guide molecular studies and clinical implementation. EVIDENCE ACQUISITION State-of-the-art screening for CTC technologies and clinical applications in BC was conducted in MEDLINE through PubMed. EVIDENCE SYNTHESIS From 200 records identified by the search query, 25 original studies and 1 meta-analysis met the full criteria for selection. A significant myriad of CTC technological platforms, including immunoaffinity, biophysical, and direct CTC detection by molecular methods have been presented. Despite their preliminary nature and irrespective of the applied technology, most studies concluded that CTC counts in peripheral blood correlated with metastasis. Associations with advanced tumor stage and grade and worst prognosis have been suggested. However, the unspecific nature, low sensitivity, and the lack of standardization of current methods still constitutes a major drawback. Moreover, few comprehensive molecular studies have been conducted on these poorly known class of malignant cells. CONCLUSION The current rationale supports the importance of moving the CTC field beyond proof of concept studies toward molecular-based solutions capable of improving disease management. The road has been paved for identification of highly specific CTC biomarkers and novel targeted approaches, foreseeing successful clinical applications.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Health School of University Fernando Pessoa, Praça de 9 de Abril 349, 4249-004 Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715 Braga, Portugal.
| |
Collapse
|
13
|
Riethdorf S, O'Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 2018; 125:102-121. [PMID: 29355669 DOI: 10.1016/j.addr.2018.01.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The CellSearch® system (CS) enables standardized enrichment and enumeration of circulating tumor cells (CTCs) that are repeatedly assessable via non-invasive "liquid biopsy". While the association of CTCs with poor clinical outcome for cancer patients has clearly been demonstrated in numerous clinical studies, utilizing CTCs for the identification of therapeutic targets, stratification of patients for targeted therapies and uncovering mechanisms of resistance is still under investigation. Here, we comprehensively review the current benefits and drawbacks of clinical CTC analyses for patients with metastatic and non-metastatic tumors. Furthermore, the review focuses on approaches beyond CTC enumeration that aim to uncover therapeutically relevant antigens, genomic aberrations, transcriptional profiles and epigenetic alterations of CTCs at a single cell level. This characterization of CTCs may shed light on the heterogeneity and genomic landscapes of malignant tumors, an understanding of which is highly important for the development of new therapeutic strategies.
Collapse
|
14
|
Ooi CC, Mantalas GL, Koh W, Neff NF, Fuchigami T, Wong DJ, Wilson RJ, Park SM, Gambhir SS, Quake SR, Wang SX. High-throughput full-length single-cell mRNA-seq of rare cells. PLoS One 2017; 12:e0188510. [PMID: 29186152 PMCID: PMC5706670 DOI: 10.1371/journal.pone.0188510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Collapse
Affiliation(s)
- Chin Chun Ooi
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Gary L. Mantalas
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Winston Koh
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Norma F. Neff
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Teruaki Fuchigami
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Dawson J. Wong
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Robert J. Wilson
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
| | - Seung-min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Shan X. Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
15
|
Zhou M, Zheng H, Wang Z, Li R, Liu X, Zhang W, Wang Z, Li H, Wei Z, Hu Z. Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm. Theranostics 2017; 7:4710-4721. [PMID: 29187898 PMCID: PMC5706094 DOI: 10.7150/thno.20440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Enumerating circulating tumor cells (CTCs) has been demonstrably useful in cancer treatment. Although there are several approaches that have proved effective in isolating CTC-like cells, the crucial identification of CTCs continues to rely on the manual interpretation of immunofluorescence images of all cells that have been isolated. This procedure is time consuming and more importantly, CTC identification relies on subjective criteria that may differ between examiners. In this study, we describe the design, testing, and verification of a microfluidic platform that provides accurate and automated CTC enumeration using a common objective criterion. Methods: The platform consists of a multi-functional microfluidic chip and a unique image processing algorithm. The microfluidic chip integrates blood filtering, cell isolation, and single cell positioning to ensure minimal cell loss, efficient cell isolation, and fixed arraying of single cells to facilitate downstream image processing. By taking advantage of the microfluidic chip design to reduce calculation loads and eliminate measurement errors, our specially designed algorithm has the capability of rapidly interpreting hundreds of images to provide accurate CTC counts. Results: Following intensive optimization of the microfluidic chip, the image processing algorithm, and their collaboration, we verified the complete platform by enumerating CTCs from six clinical blood samples of patients with breast cancer. Compared to tube-based CTC isolation and manual CTC identification, our platform had better accuracy and reduced the time needed from sample loading to result review by 50%. Conclusion: This automated CTC enumeration platform demonstrates not only a sound strategy in integrating a specially designed multi-functional microfluidic chip with a unique image processing algorithm for robust, accurate, and "hands-free" CTC enumeration, but may also lead to its use as a novel in vitro diagnostic device used in clinics and laboratories as readily as a routine blood test.
Collapse
Affiliation(s)
- Mingxing Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Hui Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhaoba Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
| | - Ren Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weikai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing 314000, China
| |
Collapse
|
16
|
Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering. Sci Rep 2017; 7:12666. [PMID: 28979002 PMCID: PMC5627307 DOI: 10.1038/s41598-017-12990-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Histology and histopathology are based on the morphometric observations of quiescent cells. Their diagnostic potential could largely benefit from a simultaneous screening of intrinsic biophysical properties at single-cell level. For such a purpose, we analyzed light scattering signatures of individual mononuclear blood cells in microfluidic flow. In particular, we extracted a set of biophysical properties including morphometric (dimension, shape and nucleus-to-cytosol ratio) and optical (optical density) ones to clearly discriminate different cell types and stages. By considering distinctive ranges of biophysical properties along with the obtained relative cell frequencies, we can identify unique cell classes corresponding to specific clinical conditions (p < 0.01). Based on such a straightforward approach, we are able to discriminate T-, B-lymphocytes, monocytes and beyond that first results on different stages of lymphoid and myeloid leukemia cells are presented. This work shows that the simultaneous screening of only three biophysical properties enables a clear distinction between pathological and physiological mononuclear blood stream cells. We believe our approach could represent a useful tool for a label-free analysis of biophysical single-cell signatures.
Collapse
|
17
|
Li Y, Wu S, Bai F. Molecular characterization of circulating tumor cells-from bench to bedside. Semin Cell Dev Biol 2017; 75:88-97. [PMID: 28899718 DOI: 10.1016/j.semcdb.2017.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells discovered in cancer patients' peripheral blood that successfully escape from the primary tumor site and/or metastases, struggle to survive in the bloodstream, and have potential for seeding metastases. Numerous methods have been proposed to capture CTCs. The value of CTCs as a means of understanding cancer metastasis and a major form of 'liquid biopsy' has been widely demonstrated. Recently, single-cell molecular analyses of CTCs have provided profound biological insights into tumor heterogeneity, mechanism of metastasis and tumor evolution. In addition, because CTC analysis is non-invasive, CTCs exhibit great potential as biomarkers for assessment of cancer prognosis and therapy response. In this review, we summarize modern technologies for CTC detection and isolation, single-cell genomic/transcriptomic characterization of CTCs, and prospective clinical applications of CTCs. We expect that, after further technical improvements in methods of detection and sequencing, CTC analyses will shed new light on the mechanisms driving cancer metastasis and benefit many cancer patients.
Collapse
Affiliation(s)
- Yanmeng Li
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China
| | - Shaohan Wu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Naftali O, Maman S, Meshel T, Sagi-Assif O, Ginat R, Witz IP. PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget 2016; 7:10627-37. [PMID: 26840262 PMCID: PMC4891146 DOI: 10.18632/oncotarget.7056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.
Collapse
Affiliation(s)
- Osnat Naftali
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
19
|
Khoo BL, Grenci G, Jing T, Lim YB, Lee SC, Thiery JP, Han J, Lim CT. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment. SCIENCE ADVANCES 2016; 2:e1600274. [PMID: 27453941 PMCID: PMC4956185 DOI: 10.1126/sciadv.1600274] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/14/2016] [Indexed: 05/08/2023]
Abstract
The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment.
Collapse
Affiliation(s)
- Bee Luan Khoo
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tengyang Jing
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Soo Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jongyoon Han
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
- Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chwee Teck Lim
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- Corresponding author.
| |
Collapse
|
20
|
Forte VA, Barrak DK, Elhodaky M, Tung L, Snow A, Lang JE. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med 2016; 13:19-40. [PMID: 27144060 PMCID: PMC4850125 DOI: 10.28092/j.issn.2095-3941.2016.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer.
Collapse
Affiliation(s)
- Victoria A Forte
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Dany K Barrak
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Mostafa Elhodaky
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Stem Cell and Regenerative Medicine, USC, Los Angeles, CA 90033, USA
| | - Lily Tung
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Anson Snow
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Julie E Lang
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Cebotaru CL, Olteanu ED, Antone NZ, Buiga R, Nagy V. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review. ACTA ACUST UNITED AC 2016; 89:203-11. [PMID: 27152069 PMCID: PMC4849376 DOI: 10.15386/cjmed-570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/22/2015] [Accepted: 10/03/2015] [Indexed: 12/14/2022]
Abstract
Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting.
Collapse
Affiliation(s)
- Cristina Ligia Cebotaru
- Ion Chiricuta Institute of Oncology, Cluj Napoca, Romania; Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Elena Diana Olteanu
- Ion Chiricuta Institute of Oncology, Cluj Napoca, Romania; Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | | | - Rares Buiga
- Ion Chiricuta Institute of Oncology, Cluj Napoca, Romania
| | - Viorica Nagy
- Ion Chiricuta Institute of Oncology, Cluj Napoca, Romania; Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
22
|
Yang MH, Imrali A, Heeschen C. Circulating cancer stem cells: the importance to select. Chin J Cancer Res 2015; 27:437-49. [PMID: 26543330 DOI: 10.3978/j.issn.1000-9604.2015.04.08] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated that even localized tumors without clinically apparent metastasis give rise to circulating tumor cells (CTCs). A growing number of technically diverse platforms are being developed for detecting/isolating CTCs in the circulating blood. Despite the technical challenges of isolating rare CTCs from blood, recent studies have already shown the predictive value of CTCs enumeration. Thus, it is becoming increasingly accepted that CTC numbers are linked to patients' outcome and may also be used to monitor treatment response and disease relapse, respectively. Further CTCs provide a non-invasive source for tumor material, 'liquid biopsy', which is particularly important for patients, where no biopsy material can be obtained or where serial biopsies of the tumor, e.g., following treatment, are practically impossible. On the other hand the molecular and biological characterization of CTCs has still remained at a rather experimental stage. Future studies are necessary to define CTC heterogeneity to establish the crucial role of circulating cancer stem cells for driving metastasis, which represent a distinct subpopulation of CTCs that bear metastasis-initiating capabilities based on their stemness properties and invasiveness and thus are critical for the patients' clinical outcome. As compared to non-tumorigenic/metastatic bulk CTCs, circulating cancer stem cells may not only be capable of evading from the primary tumor, but also escape from immune surveillance, survive in the circulating blood and subsequently form metastases in distant organs. Thus, circulating cancer stem cells represent a subset of exclusively tumorigenic cancer stem cells characterized by their invasive characteristics and are potential therapeutic targets for preventing disease progression. To date, only a few original reports and reviews have been published focusing on circulating cancer stem cells. This review discusses the potential importance of isolating and characterizing these circulating cancer stem cells, but also highlights current technological limitations.
Collapse
Affiliation(s)
- Ming-Hsin Yang
- 1 Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK ; 2 Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ; 3 Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ahmet Imrali
- 1 Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK ; 2 Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ; 3 Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- 1 Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK ; 2 Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ; 3 Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
23
|
Owusu BY, Vaid M, Kaler P, Klampfer L. Prognostic and Predictive Significance of Stromal Fibroblasts and Macrophages in Colon Cancer. BIOMARKERS IN CANCER 2015; 7:29-37. [PMID: 26568685 PMCID: PMC4631158 DOI: 10.4137/bic.s25247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment. Recent advances in the understanding of the involvement of the tumor microenvironment in tumor progression and therapeutic response are optimizing the application of prognostic and predictive factors in colon cancer. Moreover, new targets in the tumor microenvironment that are amenable to therapeutic intervention have been identified. Because stromal cells are with rare exceptions genetically stable, the tumor microenvironment has emerged as a preferred target for therapeutic drugs. In this review, we discuss the role of stromal fibroblasts and macrophages in colon cancer progression and in the response of colon cancer patients to therapy.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Mudit Vaid
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Pawan Kaler
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| |
Collapse
|
24
|
Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, Rawal S, Ao Z, Brennaman R, Gilboa E, Lu B, Wang S, Zhu J, Datar R, Cote R, Tai YC, Zheng SY. Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep 2014; 4:7392. [PMID: 25487434 PMCID: PMC4260227 DOI: 10.1038/srep07392] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023] Open
Abstract
The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78-83%), high retention of cell viability (71-74%), high tumour cell enrichment against leukocytes (1.7-2 × 10(3)), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4-0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research.
Collapse
Affiliation(s)
- Ming-Da Zhou
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Sijie Hao
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Anthony J. Williams
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Ramdane A. Harouaka
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Brett Schrand
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Siddarth Rawal
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Zheng Ao
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Randall Brennaman
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Bo Lu
- Caltech Micromachining Laboratory, California Institute of Technology, MC 136-93, Pasadena, CA 91125, U.S.A.
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99210, U.S.A
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99210, U.S.A
| | - Ram Datar
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Richard Cote
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Yu-Chong Tai
- Caltech Micromachining Laboratory, California Institute of Technology, MC 136-93, Pasadena, CA 91125, U.S.A.
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| |
Collapse
|
25
|
Abstract
During the past ten years, circulating tumour cells (CTCs) have received enormous attention as new biomarkers and the subject of basic research. Although CTCs are already used in numerous clinical trials, their clinical utility is still under investigation. Many issues regarding the detection and characterization of CTCs remain unknown. In this Opinion article, we propose a conceptual framework of CTC assays and point out current challenges of CTC research, which might structure this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- 1] University Medical Centre, Saint-Eloi Hospital, Institute of Medicine Regenerative &Biotherapy, Department of Cellular and Tissular Biopathology of Tumors, Laboratory of Rare Human Circulating Cells, 80 Avenue Augustin Fliche 34295 Montpellier Cedex 5, Montpellier, France. [2] University Institute of Clinical Research UM1 - EA2415 - Epidemiology, Biostatistics &Public Health, 641, Avenue du Doyen Gaston GIRAUD 34093 Montpellier Cedex 5, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
26
|
Lustberg MB, Balasubramanian P, Miller B, Garcia-Villa A, Deighan C, Wu Y, Carothers S, Berger M, Ramaswamy B, Macrae ER, Wesolowski R, Layman RM, Mrozek E, Pan X, Summers TA, Shapiro CL, Chalmers JJ. Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients. Breast Cancer Res 2014; 16:R23. [PMID: 24602188 PMCID: PMC4053256 DOI: 10.1186/bcr3622] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 02/10/2014] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Circulating tumor cells (CTCs) are commonly isolated from the blood by targeting the epithelial cell adhesion molecule (EpCAM) through positive selection. However, EpCAM can be downregulated during metastatic progression, or it can be initially not present. We designed the present prospective trial to characterize CTCs as well as other circulating cell populations in blood samples from women with metastatic breast cancer without EpCAM-dependent enrichment and/or isolation technology. METHODS A total of 32 patients with metastatic breast cancer were enrolled, and blood samples were processed using a previously described negative depletion immunomagnetic methodology. Samples from healthy volunteers were run as controls (n = 5). Multistep sequential labeling was performed to label and fix cell-surface markers followed by permeabilization for cytokeratins (CK) 8, 18 and 19. Multiparametric flow cytometry (FCM) analysis was conducted using a BD LSR II flow cytometer or a BD FACSAria II or FACSAria III cell sorter. Immunocytochemical staining on postenrichment specimens for DAPI, EpCAM, CD45, CK, epidermal growth factor receptor and vimentin was performed. Expression of these markers was visualized using confocal microscopy (CM). RESULTS CD45-negative/CK-positive (CD45- CK+) populations with EpCAM + and EpCAM - expression were identified with both FCM and CM from the negatively enriched patient samples. In addition, EpCAM + and EpCAM - populations that were CK + and coexpressing the pan-hematopoietic marker CD45 were also noted. There were more CK + EpCAM - events/ml than CK + EpCAM + events/ml in both the CD45- and CD45+ fractions (both statistically significant at P ≤ 0.0005). The number of CK + CD45- and CK + CD45+ events per milliliter in blood samples (regardless of EpCAM status) was higher in patient samples than in normal control samples (P ≤ 0.0005 and P ≤ 0.026, respectively). Further, a significant fraction of the CK + CD45+ events also expressed CD68, a marker associated with tumor-associated macrophages. Higher levels of CD45-CK + EpCAM - were associated with worse overall survival (P = 0.0292). CONCLUSIONS Metastatic breast cancer patients have atypical cells that are CK + EpCAM - circulating in their blood. Because a substantial number of these patients do not have EpCAM + CTCs, additional studies are needed to evaluate the role of EpCAM - circulating cells as a prognostic and predictive marker.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/blood
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/blood
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Epithelial Cell Adhesion Molecule
- ErbB Receptors/blood
- ErbB Receptors/metabolism
- Female
- Flow Cytometry
- Humans
- Immunohistochemistry
- Keratin-18/blood
- Keratin-18/metabolism
- Keratin-19/blood
- Keratin-19/metabolism
- Keratin-8/blood
- Keratin-8/metabolism
- Leukocyte Common Antigens/blood
- Leukocyte Common Antigens/metabolism
- MCF-7 Cells
- Microscopy, Confocal
- Middle Aged
- Neoplasm Metastasis
- Neoplastic Cells, Circulating/metabolism
- Prognosis
- Prospective Studies
- Vimentin/blood
- Vimentin/metabolism
Collapse
Affiliation(s)
- Maryam B Lustberg
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Priya Balasubramanian
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Brandon Miller
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Alejandra Garcia-Villa
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Clayton Deighan
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Yongqi Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Sarah Carothers
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Michael Berger
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Erin R Macrae
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Robert Wesolowski
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Rachel M Layman
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Ewa Mrozek
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University, 2012 Kenny Road, Columbus, OH 43221, USA
| | - Thomas A Summers
- Department of Pathology and Laboratory Services, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA
| | - Charles L Shapiro
- Stefanie Spielman Comprehensive Breast Center, Wexner Medical Center, The Ohio State University, 1145 Olentangy River Road, Columbus, OH 43212, USA
- The Breast Cancer Research Program, The Ohio State University Comprehensive Cancer Center–Arthur G James Cancer Hospital and Solove Research Institute, 300 W 10th Avenue, Columbus, OH 43210, USA
| | - Jeffrey J Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 W 19th Ave, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Vaidyanathan R, Shiddiky MJA, Rauf S, Dray E, Tay Z, Trau M. Tunable “Nano-Shearing”: A Physical Mechanism to Displace Nonspecific Cell Adhesion During Rare Cell Detection. Anal Chem 2014; 86:2042-9. [DOI: 10.1021/ac4032516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramanathan Vaidyanathan
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Muhammad J. A. Shiddiky
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Sakandar Rauf
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Eloïse Dray
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Zhikai Tay
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner
College and Cooper Roads (Bldg 75), Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Samlowski WE, McGregor JR, Samlowski ST, Tharkar S, Shen S, Bentz JS. Growth of Circulating Tumor Cell-Derived Colonies from Peripheral Blood of Melanoma Patients: Preliminary Characterization of Colony Composition. Health (London) 2014. [DOI: 10.4236/health.2014.612181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Abstract
The metastatic dissemination and spread of malignant circulating tumor cells (CTCs) accounts for more than 90% of cancer-related deaths. CTCs detach from a primary tumor, travel through the circulatory system, and then invade and proliferate in distant organs. The detection of CTCs from blood has been established for prognostic monitoring and is predictive of patient outcome. Analysis of CTCs could enable the means for early detection and screening in cancer, as well as provide diagnostic access to tumor tissues in a minimally invasive way. The fundamental challenge with analyzing CTCs is the fact that they occur at extremely low concentrations in blood, on the order of one out of a billion cells. Various technologies have been proposed to isolate CTCs for enrichment. Here we focus on antigen-independent approaches that are not limited by specific capture antibodies. Intrinsic physical properties of CTCs, including cell size, deformability, and electrical properties, are reviewed, and technologies developed to exploit them for enrichment from blood are summarized. Physical enrichment technologies are of particular interest as they have the potential to increase yield and enable the analysis of rare CTC phenotypes that may not be otherwise obtained.
Collapse
Affiliation(s)
- Ramdane A. Harouaka
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| | - Merisa Nisic
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| |
Collapse
|
30
|
Maman S, Edry-Botzer L, Sagi-Assif O, Meshel T, Yuan W, Lu W, Witz IP. The metastatic microenvironment: lung-derived factors control the viability of neuroblastoma lung metastasis. Int J Cancer 2013; 133:2296-306. [PMID: 23649556 DOI: 10.1002/ijc.28255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022]
Abstract
Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978; Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | | | |
Collapse
|
31
|
Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog 2013; 53:1011-26. [PMID: 24000122 DOI: 10.1002/mc.22068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
Abstract
Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yekaterina B Khotskaya
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
32
|
Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ. Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv 2013; 31:1063-84. [PMID: 23999357 DOI: 10.1016/j.biotechadv.2013.08.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Efforts to improve the clinical management of several cancers include finding better methods for the quantitative and qualitative analysis of circulating tumor cells (CTCs). However, detection and isolation of CTCs from the blood circulation is not a trivial task given their scarcity and the lack of reliable markers to identify these cells. With a variety of emerging technologies, a thorough review of the exploited principles and techniques as well as the trends observed in the development of these technologies can assist researchers to recognize the potential improvements and alternative approaches. To help better understand the related biological concepts, a simplified framework explaining cancer formation and its spread to other organs as well as how CTCs contribute to this process has been presented first. Then, based on their basic working-principles, the existing methods for detection and isolation of CTCs have been classified and reviewed as nucleic acid-based, physical properties-based and antibody-based methods. The review of literature suggests that antibody-based methods, particularly in conjunction with a microfluidic lab-on-a-chip setting, offer the highest overall performance for detection and isolation of CTCs. Further biological and engineering-related research is required to improve the existing methods. These include finding more specific markers for CTCs as well as enhancing the throughput, sensitivity, and analytic functionality of current devices.
Collapse
Affiliation(s)
- Hadi Esmaeilsabzali
- School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102nd Avenue, Surrey, V3T 0A3, BC, Canada; Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada; School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada
| | | | | | | | | |
Collapse
|
33
|
Tang L, Zhao S, Liu W, Parchim NF, Huang J, Tang Y, Gan P, Zhong M. Diagnostic accuracy of circulating tumor cells detection in gastric cancer: systematic review and meta-analysis. BMC Cancer 2013; 13:314. [PMID: 23806209 PMCID: PMC3699416 DOI: 10.1186/1471-2407-13-314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/20/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) detection has previously been used for diagnosing gastric cancer. However, the previous studies failed to make an agreement whether the detection of CTCs contributes to the diagnosis of gastric cancer. METHODS A systematic review and meta-analysis was performed to evaluate the overall accuracy of CTCs detection for diagnosing gastric cancer. PubMed, Embase and the Wanfang database were searched in all languages published up to Oct 2012. The pooled sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR, respectively), diagnostic odds ratio (DOR) and summary receiver operating characteristic (sROC) curve were calculated to evaluate the overall test performance. RESULTS Twenty studies were included in this systematic review and meta-analysis. The diagnostic value of CTCs detection for the gastric cancer was calculated to evaluate the overall test performance. The summary estimates of The pooled sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio were 0.42 (95% confidence interval (CI), 0.21-0.67), 0.99 (95% CI, 0.96-1.00), 58.2 (95% CI, 9.8-345.9), 0.58 (95% CI, 0.38-0.89), and 100 (95% CI, 15-663), respectively. The summary receiver operating characteristic curve was 0.97 (95% CI, 0.95-0.98). Deek's funnel plot asymmetry test found no evidence of study publication bias in the current study (P = 0.49). CONCLUSION This systematic review suggests that CTCs detection alone cannot be recommended as a screening test for gastric cancer. However, it might be used as a noninvasive method for the confirmation of the gastric cancer diagnosis.
Collapse
Affiliation(s)
- Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cancer stem cells and their role in metastasis. Pharmacol Ther 2013; 138:285-93. [PMID: 23384596 DOI: 10.1016/j.pharmthera.2013.01.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), which comprise a small fraction of cancer cells, are believed to constitute the origin of most human tumors. Considerable effort has been focused on identifying CSCs in multiple tumor types and identifying genetic signatures that distinguish CSCs from normal tissue stem cells. Many studies also suggest that CSCs serve as the basis of metastases. Yet, experimental evidence that CSCs are the basis of disseminated metastases has lagged behind the conceptual construct of CSCs. Recent work, however, has demonstrated that CSCs may directly or indirectly contribute to the generation of metastasis. Moreover, CSC heterogeneity may be largely responsible for the considerable complexity and organ specificity of metastases. In this review, we discuss the role of CSCs in metastasis and their potential as therapeutic targets.
Collapse
|
35
|
Garcia-Villa A, Balasubramanian P, Miller BL, Lustberg MB, Ramaswamy B, Chalmers JJ. Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy. Front Oncol 2012; 2:128. [PMID: 23112954 PMCID: PMC3480704 DOI: 10.3389/fonc.2012.00128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/12/2012] [Indexed: 11/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are prognostic markers in a variety of solid tumor malignancies. The potential of CTCs to be used as a “liquid biopsy” to monitor a patient’s condition and predict drug response and resistance is currently under investigation. Using a negative depletion, enrichment methodology, CTCs isolated from the peripheral blood of breast cancer patients with stage IV breast cancer undergoing DNA damaging therapy with platinum-based therapy were enriched. The enriched cell suspensions were stained with an optimized labeling protocol targeting: nuclei, cytokeratins 8, 18, and 19, the surface marker CD45, and the presence of the protein γ-H2AX. As a direct or indirect result of platinum therapy, double-strand break of DNA initiates phosphorylation of the histone H2AX, at serine 139; this phosphorylated form is referred to as γ-H2AX. In addition to γ-H2AX staining in specific locations with the cell nuclei, consistent with previous reports and referred to as foci, more general staining in the cell cytoplasm was also observed in some cells suggesting the potential of cell apoptosis. Our study underscores the utility and the complexity of investigating CTCs as predictive markers of response to various therapies. Additional studies are ongoing to evaluate the diverse γ-H2AX staining patterns we report here which needs to be further correlated with patient outcomes.
Collapse
Affiliation(s)
- Alejandra Garcia-Villa
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tanaka T, Yui Y, Naka N, Wakamatsu T, Yoshioka K, Araki N, Yoshikawa H, Itoh K. Dynamic analysis of lung metastasis by mouse osteosarcoma LM8: VEGF is a candidate for anti-metastasis therapy. Clin Exp Metastasis 2012; 30:369-79. [PMID: 23076771 PMCID: PMC3616224 DOI: 10.1007/s10585-012-9543-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the prognosis depends on pulmonary metastases, which arise from multi-step progression of malignant tumors. We herein aimed to clarify the critical step of pulmonary metastasis using the syngeneic mouse spontaneous highly metastatic OS LM8 and parental Dunn cell lines, to identify new candidate molecules to suppress pulmonary metastasis. We first investigated the chronological detection of circulating tumor cells (CTCs) from mice with either cell line. LM8 CTCs appeared faster, at a higher rate and with a greater number compared to Dunn CTCs. Cultured cells from CTCs of LM8 showed higher proliferative ability than cells from the primary site in suspension culture, which mimicked the environment of the bloodstream for CTCs. The proliferative ability of LM8 cells was also higher than that of Dunn cells in 3D collagen culture with low stiffness (−150 Pa; close to conditions in the lung). We next focused on the extravasation step. LM8 showed higher migration ability compared to Dunn with transendothelial migration assay. We also found a disruption in endothelial barrier function throughout co-culture with LM8 using time-lapse imaging. In addition, LM8 secreted high levels of vascular endothelial growth factor (VEGF), while VEGF signal inhibition with a small molecule tyrosine kinase inhibitor (pazopanib) decreased disruption of the vascular barrier and transendothelial migration of LM8. Finally, daily oral administration of pazopanib reduced the rate and size of pulmonary metastasis in vivo. Collectively, these results show anti-VEGF therapy as a candidate for pulmonary metastasis of OS.
Collapse
Affiliation(s)
- Takaaki Tanaka
- Department of Biology, Osaka Medical Center of Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Verga Falzacappa MV, Ronchini C, Reavie LB, Pelicci PG. Regulation of self-renewal in normal and cancer stem cells. FEBS J 2012; 279:3559-3572. [PMID: 22846222 DOI: 10.1111/j.1742-4658.2012.08727.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mutations can confer a selective advantage on specific cells, enabling them to go through the multistep process that leads to malignant transformation. The cancer stem cell hypothesis postulates that only a small pool of low-cycling stem-like cells is necessary and sufficient to originate and develop the disease. Normal and cancer stem cells share important functional similarities such as 'self-renewal' and differentiation potential. However, normal and cancer stem cells have different biological behaviours, mainly because of a profound deregulation of self-renewal capability in cancer stem cells. Differences in mode of division, cell-cycle properties, replicative potential and handling of DNA damage, in addition to the activation/inactivation of cancer-specific molecular pathways confer on cancer stem cells a malignant phenotype. In the last decade, much effort has been devoted to unravel the complex dynamics underlying cancer stem cell-specific characteristics. However, further studies are required to identify cancer stem cell-specific markers and targets that can help to confirm the cancer stem cell hypothesis and develop novel cancer stem cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Maria V Verga Falzacappa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Chiara Ronchini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Linsey B Reavie
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Pier G Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
38
|
Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Rüegg C. Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 2012; 22:174-86. [PMID: 22374376 DOI: 10.1016/j.semcancer.2012.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 12/11/2022]
Abstract
The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accurate description of the cellular and molecular mechanisms that underlie this multistep process would greatly facilitate the rational development of therapies that effectively allow metastatic disease to be controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have been suggested to explain various aspects of the process, and no single concept explains the mechanism of metastasis in its entirety or encompasses all observations and experimental findings. The exciting progress made in metastasis research in recent years has refined existing ideas, as well as giving rise to new ones. In this review we survey some of the main theories that currently exist in the field, and show that significant convergence is emerging, allowing a synthesis of several models to give a more comprehensive overview of the process of metastasis. As a result we postulate a stromal progression model of metastasis. In this model, progressive modification of the tumor microenvironment is equally as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions. Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminating tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic changes, as well as progressive development of a metastatic stroma. Although this model brings together many ideas in the field, there remain nevertheless a number of major open questions, underscoring the need for further research to fully understand metastasis, and thereby identify new and effective ways of treating metastatic disease.
Collapse
Affiliation(s)
- Jonathan P Sleeman
- Universitätsmedizin Mannheim, University of Heidelberg, Centre for Biomedicine and Medical Technology Mannheim (CBTM), TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Danova M, Torchio M, Mazzini G. Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications. Expert Rev Mol Diagn 2012; 11:473-85. [PMID: 21707456 DOI: 10.1586/erm.11.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circulating tumor cells (CTCs) may be detected in the blood of patients with epithelial tumors using different analytical approaches. The relative number of CTCs is low and they include a heterogeneous population of cells with diverse biological and molecular characteristics, often different from those of the respective primary tumor. Until recently, they have been difficult to detect and, even though discordant results have been reported when different methods of detection were used, they may provide prognostic and predictive information. Several antibody- or molecular-based CTC detection methods have been developed, offering hope for individualized risk assessment by utilizing CTCs as biomarkers of disease progression and drug response. Pilot studies have also shown that by utilizing methods that permit, besides enumeration, a molecular characterization of CTCs, one could better identify high-risk patients, predict response to targeted therapies, analyze gene expression profiles (in order to identify new potential drug targets) and increase our knowledge of the metastatic process. In this article we review the techniques currently utilized for isolation and characterization of CTCs and we discuss their potential utility in clinical oncology focusing on the future perspectives in this field.
Collapse
Affiliation(s)
- Marco Danova
- Internal Medicine and Medical Oncology, Ospedale Civile di Vigevano, Corso Milano,Vigevano (Pavia), Italy.
| | | | | |
Collapse
|
40
|
Lustberg M, Jatana KR, Zborowski M, Chalmers JJ. Emerging technologies for CTC detection based on depletion of normal cells. Recent Results Cancer Res 2012; 195:97-110. [PMID: 22527498 PMCID: PMC3775349 DOI: 10.1007/978-3-642-28160-0_9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Properly conducted, an enrichment step can improve selectivity, sensitivity, yield, and most importantly, significantly reduce the time needed to isolate rare circulating tumor cells (CTCs). The enrichment process can be broadly categorized as positive selection versus negative depletion, or in some cases, a combination of both. We have developed a negative depletion CTC enrichment strategy that relies on the removal of normal cells using immunomagnetic separation in the blood of cancer patients. This method is based on the combination of magnetic and fluid forces in an axial, laminar flow in long cylinders placed in quadrupole magnets. Using this technology, we have successfully isolated CTCs from patients with breast carcinoma and squamous cell carcinoma of the head and neck. In contrast to a positive selection methodology, this approach provides an unbiased characterization of these cells, including markers associated with epithelial mesenchymal transition.
Collapse
Affiliation(s)
- Maryam Lustberg
- Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - Kris R. Jatana
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey J. Chalmers
- Professor William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Alix-Panabières C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res 2012; 195:69-76. [PMID: 22527495 DOI: 10.1007/978-3-642-28160-0_6] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enumeration and characterization of circulating tumor cells (CTCs) in the peripheral blood and disseminated tumor cells (DTCs) in bone marrow may provide important prognostic information and might help to monitor efficacy of therapy. Since current assays cannot distinguish between apoptotic and viable DTCs/CTCs, it is now possible to apply a novel ELISPOT assay (designated 'EPISPOT') that detects proteins secreted/released/shed from single epithelial cancer cells. Cells are cultured for a short time on a membrane coated with antibodies that capture the secreted/released/shed proteins which are subsequently detected by secondary antibodies labeled with fluorochromes. In breast cancer, we measured the release of cytokeratin-19 (CK19) and mucin-1 (MUC1) and demonstrated that many patients harbored viable DTCs, even in patients with apparently localized tumors (stage M(0): 54%). Preliminary clinical data showed that patients with DTC-releasing CK19 have an unfavorable outcome. We also studied CTCs or CK19-secreting cells in the peripheral blood of M1 breast cancer patients and showed that patients with CK19-SC had a worse clinical outcome. In prostate cancer, we used prostate-specific antigen (PSA) secretion as marker and found that a significant fraction of CTCs secreted fibroblast growth factor-2 (FGF2), a known stem cell growth factor. In conclusion, the EPISPOT assay offers a new opportunity to detect and characterize viable DTCs/CTCs in cancer patients and it can be extended to a multi-parameter analysis revealing a CTC/DTC protein fingerprint.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, Saint-Eloi Hospital, University Medical Centre, Institute of Research in Biotherapy, University Montpellier 1, Montpellier, France.
| |
Collapse
|
42
|
Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, Wilber A, Watabe K. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 2011; 208:2641-55. [PMID: 22124112 PMCID: PMC3244043 DOI: 10.1084/jem.20110840] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/01/2011] [Indexed: 12/20/2022] Open
Abstract
Metastatic disease is the major cause of cancer deaths, and recurrent tumors at distant organs are a critical issue. However, how metastatic tumor cells become dormant and how and why tumors recur in target organs are not well understood. In this study, we demonstrate that BMP7 (bone morphogenetic protein 7) secreted from bone stromal cells induces senescence in prostate cancer stem-like cells (CSCs) by activating p38 mitogen-activated protein kinase and increasing expression of the cell cycle inhibitor, p21, and the metastasis suppressor gene, NDRG1 (N-myc downstream-regulated gene 1). This effect of BMP7 depended on BMPR2 (BMP receptor 2), and BMPR2 expression inversely correlated with recurrence and bone metastasis in prostate cancer patients. Importantly, this BMP7-induced senescence in CSCs was reversible upon withdrawal of BMP7. Furthermore, treatment of mice with BMP7 significantly suppressed the growth of CSCs in bone, whereas the withdrawal of BMP7 restarted growth of these cells. These results suggest that the BMP7-BMPR2-p38-NDRG1 axis plays a critical role in dormancy and recurrence of prostate CSCs in bone and suggest a potential therapeutic utility of BMP7 for recurrent metastatic disease.
Collapse
Affiliation(s)
- Aya Kobayashi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Hiroshi Okuda
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Fei Xing
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Puspa R. Pandey
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Misako Watabe
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Shigeru Hirota
- Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Sudha K. Pai
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Wen Liu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Koji Fukuda
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Christopher Chambers
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| | - Kounosuke Watabe
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 19626
| |
Collapse
|
43
|
Paterlini-Bréchot P. Organ-specific markers in circulating tumor cell screening: an early indicator of metastasis-capable malignancy. Future Oncol 2011; 7:849-71. [PMID: 21732757 DOI: 10.2217/fon.11.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) represent an important biological link in the spread of primary solid tumors to the metastatic disease responsible for most cancer mortality. Their detection in the peripheral blood of patients with many different carcinomas has shown that tumor-cell dissemination can proceed at an early stage of tumor development and their presence is associated with poor clinical outcomes, particularly in metastatic disease. In this article we describe how the increasingly sensitive isolation and detailed molecular characterization of CTCs has greatly improved our understanding of metastatic proliferation. We focus on how CTC detection and knowledge of the molecular architecture of these cells can serve as biomarkers to signal metastasis-capable disseminating cells and predict therapy-specific response. This has marked clinical utility for improved selection of systemic therapies to the individual needs of a cancer patient, real-time monitoring of metastatic disease treatments and the development of new targeted therapies.
Collapse
|
44
|
Doyen J, Alix-Panabières C, Hofman P, Parks SK, Chamorey E, Naman H, Hannoun-Lévi JM. Circulating tumor cells in prostate cancer: a potential surrogate marker of survival. Crit Rev Oncol Hematol 2011; 81:241-56. [PMID: 21680196 DOI: 10.1016/j.critrevonc.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023] Open
Abstract
Prostate-specific antigen (PSA) levels in blood are widely used in prostate cancer (PCa) for the management of this disease at every stage of progression. Currently, PSA levels combined with clinical stage and Gleason score provide the best predictor of survival and the main element to monitor treatment efficiency. However, these areas could be improved by utilizing emerging biomarkers. Recently, circulating tumor cells (CTCs) and disseminating tumor cells (DTCs) have been detected in PCa and may be a new surrogate candidate. Here we provide a systematic review of the literature in order to describe the current evidence of CTC/DTC surrogacy regarding outcome of prostate cancer patients. We also discuss several markers that could be used to increase the sensitivity and specificity of CTC/DTC detection. CTC/DTC detection is performed using a wide variety of techniques. Initially, reverse transcriptase polymerase chain reaction (RT-PCR) based methods were utilized with weak correlation between their positive detection and patients' outcome. More recent immunological techniques have indicated a reproducible correlation with outcome. Such surrogate markers may enable clinicians to provide early detection for inefficient treatments and patients with poor prognosis that are candidates for treatment intensification. Dissecting the micrometastasis phenomenon in CTCs/DTCs is a key point to increase surrogacy of this biomarker.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Edry Botzer L, Maman S, Sagi-Assif O, Meshel T, Nevo I, Bäuerle T, Yron I, Witz IP. Lung-residing metastatic and dormant neuroblastoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:524-36. [PMID: 21703429 DOI: 10.1016/j.ajpath.2011.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/24/2011] [Accepted: 03/29/2011] [Indexed: 12/30/2022]
Abstract
The mechanism by which dormant tumor cells can begin growing after long periods of inactivity and accelerate disease recurrence is poorly understood. The present study characterizes dormant neuroblastoma (NB) cells, as well as metastatic cells, which reside in the same organ microenvironment. A xenograft model of human NB consisting of variants that generate nonmetastatic local tumors in the orthotopic inoculation site and variants that generate lung metastatic NB (MetNB) cells was developed in our laboratory. The present study shows that lungs of mice inoculated with nonmetastatic NB variants contain disseminated neuroblastoma (DisNB) human cells. Both DisNB and MetNB variants expressed a similar tumorigenicty phenotype in vivo, whereas the MetNB variants produced a heavy metastatic load and the DisNB variants produced no or little metastasis. A comparative in vitro characterization of MetNB and DisNB cells revealed similarities and differences. DisNB, but not MetNB cells, expressed the minimal residual disease markers PHOX2B and TH. MetNB cells demonstrated higher migratory capacity, an elevated matrix metalloproteinase (MMP) secretion, and a higher constitutive phosphorylation of extracellular signal-regulated kinase (ERK) than DisNB cells. We suggest that characteristics common to both MetNB and DisNB cells were acquired relatively early in the metastatic process and the characteristics that differ between these variants were acquired later. We hypothesize that the DisNB cells are metastasis precursors, which may progress toward metastasis under certain microenvironmental conditions.
Collapse
Affiliation(s)
- Liat Edry Botzer
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nezos A, Msaouel P, Pissimissis N, Lembessis P, Sourla A, Armakolas A, Gogas H, Stratigos AJ, Katsambas AD, Koutsilieris M. Methods of detection of circulating melanoma cells: a comparative overview. Cancer Treat Rev 2010; 37:284-90. [PMID: 21106295 DOI: 10.1016/j.ctrv.2010.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 02/07/2023]
Abstract
Disease dissemination is the major cause of melanoma-related death. A crucial step in the metastatic process is the intravascular invasion and circulation of melanoma cells in the bloodstream with subsequent development of distant micrometastases that is initially clinically undetectable and will eventually progress into clinically apparent metastasis. Therefore, the use of molecular methods to detect circulating melanoma cells may be of value in risk stratification and clinical management of such patients. Herein, we review the currently applied techniques for the detection, isolation, enrichment and further characterization of circulating melanoma cells from peripheral blood samples in melanoma patients. Furthermore, we provide a brief overview of the various molecular markers currently being evaluated as prognostic indicators of melanoma progression.
Collapse
Affiliation(s)
- Andrianos Nezos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias str., Goudi-Athens 115 27, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Richard V, Pillai MR. The stem cell code in oral epithelial tumorigenesis: 'the cancer stem cell shift hypothesis'. Biochim Biophys Acta Rev Cancer 2010; 1806:146-62. [PMID: 20599480 DOI: 10.1016/j.bbcan.2010.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/21/2010] [Accepted: 06/27/2010] [Indexed: 12/21/2022]
Abstract
Tumors of the oral cavity provide an ideal model to study various stages of epithelial tumor progression. A group of cancer cells termed cancer stem cells (CSCs) eludes therapy, persists and initiates recurrence augmenting malignant spread of the disease. Hitherto, accurate identification and separation of such minimal residual cells have proven futile due to lack of identifiable traits to single out these cells from the heterogeneous tumor bulk. In this review we have compiled comprehensive evidence from comparative phenotypic and genotypic studies on normal oral mucosa as well as tumors of different grades to elucidate that differential expression patterns of putative stem cells markers may identify 'minimal residual disease' in oral squamous cell carcinoma. We propose the "cancer stem cell shift hypothesis" to explain the exact identity and switch-over, tumor-promoting mechanisms adapted by putative CSCs with correlation to tumor staging.
Collapse
Affiliation(s)
- Vinitha Richard
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | | |
Collapse
|
48
|
Müller V, Alix-Panabières C, Pantel K. Insights into minimal residual disease in cancer patients: Implications for anti-cancer therapies. Eur J Cancer 2010; 46:1189-97. [DOI: 10.1016/j.ejca.2010.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/23/2010] [Indexed: 01/13/2023]
|
49
|
Abstract
The heterogeneous behavior of cells within a cell population makes measurements at the multicellular level insensitive to changes in single cells. Single-cell and single-nucleus analyses are therefore important to address this deficiency which will aid in the understanding of fundamental biology at both the cellular and subcellular levels. Recent technological advancements have enabled the development of new methodologies capable of handling these new challenges. This review highlights various techniques used in single-cell and single-nucleus manipulation and isolation. In particular, the applications related to microfluidics, electrical, optical, and physical methods will be discussed. Ultimately, it is hoped that these techniques will enable fundamental tests to be conducted on single cells and nuclei. One important potential outcome is that this will contribute not only towards detection and isolation of diseased cells but also more accurate diagnosis and prognosis of human diseases.
Collapse
Affiliation(s)
- Swee Jin Tan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | | | | |
Collapse
|
50
|
Kim SI, Jung HI. Circulating Tumor Cells: Detection Methods and Potential Clinical Application in Breast Cancer. J Breast Cancer 2010. [DOI: 10.4048/jbc.2010.13.2.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo-il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|