1
|
Hasebe R, Tanaka H, Yamasaki T, Murakami K, Murakami M. Neural signaling in immunology: the gateway reflex. Int Immunol 2025; 37:369-377. [PMID: 40156845 DOI: 10.1093/intimm/dxaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/26/2025] [Indexed: 04/01/2025] Open
Abstract
Neural signaling regulates various reactions in our body including immune responses. Neuromodulation of this signaling using artificial neural activation and/or suppression is a potential treatment for diseases and disorders. We here review neural signaling regulating the immune system, with a special focus on the gateway reflex. The gateway reflex is a novel neuro-immune crosstalk mechanism that regulates tissue-specific inflammatory diseases. We have discovered six gateway reflexes so far; all are induced by environmental or artificial stimulations including gravity, electrical stimulation, pain sensation, stress, light, and inflammation in joints. In the presence of increased autoreactive T cells in the blood, such stimulation activates specific neural signaling to release noradrenaline (NA) from the nerve endings at specific blood vessels in the central nervous system. NA activates the interleukin-6 (IL-6) amplifier, which leads to the hyper-activation of nuclear factor-kappa B (NF-κB) in non-immune cells, resulting in the formation of a gateway. This gateway allows autoreactive T cells and other immune cells to accumulate in the target tissue to induce inflammatory diseases. In gateway reflexes induced by stress or remote inflammation, adenosine triphosphate (ATP) secreted from inflammation sites activates specific neural pathways, resulting in organ dysfunction and inflammation in other tissues, suggesting that the gateway reflex regulates tissue-specific inflammatory diseases by bidirectional crosstalk between the neural and immune systems. We also discuss other cases of neural signaling including the inflammatory reflex.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, Okazaki 444-0855, Japan
| | - Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, and Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, Okazaki 444-0855, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, and Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Masaaki Murakami
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, Okazaki 444-0855, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, and Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Group of Quantum Immunology, Institute for Quantum Life Sciences, National Institute for Quantum and Radiological Science and Technology, Inage-ku 263-8555, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Chen F, Ye W, Wang Q, Zhao L, Liang M, Zheng S, Zhao T, Xuan D, Zhu Z, Yu Y, Kong N, Jiang L, Yang X, Zhu X, Wan W, Zou H, Xue Y. BAricitinib in patients with SystemIC Sclerosis (BASICS): a prospective, open-label, randomised trial. Clin Rheumatol 2025:10.1007/s10067-025-07433-9. [PMID: 40381085 DOI: 10.1007/s10067-025-07433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND AND AIMS Despite advances in approaches to treatment for patients with systemic sclerosis (SSc), the effects have been modest at best. This investigator-initiated study aimed to evaluate the therapeutic benefit, safety and the genetic characteristics related to effect of baricitinib in SSc. METHODS In this 24-week study, eligible SSc patients were randomised to baricitinib 4 mg, 2 mg or control group. The primary outcome was the change in modified Rodnan skin score (mRSS) from baseline to week 12. Secondary outcomes included changes in the American College of Rheumatology Combined Response Index in Systemic Sclerosis (ACR-CRISS) score, forced vital capacity (FVC), Systemic Sclerosis Score, tender and swollen joint counts, digital ulcers, EQ5D (EuroQol five-dimensions) and safety at week 12 and 24. Transcriptome differences in blood samples from patients before and after baricitinib treatment were compared. Gene Ontology enrichment analysis was performed to identify potential biological functions and canonical pathways. RESULTS Between April 2021 to January 2022, 48 patients were randomly assigned to three groups. Mean change in mRSS score from baseline to week 12 was - 8.9 in 4 mg group, - 3.8 in 2 mg group, and - 3.6 in control group (P = 0.019). At week 12, the ACR-CRISS scores were 0.5 and 0.3 in baricitinib 4 mg and 2 mg group, as compared with 0.2 among those in control group (P = 0.171). FVC (%), digital ulcers and EQ5D in 4 mg baricitinib group showed favorable responses over 24 weeks. There were no significant differences in adverse events among groups. The differentially expressed genes (DEGs) identified in our analysis were significantly enriched in gene ontology (GO) terms related to the positive regulation of cytokine production, immune response-activating signaling pathway, and activation of immune response pathway. Interleukin- 1 Receptor Like 1 (IL- 1RL1 or ST2) and synaptotagmin- 17 (SYT17) were downregulated and upregulated respectively, after baricitinib treatment. CONCLUSIONS The therapy with baricitinib 4 mg appeared to improve mRSS of SSc patients, probably by influencing mechanisms of immune inflammation, and had an acceptable safety profile. This study paves the way for further investigations into Janus kinase (JAK) 1/2 inhibition with baricitinib as a prospective treatment for SSc. Key Points • The baricitinib 4 mg seems to improve clinical outcomes of SSc patients with safety profiles. • The mechanism of JAK inhibitors has been confirmed to be related to anti-inflammatory pathways and molecules in clinical samples.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Qian Wang
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Li Zhao
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Minrui Liang
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Shucong Zheng
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Tianyi Zhao
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Dandan Xuan
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Zaihua Zhu
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Yiyun Yu
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Ning Kong
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Li Jiang
- International Network of Scleroderma Clinic and Research, Shandong, China
- Department of Rheumatology, Linyi People's Hospital, Shandong, China
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- International Network of Scleroderma Clinic and Research, Shandong, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
- International Network of Scleroderma Clinic and Research, Shandong, China.
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
- International Network of Scleroderma Clinic and Research, Shandong, China.
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, No. 12, Middle Urumqi Road, Jing'an District, Shanghai, 200000, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
- International Network of Scleroderma Clinic and Research, Shandong, China.
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Zou AE, Kongthong S, Mueller AA, Brenner MB. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 2025:10.1038/s41584-025-01259-0. [PMID: 40369134 DOI: 10.1038/s41584-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.
Collapse
Affiliation(s)
- Angela E Zou
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alisa A Mueller
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA and Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ibrahim N, Alsadi N, Yasavoli-Sharahi H, Shahbazi R, Hebbo MJ, Kambli D, Balcells F, Matar C. Berberine Inhibits Breast Cancer Stem Cell Development and Decreases Inflammation: Involvement of miRNAs and IL-6. Curr Dev Nutr 2025; 9:104532. [PMID: 39896297 PMCID: PMC11786844 DOI: 10.1016/j.cdnut.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background Breast cancer (BC) is a health concern worldwide and is often accompanied by depressive symptoms in patients. In BC, elevated interleukin-6 (IL-6) levels contribute to an inflammatory signature linked to cancer stem cell (CSC) stemness and depressive behaviors. Bioactive food components, such as berberine (BBR), have preventative effects against BC by targeting CSCs. Objectives This study aimed to investigate the effects of BBR on breast CSC proliferation, on levels of specific micro (mi)RNAs and IL-6 in vitro and in vivo, and in alleviating depressive-like behaviors in mice with BC. Methods Mammosphere formation assays were conducted by treating murine 4T1 and human MDA-MB-231 BC cell lines with BBR. qPCR analysis of miRNAs miR-let-7c and miR-34a-5p was performed on 4T1 CSCs exposed to BBR. BBR was administered orally to female BALB/c, followed by injection with mammary carcinoma cells to induce BC. Behavioral tests were conducted to assess depressive-like behaviors. Tumor tissues were collected for ex vivo mammosphere assays, miRNA expression analysis, and IL-6 detection by ELISA. Serum was also collected for IL-6 analysis. Results BBR treatment inhibited mammosphere formation and proliferation of CSCs derived from 4T1 and MDA-MB-231 cell lines. Quantification of mammosphere formation showed a significant decrease in both cell lines at 75 μM BBR (4T1: P < 0.001; MDA-MB-231: P < 0.0001). BBR upregulated the expression of miRNAs miR-let-7c and miR-34a in both cell lines, with miR-34a showing a significant increase (P < 0.001) and let-7c showing a significant increase (P < 0.05) in expression. In vivo, oral administration of BBR reduced mammosphere formation in breast tumor tissues (P < 0.0001) and elevated expression of miR-145 and miR-34a, with both showing significant upregulation (P < 0.0001), indicating its potential tumor-suppressive effects. BBR treatment resulted in a significant decrease in serum IL-6 levels (P < 0.05), suggesting anti-inflammatory properties, while the IL-6 in tumor tissue did not show significant changes (P > 0.05). However, no significant differences were observed in depressive-like behaviors between control and treatment groups. Conclusions BBR may have the potential to be used as an "Epi-Natural Compound" to prevent cancer by reducing inflammation and affecting epigenetics.
Collapse
Affiliation(s)
- Nour Ibrahim
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nawal Alsadi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roghayeh Shahbazi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Joe Hebbo
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Darshan Kambli
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Florencia Balcells
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal Matar
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
6
|
Akhil A, Bansal R, Kaushal J, Sharma A, Bhatnagar A. Investigating potential biomarkers and therapeutic targets for patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) through the utilization of cytokine profiling. REUMATOLOGIA CLINICA 2025; 21:101805. [PMID: 39894627 DOI: 10.1016/j.reumae.2025.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/10/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVES Examining cytokine profile complexities in chronic autoimmune disorders holds significant clinical importance. In order to address the similarities and differences related to SLE and RA, it was necessary to evaluate their cytokine chemokine profiles. Such analyses would give pointers towards differences, leading thereby to explore the potential of cytokines/chemokines as biomarkers. The study was therefore driven by the concept of understanding the major differences at this level with a hope of contribution towards diagnostics/theranostics. A multiplex study was carried out on systemic autoimmune disorders, such as SLE and RA, analysing forty analytes in comparison with healthy controls. METHODOLOGY Age and sex matched healthy donors and patients (n=38) were recruited and plasma cytokine profiling was done by Bio-plex multiplex immunoassay system. RESULTS A comparison with healthy volunteers revealed differential alteration in various chemokines in SLE and RA, respectively. Protein interaction analysis identified a core complex of chemokines (CXCL10, CCL5, CXCL12, CXCL9, CXCL1, and CXCL27) as central modulators, suggesting their potential as biomarkers. Drug prediction using the DSigDB database identified acetovanillone as a potential drug against this core complex. In comparing lupus patients with or without arthritis comorbidity, elevated levels of cytokines: IL-12, SCF, and TNF-a were prominently associated with arthritis in SLE. TNF-a emerged as a potential indicator specifically for arthritis. CONCLUSION This study enhances our understanding of the complex interplay of cytokine/chemokine in these systemic conditions and suggests their utility as targets and diagnostic paradigms for detection.
Collapse
Affiliation(s)
- Akhil Akhil
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014, India
| | - Rohit Bansal
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014, India
| | - Jyotsana Kaushal
- Center for Infectious Medicine, Karolinska Institute, Solnavägen 1, Solna, Sweden
| | - Aman Sharma
- Department of Internal Medicine, PGIMER, Chandigarh 160012, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
7
|
Saito M, Shimazaki Y, Nonoyama T, Inamoto Y. Influence of Type of Dental Visit on the Incidence of COVID-19 and Related Hospitalisation Among Older People in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1668. [PMID: 39767507 PMCID: PMC11675385 DOI: 10.3390/ijerph21121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
In 2020, the coronavirus disease 2019 (COVID-19) pandemic began worldwide. We examined the association between dental visit status and the incidence of COVID-19 and hospitalisation for it among older people based on medical claims data to help reduce COVID-19 severity. The study included 170,232 people who were 75-85 years old in fiscal 2019, with fiscal 2020 and 2021 serving as the follow-up period to ascertain the status of COVID-19. Using medical claims data, we investigated four types of dental visit (no visit, only periodontal treatment, periodontal and other treatment, and only other treatment) during fiscal 2019 and the incidence of COVID-19 and hospitalisation for COVID-19 during the follow-up period. Logistic regression analyses were performed with the incidence of COVID-19 and hospitalisation for COVID-19 as the dependent variables. Of the participants, 3206 (1.9%) developed COVID-19, of whom, 559 (17.4%) were hospitalised. There was not a significant association between the incidence of COVID-19 and type of dental visit. Participants with dental visits for periodontal treatment during the baseline year had a significantly lower odds ratio (OR) for hospitalisation due to COVID-19 compared to those without dental visits (OR: 0.71, 95% confidence interval: 0.58-0.78). The results suggest that dental visits for periodontal treatment including maintenance are important not only for maintaining oral health but also for preventing severe COVID-19.
Collapse
Affiliation(s)
- Mizuki Saito
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; (M.S.); (T.N.)
| | - Yoshihiro Shimazaki
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; (M.S.); (T.N.)
| | - Toshiya Nonoyama
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; (M.S.); (T.N.)
| | | |
Collapse
|
8
|
Jairath V, Acosta Felquer ML, Cho RJ. IL-23 inhibition for chronic inflammatory disease. Lancet 2024; 404:1679-1692. [PMID: 39461795 DOI: 10.1016/s0140-6736(24)01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Biological monoclonal antibody drugs inhibit overactive cytokine signalling that drives chronic inflammatory disease in different organ systems. In the last 10 years, interleukin (IL)-23 inhibitors have attained an important position in the treatment of psoriatic skin and joint disease as well as inflammatory bowel diseases. Addressing an upstream pathological mechanism shared between these disorders, this drug class has high efficacy rates and a durable response that extends dosing intervals up to 3 months. Pooled clinical trial data show objective disease improvement for more than 70% of patients with psoriasis and up to 50% of patients with inflammatory bowel disease. The first antibody inhibitor for IL-23A targeted a p40 subunit shared with IL-12. Subsequently, even greater improvement was established for inhibitors of the p19 protein unique to IL-23A. IL-23 p19 inhibitors elicit clinical response in both bio-naive and bio-exposed patients and show superiority to tumour necrosis factor α inhibitors in plaque psoriasis. Reported differences in efficacy between p19 inhibitors suggest that individual drug action might be modulated by antibody affinity. Although long-term safety data are accumulating, rates of serious adverse events and infections for interleukin (IL)-23 inhibitors are similar to the rates for placebo across approved indications.
Collapse
Affiliation(s)
- Vipul Jairath
- Departments of Medicine, Division of Gastroenterology, Western University, Ontario, ON, Canada
| | - Maria Laura Acosta Felquer
- Rheumatology Unit, Internal Medicine Service, Hospital Italiano de Buenos Aires and Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Raymond Jaihyun Cho
- Department of Dermatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Chen JY, Li YF, Zhou Z, Jiang XM, Bi X, Yang MF, Zhao B. De novo mutations promote inflammation in children with STAT3 gain-of-function syndrome by affecting IL-1β expression. Int Immunopharmacol 2024; 140:112755. [PMID: 39098225 DOI: 10.1016/j.intimp.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
STAT3 gain-of-function syndrome, characterized by early-onset autoimmunity and primary immune regulatory disorder, remains poorly understood in terms of its immunological mechanisms. We employed whole-genome sequencing of familial trios to elucidate the pivotal role of de novo mutations in genetic diseases. We identified 37 high-risk pathogenic loci affecting 23 genes, including a novel STAT3 c.508G>A mutation. We also observed significant down-regulation of pathogenic genes in affected individuals, potentially associated with inflammatory responses regulated by PTPN14 via miR378c. These findings enhance our understanding of the pathogenesis of STAT3 gain-of-function syndrome and suggest potential therapeutic strategies. Notably, combined JAK inhibitors and IL-6R antagonists may offer promising treatment avenues for mitigating the severity of STAT3 gain-of-function syndrome.
Collapse
Affiliation(s)
- Ji-Yu Chen
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yan-Fang Li
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Zhu Zhou
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Yunnan Clinical Medical Research Center of Chronic Kidney Disease, Kunming 650032, Yunnan, China
| | - Xue-Mei Jiang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xin Bi
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Mi-Feng Yang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Bo Zhao
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| |
Collapse
|
10
|
Campbell C, Mayatra JM, Neve AJ, Fletcher JM, Johnston DGW. Inflammasomes: emerging therapeutic targets in hidradenitis suppurativa? Br J Dermatol 2024; 191:670-679. [PMID: 38913409 DOI: 10.1093/bjd/ljae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent inflammatory lesions, which affect skin and hair follicles in intertriginous areas. HS has a multifactorial aetiology resulting in barrier dysfunction associated with aberrant immune activation. There is increased evidence for the role of inflammasomes in the pathophysiology of inflammatory skin diseases, including HS. Inflammasomes are multiprotein complexes activated following exposure to danger signals, including microbial ligands and components of damaged host cells. Inflammasome activation induces many signalling cascades and subsequent cleavage of proinflammatory cytokines - most notably interleukin (IL)-1β - which have a role in HS pathogenesis. Limited immunotherapies are approved for treating moderate-to-severe HS, with variable response rates influenced by disease heterogeneity. Inflammasomes represent attractive targets to suppress multiple inflammatory pathways in HS, including IL-1β and IL-17. This review aims to summarize the role of inflammasomes in HS and to evaluate evidence for inflammasomes as therapeutic targets for HS treatment.
Collapse
Affiliation(s)
- Ciara Campbell
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Jay M Mayatra
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Ashish J Neve
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Daniel G W Johnston
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Ghasemi Noghabi P, Shahini N, Salimi Z, Ghorbani S, Bagheri Y, Derakhshanpour F. Elevated serum IL-17 A and CCL20 levels as potential biomarkers in major psychotic disorders: a case-control study. BMC Psychiatry 2024; 24:677. [PMID: 39394574 PMCID: PMC11468266 DOI: 10.1186/s12888-024-06032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Major psychotic disorders (MPD), including schizophrenia (SCZ) and schizoaffective disorder (SAD), are severe neuropsychiatric conditions with unclear causes. Understanding their pathophysiology is essential for better diagnosis, treatment, and prognosis. Recent research highlights the role of inflammation and the immune system, particularly the Interleukin 17 (IL-17) family, in these disorders. Elevated IL-17 levels have been found in MPD, and human IL-17 A antibodies are available. Changes in chemokine levels, such as CCL20, are also noted in SCZ. This study investigates the relationship between serum levels of IL-17 A and CCL20 in MPD patients and their clinical characteristics. METHOD We conducted a case-control study at the Ibn Sina Psychiatric Hospital (Mashhad, Iran) in 2023. The study involved 101 participants, of which 71 were MPD patients and 30 were healthy controls (HC). The Positive and Negative Symptom Scale (PANSS) was utilized to assess the symptoms of MPD patients. Serum levels of CCL20 and IL-17 A were measured using Enzyme-Linked Immunosorbent Assay (ELISA) kits. We also gathered data on lipid profiles and Fasting Blood Glucose (FBS). RESULTS The mean age of patients was 41.04 ± 9.93 years. The median serum levels of CCL20 and IL-17 A were significantly elevated in MPD patients compared to HC (5.8 (4.1-15.3) pg/mL and 4.2 (3-5) pg/mL, respectively; p < 0.001). Furthermore, CCL20 and IL-17 A levels showed a positive correlation with the severity of MPD. MPD patients also had significantly higher FBS, cholesterol, and Low-Density Lipoprotein (LDL) levels, and lower High-Density Lipoprotein (HDL) levels compared to HC. No significant relationship was found between PANSS components and blood levels of IL17 and CCL20. CONCLUSION The current study revealed that the serum levels of IL-17 A and CCL20 in schizophrenia patients are higher than those in the control group. Metabolic factors such as FBS, cholesterol, HDL, and LDL also showed significant differences between MPD and HC. In conclusion, the findings suggest that these two inflammatory factors could serve as potential therapeutic targets and prognostic biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Parisa Ghasemi Noghabi
- Department of Psychiatry, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Najmeh Shahini
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran
| | - Zanireh Salimi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Ghorbani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), Agh ghala Hospital, Golestan University of Medical Sciences, Gorgan, Iran.
- Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Firoozeh Derakhshanpour
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
12
|
Xue Y, Zhang L, Chu L, Song Z, Zhang B, Su X, Liu W, Li X. JAK2/STAT3 Pathway Inhibition by AG490 Ameliorates Experimental Autoimmune Encephalomyelitis via Regulation of Th17 Cells and Autophagy. Neuroscience 2024; 552:65-75. [PMID: 38885894 DOI: 10.1016/j.neuroscience.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lifang Chu
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhe Song
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bing Zhang
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Wanhu Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China.
| |
Collapse
|
13
|
Habelrih T, Augustin TL, Mauffette-Whyte F, Ferri B, Sawaya K, Côté F, Gallant M, Olson DM, Chemtob S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev 2024; 78:50-63. [PMID: 39048393 DOI: 10.1016/j.cytogfr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Thalyssa-Lyn Augustin
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Félix Mauffette-Whyte
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Béatrice Ferri
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kevin Sawaya
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada; Programmes de cycles supérieurs en sciences biomédicales, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - France Côté
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mathilde Gallant
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
14
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Furukawa R, Kuwatani M, Jiang JJ, Tanaka Y, Hasebe R, Murakami K, Tanaka K, Hirata N, Ohki I, Takahashi I, Yamasaki T, Shinohara Y, Nozawa S, Hojyo S, Kubota SI, Hashimoto S, Hirano S, Sakamoto N, Murakami M. GGT1 is a SNP eQTL gene involved in STAT3 activation and associated with the development of Post-ERCP pancreatitis. Sci Rep 2024; 14:12224. [PMID: 38806529 PMCID: PMC11133343 DOI: 10.1038/s41598-024-60312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Yuki Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Kumiko Tanaka
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Noriyuki Hirata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Izuru Ohki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Shunichiro Nozawa
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Quantum Immunology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
Zhu HTL, Luo J, Peng Y, Cheng XF, Wu SZ, Zhao YD, Chang L, Sun ZJ, Dong DL. Nitazoxanide protects against experimental ulcerative colitis through improving intestinal barrier and inhibiting inflammation. Chem Biol Interact 2024; 395:111013. [PMID: 38663798 DOI: 10.1016/j.cbi.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.
Collapse
Affiliation(s)
- Hu-Tai-Long Zhu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao-Fan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shang-Ze Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin-Di Zhao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Le Chang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
17
|
Bai Y, Zhou R, Xie X, Zhu A, Nan Y, Wu T, Hu X, Cao Z, Ju D, Fan J. A Novel Bifunctional Fusion Protein (Anti-IL-17A-sST2) Protects against Acute Liver Failure, Modulating the TLR4/MyD88 Pathway and NLRP3 Inflammasome Activation. Biomedicines 2024; 12:1118. [PMID: 38791080 PMCID: PMC11117730 DOI: 10.3390/biomedicines12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Acute liver failure (ALF) is a serious inflammatory disorder with high mortality rates, which poses a significant threat to human health. The IL-33/ST2 signal is a crucial regulator in inflammation responses associated with lipopolysaccharide (LPS)-induced macrophages. The IL-17A signaling pathway promotes the release of chemokines and inflammatory cytokines, recruiting neutrophils and T cells under LPS stimulation, thus facilitating inflammatory responses. Here, the potential therapeutic benefits of neutralizing the IL-17A signal and modulating the IL-33/ST2 signal in ALF were investigated. A novel dual-functional fusion protein, anti-IL-17A-sST2, was constructed, which displayed high purity and biological activities. The administration of anti-IL-17A-sST2 resulted in significant anti-inflammatory benefits in ALF mice, amelioration of hepatocyte necrosis and interstitial congestion, and reduction in TNF-α and IL-6. Furthermore, anti-IL-17A-sST2 injection downregulated the expression of TLR4 and NLRP3 as well as important molecules such as MyD88, caspase-1, and IL-1β. The results suggest that anti-IL-17A-sST2 reduced the secretion of inflammatory factors, attenuated the inflammatory response, and protected hepatic function by regulating the TLR4/MyD88 pathway and inhibiting the NLRP3 inflammasome, providing a new therapeutic approach for ALF.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rongrui Zhou
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinlei Xie
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - An Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Wu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaozhi Hu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- Shanghai Hailu Biological Technology Co., Ltd., Shanghai 201200, China
| |
Collapse
|
18
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
19
|
Gogoleva VS, Nguyen QC, Drutskaya MS. Microglia and Dendritic Cells as a Source of IL-6 in a Mouse Model of Multiple Sclerosis. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:904-911. [PMID: 38880650 DOI: 10.1134/s0006297924050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.
Collapse
MESH Headings
- Animals
- Dendritic Cells/metabolism
- Dendritic Cells/immunology
- Mice
- Interleukin-6/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Microglia/metabolism
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Disease Models, Animal
- Mice, Inbred C57BL
- CX3C Chemokine Receptor 1/metabolism
- CX3C Chemokine Receptor 1/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Receptors, CCR6/metabolism
- Receptors, CCR6/genetics
- Female
Collapse
Affiliation(s)
- Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Quynh Chi Nguyen
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
20
|
Fouda A, Maallah MT, Kouyoumdjian A, Negi S, Paraskevas S, Tchervenkov J. RORγt inverse agonist TF-S14 inhibits Th17 cytokines and prolongs skin allograft survival in sensitized mice. Commun Biol 2024; 7:454. [PMID: 38609465 PMCID: PMC11014929 DOI: 10.1038/s42003-024-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic antibody mediated rejection (AMR) is the major cause of solid organ graft rejection. Th17 contributes to AMR through the secretion of IL17A, IL21 and IL22. These cytokines promote neutrophilic infiltration, B cell proliferation and donor specific antibodies (DSAs) production. In the current study we investigated the role of Th17 in transplant sensitization. Additionally, we investigated the therapeutic potential of novel inverse agonists of the retinoic acid receptor-related orphan receptor gamma t (RORγt) in the treatment of skin allograft rejection in sensitized mice. Our results show that RORγt inverse agonists reduce cytokine production in human Th17 cells in vitro. In mice, we demonstrate that the RORγt inverse agonist TF-S14 reduces Th17 signature cytokines in vitro and in vivo and leads to blocking neutrophilic infiltration to skin allografts, inhibition of the B-cell differentiation, and the reduction of de novo IgG3 DSAs production. Finally, we show that TF-S14 prolongs the survival of a total mismatch grafts in sensitized mice. In conclusion, RORγt inverse agonists offer a therapeutic intervention through a novel mechanism to treat rejection in highly sensitized patients.
Collapse
Affiliation(s)
- Ahmed Fouda
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
| | - Mohamed Taoubane Maallah
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Araz Kouyoumdjian
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Sarita Negi
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
| | - Steven Paraskevas
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
| |
Collapse
|
21
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
22
|
Park A, Heo TH. Celastrol regulates psoriatic inflammation and autophagy by targeting IL-17A. Biomed Pharmacother 2024; 172:116256. [PMID: 38367550 DOI: 10.1016/j.biopha.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Anti-IL-17A antibodies, such as secukinumab and ixekizumab, are effective proinflammatory cytokine inhibitors for autoimmune disorders, including psoriasis. However, anti-IL-17A small molecule treatments are yet to be commercialized. Celastrol, a natural compound extracted from the roots of traditional Chinese medicinal plants, has anti-inflammatory and antioxidant properties. However, the binding of celastrol to IL-17A and the associated anti-inflammatory mechanisms remain unclear. This study investigated whether celastrol could directly bind to IL-17A and regulate inflammation in psoriatic in vitro and in vivo models. The results showed that celastrol directly binds to IL-17A and inhibits its downstream signaling, including the NF-kB and MAPK pathways. Interestingly, celastrol restored autophagy dysfunction and reduced proinflammatory cytokine secretion in keratinocytes. In addition, celastrol increased autophagy in the epidermis of a mouse model of psoriasis. Celastrol decreased Th17 cell populations and proinflammatory cytokine levels in mice. Thus, IL-17A-targeting celastrol reduced inflammation by rescuing impaired autophagy in in vitro and in vivo models of psoriasis, demonstrating its potential as a substitute for anti-IL-17A antibodies for treating psoriasis.
Collapse
Affiliation(s)
- Aeri Park
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
23
|
Liu X, Ke S, Wang X, Li Y, Lyu J, Liu Y, Geng Z. Interpretation of the anti-influenza active ingredients and potential mechanisms of Ge Gen Decoction based on spectrum-effect relationships and network analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117290. [PMID: 37806538 DOI: 10.1016/j.jep.2023.117290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ge Gen Decoction (GGD) is a classic traditional Chinese medicine (TCM) prescription that originated in the ancient Chinese medical book "Treatise on Febrile Diseases". The prescription consists of 7 herbs: Pueraria lobata (Willd.) Ohwi, Ephedra sinica Stapf, Cinnamomum cassia (L.) J.Presl, Paeonia lactiflora Pall., Glycyrrhiza uralensis Fisch., Zingiber officinale Rosc., and Ziziphus jujuba Mill. It can alleviate high fever and soreness in the neck and shoulders caused by exogenous wind chill and is widely used in both China and Japan. Currently, GGD is primarily utilized for treating flu and the common cold. GGD has been reported to show significant anti-influenza A virus (IAV) activity both in vitro and in vivo. However, the active ingredients responsible for its anti-influenza properties have not been elucidated, and the mechanisms underlying its anti-influenza effects require further research. AIM OF THE STUDY This study aims to investigate the active ingredients and molecular mechanisms of GGD in treating influenza. MATERIALS AND METHODS HPLC chromatograms were established for GGD water and different polar extracts. The effect of different GGD extracts on pulmonary virus titers and TNFα expression was assessed through RT-PCR analysis. Spectrum-effect relationships between chromatographic peaks of GGD and its virus inhibition rate and TNFα inhibition rate were investigated using partial least squares regression (PLSR) analysis. HPLC-Q-TOF-MS was utilized to identify the constituents absorbed into the blood after oral administration of GGD. Network analysis of the absorbed forms of active ingredients was conducted to predict the potential mechanisms of GGD. Subsequently, total SOD activity, CAT and HO-1 expression and Nrf2 nuclear translocation were then analyzed. Finally, the impact of interfering with HO-1 expression on the anti-IAV activity of GGD was examined. RESULTS The study identified 11 anti-influenza active ingredients in GGD, which are daidzein, ononin, genistin, daidzin, 3'-methoxypuerarin, puerarin, pseudoephedrine, paeoniflorin, pormononetin-7-xylosyl-glucoside, penistein-7-O-apiosyl-glucoside, and ephedrine. Network analysis revealed various biological activities of GGD, including responses to ROS and oxidative stress. GGD also involves multiple antiviral pathways, such as hepatitis B, IAV, and Toll-like receptor pathways. Experimental assays demonstrated that GGD possesses independent antioxidant activity both in vitro and in vivo. In vitro, GGD inhibits the increase in intracellular ROS induced by IAV. In vivo, it reduces MDA levels and increases total pulmonary SOD activity. Applying siRNA and flow cytometry analysis revealed that GGD alleviates IAV-induced oxidative burst by promoting the expression of HO-1 and CAT. Western blot analysis revealed that GGD effectively promotes Nrf2 nuclear translocation and enhances Nrf2 expression. Furthermore, this study found that the enhancement of HO-1 expression by GGD contributed to its anti-IAV activity. CONCLUSIONS The study identified the active ingredients of GGD against influenza and demonstrated the beneficial role of GGD's antioxidant activity in treating flu. The antioxidant activity of GGD is associated with the promotion of Nrf2 nuclear translocation and the upregulation of antioxidant enzymes such as SOD, HO-1, and CAT. Overall, this study provides evidence supporting the use of GGD as an adjunctive or complementary therapy for influenza.
Collapse
Affiliation(s)
- Xiyu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Siyuan Ke
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiuyi Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yaqun Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiantao Lyu
- Pharmacy Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China.
| | - Yu Liu
- Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Zikai Geng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
24
|
Rosillo MÁ, Villegas I, Vázquez-Román V, Fernández-Santos JM, Ortega-Vidal J, Salido S, González-Rodríguez ML, Alarcón-de-la-Lastra C. Dietary oleacein, a secoiridoid from extra virgin olive oil, prevents collagen-induced arthritis in mice. Food Funct 2024; 15:838-852. [PMID: 38164088 DOI: 10.1039/d3fo04240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Olacein (OLA), one of the main secoiridoids derived from extra virgin olive oil (EVOO), has been shown to modulate oxidative and inflammatory responses in various pathological conditions; however, its potential benefit in joint disorders such as rheumatoid arthritis (RA) is unknown. Therefore, this study was designed to evaluate the preventive role of the effects of an OLA-supplemented diet in the murine model of collagen-induced arthritis (CIA), delving into the possible mechanisms and signaling pathways involved. Animals were fed an OLA-enriched preventive diet for 6 weeks prior to CIA induction and until the end of the experimental time course. On day 43 after the first immunization, mice were sacrificed: blood was collected, and paws were histologically and biochemically processed. Dietary OLA prevented collagen-induced rheumatic bone, joint and cartilage conditions. Circulating matrix metalloproteinase (MMP)-3 and proinflammatory cytokine (IL-6, IL-1β, TNF-α, IL-17) levels were significantly decreased in the joint, as well as MMP-9 and cathepsin-K (CatK) expression in secoiridoid-fed animals. In addition, dietary OLA was able to decrease COX-2, mPGES-1 and iNOS protein expressions and, also, PGE2 levels. The mechanisms possibly involved in these protective effects could be related to the activation of the Nrf-2/HO-1 axis and the inhibition of proinflammatory signaling pathways, including JAK-STAT, MAPKs and NF-κB, involved in the production of inflammatory and oxidative mediators. These results support the interest of OLA, as a nutraceutical intervention, in the management of RA.
Collapse
Affiliation(s)
- María Ángeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de, Sevilla, Calle Profesor García González 2, 41012 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, Universidad de, Sevilla, Calle Profesor García González 2, 41012 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Victoria Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, Universidad de Sevilla, 41012 Seville, Spain
| | - José María Fernández-Santos
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, Universidad de Sevilla, 41012 Seville, Spain
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Sofía Salido
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | | | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de, Sevilla, Calle Profesor García González 2, 41012 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
25
|
Willinger Y, Friedland Cohen DR, Turgeman G. Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders. Int J Mol Sci 2023; 25:432. [PMID: 38203599 PMCID: PMC10779042 DOI: 10.3390/ijms25010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Yehoshua Willinger
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Daniella R. Friedland Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
26
|
Li D, Jia W, Zhou L, Hao Y, Wang K, Yang B, Yang J, Luo D, Fu Z. Increased expression of the p-STAT3/IL-17 signaling pathway in patients with dermatomyositis. Mod Rheumatol 2023; 34:129-136. [PMID: 36478263 DOI: 10.1093/mr/roac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2023]
Abstract
OBJECTIVES The aim is to explore the roles of phosphorylated signal transduction and activator of transcription 3 (p-STAT3) and interleukin (IL)-17 in patients with dermatomyositis (DM). METHODS A total of 20 DM patients and 12 healthy controls were enrolled. Flow cytometry combined with counting was used to detect the number of Th17 cells. Western blotting and immunohistochemistry were used to examine the muscle levels of p-STAT3 and IL-17, and serum levels of IL-17 were measured by enzyme-linked immunosorbent assays. RESULTS Muscle p-STAT3 and IL-17 levels, the number of Th17 cells, and serum IL-17 levels were markedly increased in DM. p-STAT3 and IL-17 were co-expressed in the muscle of DM patients. The p-STAT3 levels were correlated with the number of Th17 cells as well as muscle and serum IL-17 levels. The correlations of the p-STAT3 level with elevated levels of transaminases, myocardial enzymes, and the health assessment questionnaire score were significantly positive, while the correlation with manual muscle testing-8 was significantly negative. A receiver operating characteristic curve indicated the good predictive value of p-STAT3 for the occurrence of DM. CONCLUSIONS The increased p-STAT3/IL-17 signaling pathway activation in DM patients may induce muscle inflammation and necrosis, and it may be a potential target for DM.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen Jia
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Luyao Zhou
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiqun Hao
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kai Wang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Yang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Yang
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongping Luo
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zili Fu
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Han X, Zhou H, Yin J, Zhu J, Yang J, Wan H. Network Analysis and Experimental Verification of the Mechanisms of Hydroxysafflor Yellow A in Ischemic Stroke Following Atherosclerosis. Molecules 2023; 28:7829. [PMID: 38067558 PMCID: PMC10707860 DOI: 10.3390/molecules28237829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Hydroxysafflor yellow A (HSYA) is derived from Carthamus tinctorius L. (Honghua in Chinese) and is used to treat cardiovascular and cerebrovascular disease. However, the mechanism by which HSYA treats ischemic stroke following atherosclerosis (ISFA) remains unclear. The targets and pathways of HSYA against ISFA were obtained using network analysis. A total of 3335 potential IFSA-related targets were predicted using the GenCards and Drugbank databases, and a total of 88 potential HSYA-related targets were predicted using the Swiss Target Prediction database. A total of 62 HSYA-related targets against IFSA were obtained. The network was composed of HSYA, 62 targets, and 20 pathways. The top 20 targets were constructed via the protein-protein interaction (PPI) network. Gene Ontology analysis revealed that the targets were involved in signal transduction, protein phosphorylation, the cytoplasm, the plasma membrane, the cytosol, zinc ion binding, ATP binding, protein kinase binding/activity, and enzyme binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the pathways were associated with cancer, inflammatory mediator regulation of the transient receptor potential channels, and microRNA in cancer. Additionally, molecular docking indicated that HSYA mainly interacts with five targets, namely interleukin 1 beta (IL-1β), signal transducer and activator of transcription 3 (STAT3), E1A-binding protein p300 (EP300), protein kinase C alpha (PRKCA), and inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB). In animal experiments, HSYA administration ameliorated the infarct size, neurological deficit score, histopathological changes, carotid intima-media thickness (IMT), and blood lipid level (total cholesterol and triglycerides). Immunochemistry and quantitative PCR showed that HSYA intervention downregulated the expression of STAT3, EP300, PRKCA, and IKBKB, and the enzyme-linked immunoassay showed reduced IL-1β levels. The findings of this study provide a reference for the development of anti-ISFA drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.H.); (H.Z.)
| |
Collapse
|
28
|
Gu J, Zhang J, Liu Q, Xu S. Neurological risks of COVID-19 in women: the complex immunology underpinning sex differences. Front Immunol 2023; 14:1281310. [PMID: 38035090 PMCID: PMC10685449 DOI: 10.3389/fimmu.2023.1281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has uncovered many mysteries about SARS-CoV-2, including its potential to trigger abnormal autoimmune responses. Emerging evidence suggests women may face higher risks from COVID-induced autoimmunity manifesting as persistent neurological symptoms. Elucidating the mechanisms underlying this female susceptibility is now imperative. We synthesize key insights from existing studies on how COVID-19 infection can lead to immune tolerance loss, enabling autoreactive antibodies and lymphocyte production. These antibodies and lymphocytes infiltrate the central nervous system. Female sex hormones like estrogen and X-chromosome mediated effects likely contribute to dysregulated humoral immunity and cytokine profiles among women, increasing their predisposition. COVID-19 may also disrupt the delicate immunological balance of the female microbiome. These perturbations precipitate damage to neural damage through mechanisms like demyelination, neuroinflammation, and neurodegeneration - consistent with the observed neurological sequelae in women. An intentional focus on elucidating sex differences in COVID-19 pathogenesis is now needed to inform prognosis assessments and tailored interventions for female patients. From clinical monitoring to evaluating emerging immunomodulatory therapies, a nuanced women-centered approach considering the hormonal status and immunobiology will be vital to ensure equitable outcomes. Overall, deeper insights into the apparent female specificity of COVID-induced autoimmunity will accelerate the development of solutions mitigating associated neurological harm.
Collapse
Affiliation(s)
- Jienan Gu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianhui Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Tanaka H, Hasebe R, Murakami K, Sugawara T, Yamasaki T, Murakami M. Gateway reflexes describe novel neuro-immune communications that establish immune cell gateways at specific vessels. Bioelectron Med 2023; 9:24. [PMID: 37936169 PMCID: PMC10631009 DOI: 10.1186/s42234-023-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan.
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Nishi-11, Kita-21, Kuta-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
30
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
31
|
Miyahara Y, Chen H, Moriyama M, Mochizuki K, Kaneko N, Haque ASMR, Chinju A, Kai K, Sakamoto M, Kakizoe-Ishiguro N, Yamauchi M, Ogata K, Kiyoshima T, Kawano S, Nakamura S. Toll-like receptor 9-positive plasmacytoid dendritic cells promote Th17 immune responses in oral lichen planus stimulated by epithelium-derived cathepsin K. Sci Rep 2023; 13:19320. [PMID: 37935734 PMCID: PMC10630478 DOI: 10.1038/s41598-023-46090-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease associated with T cell infiltration. The crosstalk between oral epithelium and mucosal T cells was considered to be crucial in the pathogenesis of OLP. Here, we selectively extracted the normal epithelium (NE) and lesional epithelium (LE) of buccal mucosa specimens from three patients with OLP by laser capture microdissection due to identify the pathogenic factors. Cathepsin K (CTSK) was identified as one of common upregulated genes in the LE by DNA microarray. Immunohistochemically, CTSK was distinctly detected in and around the LE, while it was rarely seen in the NE. Recent studies showed that CTSK enhanced Toll-like receptor 9 (TLR9) signaling in antigen-presenting cells, leading to Th17 cell differentiation. TLR9 expression mainly co-localized with CD123+ plasmacytoid dendritic cells (pDCs). The number of RORγt-positive cells correlated with that of CTSK-positive cells in OLP tissues. CD123+ pDCs induced the production of Th17-related cytokines (IL-6, IL-23, and TGF-β) upon stimulation with TLR9 agonist CpG DNA. Moreover, single cell RNA-sequencing analysis revealed that TLR9-positive pDCs enhanced in genes associated with Th17 cell differentiation in comparison with TLR9-negative pDCs. CTSK could induce Th17-related production of CD123+ pDCs via TLR9 signaling to promote the pathogenesis of OLP.
Collapse
Affiliation(s)
- Yuka Miyahara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hu Chen
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Keita Mochizuki
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - A S M Rafiul Haque
- Department of Dental Anatomy, Udayan Dental College, Rajpara, Bangladesh
| | - Akira Chinju
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kai
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mizuki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriko Kakizoe-Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Yamauchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
32
|
Kenny FN, Marcotti S, De Freitas DB, Drudi EM, Leech V, Bell RE, Easton J, Díaz-de-la-Loza MDC, Fleck R, Allison L, Philippeos C, Manhart A, Shaw TJ, Stramer BM. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol 2023; 123:1-16. [PMID: 37660739 PMCID: PMC10878985 DOI: 10.1016/j.matbio.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Fibrosis is associated with dramatic changes in extracellular matrix (ECM) architecture of unknown etiology. Here we exploit keloid scars as a paradigm to understand fibrotic ECM organization. We reveal that keloid patient fibroblasts uniquely produce a globally aligned ECM network in 2-D culture as observed in scar tissue. ECM anisotropy develops after rapid initiation of a fibroblast supracellular actin network, suggesting that cell alignment initiates ECM patterning. Keloid fibroblasts produce elevated levels of IL-6, and autocrine IL-6 production is both necessary and sufficient to induce cell and ECM alignment, as evidenced by ligand stimulation of normal dermal fibroblasts and treatment of keloid fibroblasts with the function blocking IL-6 receptor monoclonal antibody, tocilizumab. Downstream of IL-6, supracellular organization of keloid fibroblasts is controlled by activation of cell-cell adhesion. Adhesion formation inhibits contact-induced cellular overlap leading to nematic organization of cells and an alignment of focal adhesions. Keloid fibroblasts placed on isotropic ECM align the pre-existing matrix, suggesting that focal adhesion alignment leads to active anisotropic remodeling. These results show that IL-6-induced fibroblast cooperativity can control the development of a nematic ECM, highlighting both IL-6 signaling and cell-cell adhesions as potential therapeutic targets to inhibit this common feature of fibrosis.
Collapse
Affiliation(s)
- Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elena M Drudi
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Vivienne Leech
- Department of Mathematics, University College London, UK
| | - Rachel E Bell
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jennifer Easton
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Roland Fleck
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Leanne Allison
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Angelika Manhart
- Department of Mathematics, University College London, UK; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
33
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
35
|
Yamamoto R, Yamada S, Atsumi T, Murakami K, Hashimoto A, Naito S, Tanaka Y, Ohki I, Shinohara Y, Iwasaki N, Yoshimura A, Jiang JJ, Kamimura D, Hojyo S, Kubota SI, Hashimoto S, Murakami M. Computer model of IL-6-dependent rheumatoid arthritis in F759 mice. Int Immunol 2023; 35:403-421. [PMID: 37227084 DOI: 10.1093/intimm/dxad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.
Collapse
Affiliation(s)
- Reiji Yamamoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Yamada
- Faculty of Information Science and Engineering, Okayama University of Science, Okayama, Japan
| | - Toru Atsumi
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Seiichiro Naito
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Izuru Ohki
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yuta Shinohara
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
36
|
Yano A, Yuki S, Shiraishi A, Hakozaki M, Kanno Y, Kimura KI, Uesugi S. Golden berry leaf extract containing withanolides suppresses TNF-α and IL-17 induced IL-6 expression in HeLa Cells. Biosci Biotechnol Biochem 2023; 87:972-980. [PMID: 37279446 DOI: 10.1093/bbb/zbad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Inflammation, characterized by the overexpression of IL-6 in various tissues, has been reported as a symptom of coronavirus disease 2019. In this study, we established an experimental system for overexpression of IL-6 in HeLa cells stimulated by TNF-α and IL-17, along with identification of anti-inflammatory materials and components from local agricultural, forestry, and fishery resources. We constructed a library of extracts from natural sources, of which 111 samples were evaluated for their anti-inflammatory activities. The MeOH extract of Golden Berry (Physalis peruviana L) leaf was found to exhibit strong anti-inflammatory properties (IC50 = 4.97 µg/mL). Preparative chromatography identified two active constituents, 4β-hydroxywithanolide E (4β-HWE) (IC50 = 183 nM) and withanolide E (WE) (IC50 = 65.1 nM). Withanolides are known anti-inflammatory ingredients of Withania somnifera, an Ayurvedic herbal medicine. P. peruviana leaves containing 4β-HWE and WE should be considered as useful natural resources for anti-inflammatory products.
Collapse
Affiliation(s)
- Akira Yano
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Sayaka Yuki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | - Yuko Kanno
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Ken-Ichi Kimura
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Shota Uesugi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
37
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
38
|
Sun L, Wang L, Moore BB, Zhang S, Xiao P, Decker AM, Wang HL. IL-17: Balancing Protective Immunity and Pathogenesis. J Immunol Res 2023; 2023:3360310. [PMID: 37600066 PMCID: PMC10439834 DOI: 10.1155/2023/3360310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17 that elicit protective immunity.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa, IA, USA
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Immunological Disease Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Heo BY, Lee MW, Choi S, Jung Y, Pham TTD, Jang Y, Park JH, Kang S, Koh JS, Jo DY, Kwon J, Song IC. Autoimmune Limbic Encephalitis in Patients with Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation with Post-Transplant Cyclophosphamide. Cells 2023; 12:2049. [PMID: 37626859 PMCID: PMC10453524 DOI: 10.3390/cells12162049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Autoimmune limbic encephalitis (LE) is a rare, but devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT). There is currently limited evidence describing the risk factors, laboratory features, and underlying mechanisms of this neurologic adverse event. We retrospectively reviewed available clinical, imaging, and laboratory data from adult patients with hematological malignancies who underwent haploidentical HSCT with post-transplant cyclophosphamide (PTCy) at Chungnam National University Hospital from June 2016 to May 2020. Patients who developed LE were compared to those who did not based on clinical assessment, serum inflammatory biomarkers, and reconstitution of various T cell populations. Of 35 patients, 4 developed LE. There were no differences in patient demographics, donor demographics, or treatment conditions between patients that did and did not develop LE. Overall, patients with LE had worse clinical outcomes and overall survival than those without. In addition, they tended to have higher markers of systemic inflammation in the early post-transplant period, including fever, C-reactive protein (CRP), and cytokines. Remarkably, baseline interleukin-6 levels before HSCT were found to be higher in patients who developed LE than those who did not. In addition, analysis of T cell subsets showed impaired expansion of CD25+FOXP3+ regulatory T (Treg) cells in LE compared to non-LE patients despite appropriate reconstitution of the total CD4+ T cell population. Patients that developed LE within the first 30 days of HSCT were likely to have high serum IL-6 among other inflammatory cytokines coupled with suppression of regulatory T cell differentiation. Further work is needed on the mechanisms underlying impaired Treg expansion following HSCT and potential therapies.
Collapse
Affiliation(s)
- Bu Yeon Heo
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Myung-Won Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Suyoung Choi
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Yunju Jung
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Thi Thuy Duong Pham
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Yunseon Jang
- Translational Immunology Institute, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jung-Hyun Park
- Translational Immunology Institute, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Sora Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jeong Suk Koh
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Deog-Yeon Jo
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jaeyul Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Translational Immunology Institute, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Ik-Chan Song
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
- Translational Immunology Institute, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| |
Collapse
|
40
|
Tomé C, Oliveira-Ramos F, Campanilho-Marques R, Mourão AF, Sousa S, Marques C, Melo AT, Teixeira RL, Martins AP, Moeda S, Costa-Reis P, Torres RP, Bandeira M, Fonseca H, Gonçalves M, Santos MJ, Graca L, Fonseca JE, Moura RA. Children with extended oligoarticular and polyarticular juvenile idiopathic arthritis have alterations in B and T follicular cell subsets in peripheral blood and a cytokine profile sustaining B cell activation. RMD Open 2023; 9:e002901. [PMID: 37652558 PMCID: PMC10476142 DOI: 10.1136/rmdopen-2022-002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES The main goal of this study was to characterise the frequency and phenotype of B, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in peripheral blood and the cytokine environment present in circulation in children with extended oligoarticular juvenile idiopathic arthritis (extended oligo JIA) and polyarticular JIA (poly JIA) when compared with healthy controls, children with persistent oligoarticular JIA (persistent oligo JIA) and adult JIA patients. METHODS Blood samples were collected from 105 JIA patients (children and adults) and 50 age-matched healthy individuals. The frequency and phenotype of B, Tfh and Tfr cells were evaluated by flow cytometry. Serum levels of APRIL, BAFF, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, IL-21, IL-22, IFN-γ, PD-1, PD-L1, sCD40L, CXCL13 and TNF were measured by multiplex bead-based immunoassay and/or ELISA in all groups included. RESULTS The frequency of B, Tfh and Tfr cells was similar between JIA patients and controls. Children with extended oligo JIA and poly JIA, but not persistent oligo JIA, had significantly lower frequencies of plasmablasts, regulatory T cells and higher levels of Th17-like Tfh cells in circulation when compared with controls. Furthermore, APRIL, BAFF, IL-6 and IL-17A serum levels were significantly higher in paediatric extended oligo JIA and poly JIA patients when compared with controls. These immunological alterations were not found in adult JIA patients in comparison to controls. CONCLUSIONS Our results suggest a potential role and/or activation profile of B and Th17-like Tfh cells in the pathogenesis of extended oligo JIA and poly JIA, but not persistent oligo JIA.
Collapse
Affiliation(s)
- Catarina Tomé
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Filipa Oliveira-Ramos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Raquel Campanilho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana F Mourão
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Sandra Sousa
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Cláudia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana T Melo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rui L Teixeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana P Martins
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Sofia Moeda
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita P Torres
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Matilde Bandeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Helena Fonseca
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Miroslava Gonçalves
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Maria J Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Dold L, Frank L, Lutz P, Kaczmarek DJ, Krämer B, Nattermann J, Weismüller TJ, Branchi V, Toma M, Gonzalez-Carmona M, Strassburg CP, Spengler U, Langhans B. IL-6-Dependent STAT3 Activation and Induction of Proinflammatory Cytokines in Primary Sclerosing Cholangitis. Clin Transl Gastroenterol 2023; 14:e00603. [PMID: 37256725 PMCID: PMC10461951 DOI: 10.14309/ctg.0000000000000603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease with periductal inflammation and fibrosis. Genetic studies suggest inflammatory cytokines and IL-6-dependent activation of transcription factor STAT3 as pivotal steps in PSC pathogenesis. However, details of inflammatory regulation remain unclear. METHODS We recruited 50 patients with PSC (36 with inflammatory bowel disease, 14 without inflammatory bowel disease), 12 patients with autoimmune hepatitis, and 36 healthy controls to measure cytokines in the serum, bile, and immune cell supernatant using bead-based immunoassays and flow cytometry and immunohistochemistry to analyze phosphorylation of STATs in immune cells. Finally, we analyzed cytokines and STAT3 phosphorylation of T cells in the presence of JAK1/2 inhibitors. RESULTS In PSC, IL-6 specifically triggered phosphorylation of STAT3 in CD4 + T cells and lead to enhanced production of interferon (IFN) gamma and interleukin (IL)-17A. Phospho-STAT3-positive CD4 + T cells correlated with systemic inflammation (C-reactive protein serum levels). Combination of immunohistology and flow cytometry indicated that phospho-STAT3-positive cells were enriched in the peribiliary liver stroma and represented CD4 + T cells with prominent production of IFN gamma and IL-17A. JAK1/2 inhibitors blocked STAT3 phosphorylation and production of IFN gamma and IL-6, whereas IL-17A was apparently resistant to this inhibition. DISCUSSION Our results demonstrate systemic and local activation of the IL-6/STAT3 pathway in PSC. Resistance of IL-17A to STAT3-targeted inhibition points to a more complex immune dysregulation beyond STAT3 activation.
Collapse
Affiliation(s)
- Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany;
| | - Leonie Frank
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
| | | | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany;
| | - Tobias J. Weismüller
- Department of Internal Medicine - Gastroenterology and Oncology, Vivantes Humboldt Hospital, Berlin, Germany;
| | - Vittorio Branchi
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany;
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| | | | | | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany;
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany;
| |
Collapse
|
42
|
Ebina K, Etani Y, Maeda Y, Okita Y, Hirao M, Yamamoto W, Hashimoto M, Murata K, Hara R, Nagai K, Hiramatsu Y, Son Y, Amuro H, Fujii T, Okano T, Ueda Y, Katayama M, Okano T, Tachibana S, Hayashi S, Kumanogoh A, Okada S, Nakata K. Drug retention of biologics and Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study. RMD Open 2023; 9:e003160. [PMID: 37597846 PMCID: PMC10441119 DOI: 10.1136/rmdopen-2023-003160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
OBJECTIVES This multicentre retrospective study in Japan aimed to assess the retention of biological disease-modifying antirheumatic drugs and Janus kinase inhibitors (JAKi), and to clarify the factors affecting their retention in a real-world cohort of patients with rheumatoid arthritis. METHODS The study included 6666 treatment courses (bDMARD-naïve or JAKi-naïve cases, 55.4%; tumour necrosis factor inhibitors (TNFi) = 3577; anti-interleukin-6 receptor antibodies (aIL-6R) = 1497; cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA4-Ig) = 1139; JAKi=453 cases). The reasons for discontinuation were divided into four categories (ineffectiveness, toxic adverse events, non-toxic reasons and remission); multivariate Cox proportional hazards modelling by potential confounders was used to analyse the HRs of treatment discontinuation. RESULTS TNFi (HR=1.93, 95% CI: 1.69 to 2.19), CTLA4-Ig (HR=1.42, 95% CI: 1.20 to 1.67) and JAKi (HR=1.29, 95% CI: 1.03 to 1.63) showed a higher discontinuation rate due to ineffectiveness than aIL-6R. TNFi (HR=1.28, 95% CI: 1.05 to 1.56) and aIL-6R (HR=1.27, 95% CI: 1.03 to 1.57) showed a higher discontinuation rate due to toxic adverse events than CTLA4-Ig. Concomitant use of oral glucocorticoids (GCs) at baseline was associated with higher discontinuation rate due to ineffectiveness in TNFi (HR=1.24, 95% CI: 1.09 to 1.41), as well as toxic adverse events in JAKi (HR=2.30, 95% CI: 1.23 to 4.28) and TNFi (HR=1.29, 95%CI: 1.07 to 1.55). CONCLUSIONS TNFi (HR=1.52, 95% CI: 1.37 to 1.68) and CTLA4-Ig (HR=1.14, 95% CI: 1.00 to 1.30) showed a higher overall drug discontinuation rate, excluding non-toxicity and remission, than aIL-6R.
Collapse
Affiliation(s)
- Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
- Department of Orthopaedic Surgery, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Yasutaka Okita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Makoto Hirao
- Department of Orthopaedics, Osaka Minami Medical Center, Kawachinagano, Japan
| | - Wataru Yamamoto
- Department of Health Information Management, Kurashiki Sweet Hospital, Kurashiki, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine School of Medicine, Osaka, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic diseases, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, Japan
| | - Ryota Hara
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Koji Nagai
- Department of Internal Medicine (Ⅳ), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yuri Hiramatsu
- Department of Internal Medicine (Ⅳ), Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yonsu Son
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Japan
| | - Hideki Amuro
- First Department of Internal Medicine, Kansai Medical University, Moriguchi, Japan
| | - Takayuki Fujii
- Department of Advanced Medicine for Rheumatic diseases, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine School of Medicine, Kobe, Japan
| | - Masaki Katayama
- Department of Rheumatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tadashi Okano
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine School of Medicine, Osaka, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine School of Medicine, Kobe, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Faculty of Medicine Graduate School of Medicine, Suita, Japan
| |
Collapse
|
43
|
Teoh YB, Jiang JJ, Yamasaki T, Nagata N, Sugawara T, Hasebe R, Ohta H, Sasaki N, Yokoyama N, Nakamura K, Kagawa Y, Takiguchi M, Murakami M. An inflammatory bowel disease-associated SNP increases local thyroglobulin expression to develop inflammation in miniature dachshunds. Front Vet Sci 2023; 10:1192888. [PMID: 37519997 PMCID: PMC10375717 DOI: 10.3389/fvets.2023.1192888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Yamasaki T, Nagata N, Atsumi T, Hasebe R, Tanaka Y, Ohki I, Kubota S, Shinohara Y, Bin Teoh Y, Yokoyama N, Sasaki N, Nakamura K, Ohta H, Katsurada T, Matsuno Y, Hojyo S, Hashimoto S, Takiguchi M, Murakami M. Zoobiquity experiments show the importance of the local MMP9-plasminogen axis in inflammatory bowel diseases in both dogs and patients. Int Immunol 2023; 35:313-326. [PMID: 36933193 DOI: 10.1093/intimm/dxad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Using a zoobiquity concept, we directly connect animal phenotypes to a human disease mechanism: the reduction of local plasminogen levels caused by matrix metalloproteinase-9 (MMP9) activity is associated with the development of inflammation in the intestines of dogs and patients with inflammatory bowel disease. We first investigated inflammatory colorectal polyps (ICRPs), which are a canine gastrointestinal disease characterized by the presence of idiopathic chronic inflammation, in Miniature Dachshund (MD) and found 31 missense disease-associated SNPs by whole-exome sequencing. We sequenced them in 10 other dog breeds and found five, PLG, TCOF1, TG, COL9A2 and COL4A4, only in MD. We then investigated two rare and breed-specific missense SNPs (T/T SNPs), PLG: c.477G > T and c.478A>T, and found that ICRPs with the T/T SNP risk alleles showed less intact plasminogen and plasmin activity in the lesions compared to ICRPs without the risk alleles but no differences in serum. Moreover, we show that MMP9, which is an NF-κB target, caused the plasminogen reduction and that intestinal epithelial cells expressing plasminogen molecules were co-localized with epithelial cells expressing MMP9 in normal colons with the risk alleles. Importantly, MMP9 expression in patients with ulcerous colitis or Crohn's disease also co-localized with epithelial cells showing enhanced NF-κB activation and less plasminogen expression. Overall, our zoobiquity experiments showed that MMP9 induces the plasminogen reduction in the intestine, contributing to the development of local inflammation and suggesting the local MMP9-plasminogen axis is a therapeutic target in both dogs and patients. Therefore, zoobiquity-type experiments could bring new perspectives for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toru Atsumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
- Center for Infectious Cancers, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Inage, Japan
| | - Izuru Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Inage, Japan
| | - Shimpei Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuta Shinohara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yong Bin Teoh
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Inage, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Kida H, Jiang JJ, Matsui Y, Takahashi I, Hasebe R, Kawamura D, Endo T, Shibayama H, Kondo M, Nishio Y, Nishida K, Matsuno Y, Oikawa T, Kubota SI, Hojyo S, Iwasaki N, Hashimoto S, Tanaka Y, Murakami M. Dupuytren's contracture-associated SNPs increase SFRP4 expression in non-immune cells including fibroblasts to enhance inflammation development. Int Immunol 2023; 35:303-312. [PMID: 36719100 DOI: 10.1093/intimm/dxad004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Dupuytren's contracture (DC) is an inflammatory fibrosis characterized by fibroproliferative disorders of the palmar aponeurosis, for which there is no effective treatment. Although several genome-wide association studies have identified risk alleles associated with DC, the functional linkage between these alleles and the pathogenesis remains elusive. We here focused on two single nucleotide polymorphisms (SNPs) associated with DC, rs16879765 and rs17171229, in secreted frizzled related protein 4 (SFRP4). We investigated the association of SRFP4 with the IL-6 amplifier, which amplifies the production of IL-6, growth factors and chemokines in non-immune cells and aggravates inflammatory diseases via NF-κB enhancement. Knockdown of SFRP4 suppressed activation of the IL-6 amplifier in vitro and in vivo, whereas the overexpression of SFRP4 induced the activation of NF-κB-mediated transcription activity. Mechanistically, SFRP4 induced NF-κB activation by directly binding to molecules of the ubiquitination SFC complex, such as IkBα and βTrCP, followed by IkBα degradation. Furthermore, SFRP4 expression was significantly increased in fibroblasts derived from DC patients bearing the risk alleles. Consistently, fibroblasts with the risk alleles enhanced activation of the IL-6 amplifier. These findings indicate that the IL-6 amplifier is involved in the pathogenesis of DC, particularly in patients harboring the SFRP4 risk alleles. Therefore, SFRP4 is a potential therapeutic target for various inflammatory diseases and disorders, including DC.
Collapse
Affiliation(s)
- Hiroaki Kida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shibayama
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Makoto Kondo
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Yasuhiko Nishio
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Kinya Nishida
- Department of Orthopaedic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
46
|
Park A, Heo TH. IL-17A-targeting fenofibrate attenuates inflammation in psoriasis by inducing autophagy. Life Sci 2023:121755. [PMID: 37236601 DOI: 10.1016/j.lfs.2023.121755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
IL-17A is a critical pro-inflammatory cytokine in autoimmune diseases such as psoriasis. Targeting of IL-17A is an effective strategy to treat patients with autoimmune diseases; however, relevant small molecule therapeutics have not yet been developed. Here, the small molecule drug fenofibrate was validated as an inhibitor of IL-17A through ELISA and surface plasmon resonance (SPR) assays. We further confirmed that fenofibrate blocked IL-17A signalings including the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, in IL-17A-treated HaCaT cells, HEKa (human primary epidermal keratinocytes) and imiquimod (IMQ)-induced psoriasis mouse model. Fenofibrate attenuated systemic inflammation by suppressing Th17 populations and inflammatory cytokines, such as IL-1β, IL-6, IL-17A, and tumor necrosis factor (TNF). Surprisingly, fenofibrate upregulated LC3 and p62 in the psoriatic mouse group. The autophagy changes were caused by ULK1 pathway in hIL-17A-treated HaCaT and HEKa. In addition, the enhancement of autophagy by fenofibrate exerted anti-inflammatory effects, as demonstrated by the suppression of IL-6 and IL-8 in the IL-17A-treated keratinocytes. Thus, IL-17A-targeting fenofibrate can be a potential therapeutic for psoriasis and other autoimmune diseases via regulating autophagy.
Collapse
Affiliation(s)
- Aeri Park
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
47
|
Apolit C, Campos N, Vautrin A, Begon-Pescia C, Lapasset L, Scherrer D, Gineste P, Ehrlich H, Garcel A, Santo J, Tazi J. ABX464 (Obefazimod) Upregulates miR-124 to Reduce Proinflammatory Markers in Inflammatory Bowel Diseases. Clin Transl Gastroenterol 2023; 14:e00560. [PMID: 36573890 PMCID: PMC10132720 DOI: 10.14309/ctg.0000000000000560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Advanced therapies have transformed the treatment of inflammatory bowel disease; however, many patients fail to respond, highlighting the need for therapies tailored to the underlying cell and molecular disease drivers. The first-in-class oral molecule ABX464 (obefazimod), which selectively upregulates miR-124, has demonstrated its ability to be a well-tolerated treatment with rapid and sustained efficacy in patients with ulcerative colitis (UC). Here, we provide evidence that ABX464 affects the immune system in vitro , in the murine model of inflammatory bowel disease, and in patients with UC. In vitro , ABX464 treatment upregulated miR-124 and led to decreases in proinflammatory cytokines including interleukin (IL) 17 and IL6, and in the chemokine CCL2. Consistently, miR-124 expression was upregulated in the rectal biopsies and blood samples of patients with UC, and a parallel reduction in Th17 cells and IL17a levels was observed in serum samples. In a mouse model of induced intestinal inflammation with dextran sulfate sodium, ABX464 reversed the increases in multiple proinflammatory cytokines in the colon and the upregulation of IL17a secretion in the mesenteric lymph nodes. By upregulating miR-124, ABX464 acts as "a physiological brake" of inflammation, which may explain the efficacy of ABX464 with a favorable tolerability and safety profile in patients with UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jamal Tazi
- Abivax, Montpellier, France
- Abivax, Paris, France
| |
Collapse
|
48
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
49
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Abstract
Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|