1
|
Abutaha S, Alzibdeh A, Mohamad I, Wahbeh L, Salah S, Abuhijlih R, Abuhijla F. Turning the tide: From cervical cancer's grip to complete response: A case report. World J Clin Oncol 2025; 16:98219. [PMID: 39995565 PMCID: PMC11686556 DOI: 10.5306/wjco.v16.i2.98219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Cervical cancer is a formidable global health issue, particularly affecting women in lower-middle-income countries with little or no access to preventative vaccines, screening programs, and treatment modalities. The case report presents a unique case of a large cervical cancer achieving complete response (CR) with concurrent chemoradiotherapy (CCRT), highlighting the effectiveness of this treatment approach even in advanced stages and underscoring the importance of adaptive radiotherapy (RT) in optimizing patient outcomes. CASE SUMMARY We present the case of a 53-year-old woman who presented with four years of abnormal vaginal bleeding and was found to have p16-positive, moderately differentiated cervical squamous cell carcinoma. The tumor measured 14 cm × 12 cm × 8 cm, the largest size reported in the literature to achieve CR with CCRT. Despite this monumental feat, the patient remained disease-free and is currently on follow-up for 2 years; however, she continued to suffer from substantial morbidity caused by a vesicovaginal fistula and hydronephrosis, underscoring the continuing impact of cervical cancer on quality of life. CONCLUSION In this case report, we highlight the effectiveness of CCRT in achieving CR, even in cases of bulky cervical cancer, with adaptive RT offering a customized strategy to improve patient outcomes. We also emphasize the necessity for multidisciplinary team discussions and highlight the need for strategies to mitigate treatment-related toxicities and long-term complications.
Collapse
Affiliation(s)
- Shatha Abutaha
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Abdulla Alzibdeh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Lina Wahbeh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Samer Salah
- Department of Medical Oncology, King Fahad Specialist Hospital, Dammam 32210, Saudi Arabia
| | - Ramiz Abuhijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Fawzi Abuhijla
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
2
|
Tegtmeier RC, Clouser EL, Laughlin BS, Santos Toesca DA, Flakus MJ, Bashir S, Kutyreff CJ, Hobbis D, Harrington DP, Smetanick JL, Yu NY, Vargas CE, James SE, Rwigema JM, Rong Y. Evaluation of knowledge-based planning models for male pelvic CBCT-based online adaptive radiotherapy on conventional linear accelerators. J Appl Clin Med Phys 2024; 25:e14464. [PMID: 39031902 PMCID: PMC11492302 DOI: 10.1002/acm2.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024] Open
Abstract
PURPOSE To assess the practicality of employing a commercial knowledge-based planning tool (RapidPlan) to generate adapted intact prostate and prostate bed volumetric modulated arc therapy (VMAT) plans on iterative cone-beam computed tomography (iCBCT) datasets. METHODS AND MATERIALS Intact prostate and prostate bed RapidPlan models were trained utilizing planning data from 50 and 44 clinical cases, respectively. To ensure that refined models were capable of producing adequate clinical plans with a single optimization, models were tested with 50 clinical planning CT datasets by comparing dose-volume histogram (DVH) and plan quality metric (PQM) values between clinical and RapidPlan-generated plans. The RapidPlan tool was then used to retrospectively generate adapted VMAT plans on daily iCBCT images for 20 intact prostate and 15 prostate bed cases. As before, DVH and PQM metrics were utilized to dosimetrically compare scheduled (iCBCT Verify) and adapted (iCBCT RapidPlan) plans. Timing data was collected to further evaluate the feasibility of integrating this approach within an online adaptive radiotherapy workflow. RESULTS Model testing results confirmed the models were capable of producing VMAT plans within a single optimization that were overall improved upon or dosimetrically comparable to original clinical plans. Direct application of RapidPlan on iCBCT datasets produced satisfactory intact prostate and prostate bed plans with generally improved target volume coverage/conformality and rectal sparing relative to iCBCT Verify plans as indicated by DVH values, though bladder metrics were marginally increased on average. Average PQM values for iCBCT RapidPlans were significantly improved compared to iCBCT Verify plans. The average time required [in mm:ss] to generate adapted plans was 06:09 ± 02:06 (intact) and 07:12 ± 01:04 (bed). CONCLUSION This study demonstrated the feasibility of leveraging RapidPlan to expeditiously generate adapted VMAT intact prostate and prostate bed plans on iCBCT datasets. In general, adapted plans were dosimetrically improved relative to scheduled plans, emphasizing the practicality of the proposed approach.
Collapse
Affiliation(s)
| | - Edward L. Clouser
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Brady S. Laughlin
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | | | | | - Sara Bashir
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | | | - Dean Hobbis
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
- Department of Radiation OncologyWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | | | | | - Nathan Y. Yu
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Carlos E. Vargas
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Sarah E. James
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | | | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
3
|
Kim JY, Tawk B, Knoll M, Hoegen-Saßmannshausen P, Liermann J, Huber PE, Lifferth M, Lang C, Häring P, Gnirs R, Jäkel O, Schlemmer HP, Debus J, Hörner-Rieber J, Weykamp F. Clinical Workflow of Cone Beam Computer Tomography-Based Daily Online Adaptive Radiotherapy with Offline Magnetic Resonance Guidance: The Modular Adaptive Radiotherapy System (MARS). Cancers (Basel) 2024; 16:1210. [PMID: 38539544 PMCID: PMC10969008 DOI: 10.3390/cancers16061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE The Ethos (Varian Medical Systems) radiotherapy device combines semi-automated anatomy detection and plan generation for cone beam computer tomography (CBCT)-based daily online adaptive radiotherapy (oART). However, CBCT offers less soft tissue contrast than magnetic resonance imaging (MRI). This work aims to present the clinical workflow of CBCT-based oART with shuttle-based offline MR guidance. METHODS From February to November 2023, 31 patients underwent radiotherapy on the Ethos (Varian, Palo Alto, CA, USA) system with machine learning (ML)-supported daily oART. Moreover, patients received weekly MRI in treatment position, which was utilized for daily plan adaptation, via a shuttle-based system. Initial and adapted treatment plans were generated using the Ethos treatment planning system. Patient clinical data, fractional session times (MRI + shuttle transport + positioning, adaptation, QA, RT delivery) and plan selection were assessed for all fractions in all patients. RESULTS In total, 737 oART fractions were applied and 118 MRIs for offline MR guidance were acquired. Primary sites of tumors were prostate (n = 16), lung (n = 7), cervix (n = 5), bladder (n = 1) and endometrium (n = 2). The treatment was completed in all patients. The median MRI acquisition time including shuttle transport and positioning to initiation of the Ethos adaptive session was 53.6 min (IQR 46.5-63.4). The median total treatment time without MRI was 30.7 min (IQR 24.7-39.2). Separately, median adaptation, plan QA and RT times were 24.3 min (IQR 18.6-32.2), 0.4 min (IQR 0.3-1,0) and 5.3 min (IQR 4.5-6.7), respectively. The adapted plan was chosen over the scheduled plan in 97.7% of cases. CONCLUSION This study describes the first workflow to date of a CBCT-based oART combined with a shuttle-based offline approach for MR guidance. The oART duration times reported resemble the range shown by previous publications for first clinical experiences with the Ethos system.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Bouchra Tawk
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Peter E. Huber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mona Lifferth
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Clemens Lang
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Häring
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Regula Gnirs
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Roberfroid B, Barragán-Montero AM, Dechambre D, Sterpin E, Lee JA, Geets X. Comparison of Ethos template-based planning and AI-based dose prediction: General performance, patient optimality, and limitations. Phys Med 2023; 116:103178. [PMID: 38000099 DOI: 10.1016/j.ejmp.2023.103178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/19/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Ethos proposes a template-based automatic dose planning (Etb) for online adaptive radiotherapy. This study evaluates the general performance of Etb for prostate cancer, as well as the ability to generate patient-optimal plans, by comparing it with another state-of-the-art automatic planning method, i.e., deep learning dose prediction followed by dose mimicking (DP + DM). MATERIALS General performances and capability to produce patient-optimal plan were investigated through two studies: Study-S1 generated plans for 45 patients using our initial Ethos clinical goals template (EG_init), and compared them to manually generated plans (MG). For study-S2, 10 patients which showed poor performances at study-S1 were selected. S2 compared the quality of plans generated with four different methods: 1) Ethos initial template (EG_init_selected), 2) Ethos updated template-based on S1 results (EG_upd_selected), 3) DP + DM, and 4) MG plans. RESULTS EG_init plans showed satisfactory performance for dose level above 50 Gy: reported mean metrics differences (EG_init minus MG) never exceeded 0.6 %. However, lower dose levels showed loosely optimized metrics, mean differences for V30Gy to rectum and V20Gy to anal canal were of 6.6 % and 13.0 %. EG_init_selected showed amplified differences in V30Gy to rectum and V20Gy to anal canal: 8.5 % and 16.9 %, respectively. These dropped to 5.7 % and 11.5 % for EG_upd_selected plans but strongly increased V60Gy to rectum for 2 patients. DP + DM plans achieved differences of 3.4 % and 4.6 % without compromising any V60Gy. CONCLUSION General performances of Etb were satisfactory. However, optimizing with template of goals might be limiting for some complex cases. Over our test patients, DP + DM outperformed the Etb approach.
Collapse
Affiliation(s)
- Benjamin Roberfroid
- Université catholique de Louvain - Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium.
| | - Ana M Barragán-Montero
- Université catholique de Louvain - Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - David Dechambre
- Cliniques universitaires Saint-Luc, Department of Radiation Oncology, Brussels, Belgium
| | - Edmond Sterpin
- Université catholique de Louvain - Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; KU Leuven - Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - John A Lee
- Université catholique de Louvain - Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xavier Geets
- Université catholique de Louvain - Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Radiation Oncology, Brussels, Belgium
| |
Collapse
|
5
|
Nasser N, Yang GQ, Koo J, Bowers M, Greco K, Feygelman V, Moros EG, Caudell JJ, Redler G. A head and neck treatment planning strategy for a CBCT-guided ring-gantry online adaptive radiotherapy system. J Appl Clin Med Phys 2023; 24:e14134. [PMID: 37621133 PMCID: PMC10691641 DOI: 10.1002/acm2.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
PURPOSE A planning strategy was developed and the utility of online-adaptation with the Ethos CBCT-guided ring-gantry adaptive radiotherapy (ART) system was evaluated using retrospective data from Head-and-neck (H&N) patients that required clinical offline adaptation during treatment. METHODS Clinical data were used to re-plan 20 H&N patients (10 sequential boost (SEQ) with separate base and boost plans plus 10 simultaneous integrated boost (SIB)). An optimal approach, robust to online adaptation, for Ethos-initial plans using clinical goal prioritization was developed. Anatomically-derived isodose-shaping helper structures, air-density override, goals for controlling hotspot location(s), and plan normalization were investigated. Online adaptation was simulated using clinical offline adaptive simulation-CTs to represent an on-treatment CBCT. Dosimetric comparisons were based on institutional guidelines for Clinical-initial versus Ethos-initial plans and Ethos-scheduled versus Ethos-adapted plans. Timing for five components of the online adaptive workflow was analyzed. RESULTS The Ethos H&N planning approach generated Ethos-initial SEQ plans with clinically comparable PTV coverage (average PTVHigh V100% = 98.3%, Dmin,0.03cc = 97.9% and D0.03cc = 105.5%) and OAR sparing. However, Ethos-initial SIB plans were clinically inferior (average PTVHigh V100% = 96.4%, Dmin,0.03cc = 93.7%, D0.03cc = 110.6%). Fixed-field IMRT was superior to VMAT for 93.3% of plans. Online adaptation succeeded in achieving conformal coverage to the new anatomy in both SEQ and SIB plans that was even superior to that achieved in the initial plans (which was due to the changes in anatomy that simplified the optimization). The average adaptive workflow duration for SIB, SEQ base and SEQ boost was 30:14, 22.56, and 14:03 (min: sec), respectively. CONCLUSIONS With an optimal planning approach, Ethos efficiently auto-generated dosimetrically comparable and clinically acceptable initial SEQ plans for H&N patients. Initial SIB plans were inferior and clinically unacceptable, but adapted SIB plans became clinically acceptable. Online adapted plans optimized dose to new anatomy and maintained target coverage/homogeneity with improved OAR sparing in a time-efficient manner.
Collapse
Affiliation(s)
- Nour Nasser
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - George Q. Yang
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jihye Koo
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Mark Bowers
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Kevin Greco
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | | | - Eduardo G. Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jimmy J. Caudell
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Gage Redler
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
6
|
Liu H, Schaal D, Curry H, Clark R, Magliari A, Kupelian P, Khuntia D, Beriwal S. Review of cone beam computed tomography based online adaptive radiotherapy: current trend and future direction. Radiat Oncol 2023; 18:144. [PMID: 37660057 PMCID: PMC10475190 DOI: 10.1186/s13014-023-02340-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Adaptive radiotherapy (ART) was introduced in the late 1990s to improve the accuracy and efficiency of therapy and minimize radiation-induced toxicities. ART combines multiple tools for imaging, assessing the need for adaptation, treatment planning, quality assurance, and has been utilized to monitor inter- or intra-fraction anatomical variations of the target and organs-at-risk (OARs). Ethos™ (Varian Medical Systems, Palo Alto, CA), a cone beam computed tomography (CBCT) based radiotherapy treatment system that uses artificial intelligence (AI) and machine learning to perform ART, was introduced in 2020. Since then, numerous studies have been done to examine the potential benefits of Ethos™ CBCT-guided ART compared to non-adaptive radiotherapy. This review will explore the current trends of Ethos™, including improved CBCT image quality, a feasible clinical workflow, daily automated contouring and treatment planning, and motion management. Nevertheless, evidence of clinical improvements with the use of Ethos™ are limited and is currently under investigation via clinical trials.
Collapse
Affiliation(s)
- Hefei Liu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | - Ryan Clark
- Varian Medical Systems Inc, Palo Alto, CA, USA
| | | | | | | | - Sushil Beriwal
- Varian Medical Systems Inc, Palo Alto, CA, USA.
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/accdb2. [PMID: 37068488 PMCID: PMC10637515 DOI: 10.1088/1361-6560/accdb2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Business Analytics, University of Amsterdam, The Netherlands
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Dick den Hertog
- Department of Business Analytics, University of Amsterdam, The Netherlands
| | - Ali Ajdari
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| |
Collapse
|
8
|
Bessieres I, Lorenzo O, Bertaut A, Petitfils A, Aubignac L, Boudet J. Online adaptive radiotherapy and dose delivery accuracy: A retrospective analysis. J Appl Clin Med Phys 2023:e14005. [PMID: 37097765 PMCID: PMC10402677 DOI: 10.1002/acm2.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
PURPOSE With online adaptive radiotherapy (ART), patient-specific quality assurance (PSQA) testing cannot be performed prior to delivery of the adapted treatment plan. Consequently, the dose delivery accuracy of adapted plans (i.e., the ability of the system to interpret and deliver the treatment as planned) are not initially verified. We investigated the variation in dose delivery accuracy of ART on the MRIdian 0.35 T MR-linac (Viewray Inc., Oakwood, USA) between initial plans and their respective adapted plans, by analyzing PSQA results. METHODS We considered the two main digestive localizations treated with ART (liver and pancreas). A total of 124 PSQA results acquired with the ArcCHECK (Sun Nuclear Corporation, Melbourne, USA) multidetector system were analyzed. PSQA result variations between the initial plans and their respective adapted plans were statistically investigated and compared with the variation in MU number. RESULTS For the liver, limited deterioration in PSQA results was observed, and was within the limits of clinical tolerance (Initial = 98.2%, Adapted = 98.2%, p = 0.4503). For pancreas plans, only a few significant deteriorations extending beyond the limits of clinical tolerance were observed and were due to specific, complex anatomical configurations (Initial = 97.3%, Adapted = 96.5%, p = 0.0721). In parallel, we observed an influence of the increase in MU number on the PSQA results. CONCLUSION We show that the dose delivery accuracy of adapted plans, in terms of PSQA results, is preserved in ART processes on the 0.35 T MR-linac. Respecting good practices, and minimizing the increase in MU number can help to preserve the accuracy of delivery of adapted plans as compared to their respective initial plans.
Collapse
Affiliation(s)
- Igor Bessieres
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Olivier Lorenzo
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Aurélie Bertaut
- Methodology, Data-Management and Biostatistics Unit, Centre Georges-François Leclerc, Dijon, France
| | - Aurélie Petitfils
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Léone Aubignac
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Julien Boudet
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
9
|
Yen A, Shen C, Albuquerque K. The New Kid on the Block: Online Adaptive Radiotherapy in the Treatment of Gynecologic Cancers. Curr Oncol 2023; 30:865-874. [PMID: 36661715 PMCID: PMC9857810 DOI: 10.3390/curroncol30010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Online adaptive radiation is a new and exciting modality of treatment for gynecologic cancers. Traditional radiation treatments deliver the same radiation plan to cancers with large margins. Improvements in imaging, technology, and artificial intelligence have made it possible to account for changes between treatments and improve the delivery of radiation. These advances can potentially lead to significant benefits in tumor coverage and normal tissue sparing. Gynecologic cancers can uniquely benefit from this technology due to the significant changes in bladder, bowel, and rectum between treatments as well as the changes in tumors commonly seen between treatments. Preliminary studies have shown that online adaptive radiation can maintain coverage of the tumor while sparing nearby organs. Given these potential benefits, numerous clinical trials are ongoing to investigate the clinical benefits of online adaptive radiotherapy. Despite the benefits, implementation of online adaptive radiotherapy requires significant clinical resources. Additionally, the timing and workflow for online adaptive radiotherapy is being optimized. In this review, we discuss the history and evolution of radiation techniques, the logistics and implementation of online adaptive radiation, and the potential benefits of online adaptive radiotherapy for gynecologic cancers.
Collapse
Affiliation(s)
| | | | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Nasief HG, Parchur AK, Omari E, Zhang Y, Chen X, Paulson E, Hall WA, Erickson B, Li XA. Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy. Radiother Oncol 2022; 176:165-171. [PMID: 36216299 PMCID: PMC9838213 DOI: 10.1016/j.radonc.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Online adaptive replanning (OLAR) is generally labor-intensive and time-consuming during MRI-guided adaptive radiation therapy (MRgART). This work aims to develop a method to determine OLAR necessity during MRgART. METHODS A machine learning classifier was developed to predict OLAR necessity based on wavelet multiscale texture features extracted from daily MRIs and was trained and tested with data from 119 daily MRI datasets acquired during MRgART for 24 pancreatic cancer patients treated on a 1.5 T MR-Linac. Spearman correlations, interclass correlation (ICC), coefficient of variance (COV), t-test (p < 0.05), self-organized map (SOM) and maximum stable extremal region (MSER) algorithm were used to determine candidate features, which were used to build the prediction models using Bayesian classifiers. The model performance was judged using the AUC of the ROC curve. RESULTS Spearman correlation identified 123 features that were not redundant (r < 0.9). Of them 82 showed high ICC for repositioning > 0.6, 67 had a COV greater than 9% for OLAR. Among the 38 features passed the t-test, 25 passed the SOM and 12 passed the MSER. These final 12 features were used to build the classifier model. The combination of 2-3 features at a time was used to build the classifier models. The best performing model was a 3-feature combination, which can predict OLAR necessity with a CV-AUC of 0.98. CONCLUSIONS A machine learning classifier model based on the wavelet features extracted from daily MRI for pancreatic cancer was developed to automatically and objectively determine if OLAR is necessary for a treatment fraction avoiding unnecessary effort during MRgART.
Collapse
Affiliation(s)
- Haidy G Nasief
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eenas Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
McComas KN, Yock A, Darrow K, Shinohara ET. Online Adaptive Radiation Therapy and Opportunity Cost. Adv Radiat Oncol 2022. [DOI: 10.1016/j.adro.2022.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Montalvo SK, Meng B, Lin MH, Park C, Desai NB, Hannan R, Garant A. Case Report: Adaptive radiotherapy in the radiation salvage of prostate cancer. Front Oncol 2022; 12:898822. [PMID: 36046047 PMCID: PMC9420944 DOI: 10.3389/fonc.2022.898822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Adaptive radiotherapy has the potential to reduce margins, improve target coverage, and decrease toxicity to organs at risk (OARs) by optimizing radiation delivery to daily anatomic changes. Salvage for locally recurrent prostate cancer after definitive radiation remains a challenging clinical scenario given the risks to normal tissue in a setting of re-irradiation. Here, we present a case series of five patients with locally recurrent prostate cancer treated with an adaptive online linear accelerator or a 3-T MR-based linear accelerator to demonstrate excellent target coverage. All patients completed the planned treatment course with acceptable acute toxicities but a short follow-up time does not inform subacute/late toxicities.
Collapse
|
13
|
Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, Kurz C, Landry G, Reiner M, Niyazi M, Belka C, Corradini S. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol 2022; 17:53. [PMID: 35279185 PMCID: PMC8917666 DOI: 10.1186/s13014-022-02021-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hybrid magnetic resonance (MR)-Linac systems have recently been introduced into clinical practice. The systems allow online adaption of the treatment plan with the aim of compensating for interfractional anatomical changes. The aim of this study was to evaluate the dose volume histogram (DVH)-based dosimetric benefits of online adaptive MR-guided radiotherapy (oMRgRT) across different tumor entities and to investigate which subgroup of plans improved the most from adaption. Methods Fifty patients treated with oMRgRT for five different tumor entities (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) were included in this retrospective analysis. Various target volume (gross tumor volume GTV, clinical target volume CTV, and planning target volume PTV) and organs at risk (OAR) related DVH parameters were compared between the dose distributions before and after plan adaption. Results All subgroups clearly benefited from online plan adaption in terms of improved PTV coverage. For the liver, lung and abdominal lymph nodes cases, a consistent improvement in GTV coverage was found, while many fractions of the prostate subgroup showed acceptable CTV coverage even before plan adaption. The largest median improvements in GTV near-minimum dose (D98%) were found for the liver (6.3%, p < 0.001), lung (3.9%, p < 0.001), and abdominal lymph nodes (6.8%, p < 0.001) subgroups. Regarding OAR sparing, the largest median OAR dose reduction during plan adaption was found for the pancreas subgroup (-87.0%). However, in the pancreas subgroup an optimal GTV coverage was not always achieved because sparing of OARs was prioritized. Conclusion With online plan adaptation, it was possible to achieve significant improvements in target volume coverage and OAR sparing for various tumor entities and account for interfractional anatomical changes.
Collapse
|
14
|
Hall WA, Paulson E, Li XA, Erickson B, Schultz C, Tree A, Awan M, Low DA, McDonald BA, Salzillo T, Glide-Hurst CK, Kishan AU, Fuller CD. Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA Cancer J Clin 2022; 72:34-56. [PMID: 34792808 PMCID: PMC8985054 DOI: 10.3322/caac.21707] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Collapse
MESH Headings
- History, 20th Century
- History, 21st Century
- Humans
- Magnetic Resonance Imaging, Interventional/history
- Magnetic Resonance Imaging, Interventional/instrumentation
- Magnetic Resonance Imaging, Interventional/methods
- Magnetic Resonance Imaging, Interventional/trends
- Neoplasms/diagnostic imaging
- Neoplasms/radiotherapy
- Particle Accelerators
- Radiation Oncology/history
- Radiation Oncology/instrumentation
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiotherapy Planning, Computer-Assisted/history
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/trends
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Tree
- The Royal Marsden National Health Service Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel A. Low
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Travis Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Byrne M, Archibald-Heeren B, Hu Y, Teh A, Beserminji R, Cai E, Liu G, Yates A, Rijken J, Collett N, Aland T. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J Appl Clin Med Phys 2021; 23:e13479. [PMID: 34846098 PMCID: PMC8803282 DOI: 10.1002/acm2.13479] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/14/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023] Open
Abstract
The Varian Ethos system allows for online adaptive treatments through the utilization of artificial intelligence (AI) and deformable image registration which automates large parts of the anatomical contouring and plan optimization process. In this study, treatments of intact prostate and prostate bed, with and without nodes, were simulated for 182 online adaptive fractions, and then a further 184 clinical fractions were delivered on the Ethos system. Frequency and magnitude of contour edits were recorded, as well as a range of plan quality metrics. From the fractions analyzed, 11% of AI generated contours, known as influencer contours, required no change, and 81% required minor edits in any given fraction. The frequency of target and noninfluencer organs at risk (OAR) contour editing varied substantially between different targets and noninfluencer OARs, although across all targets 72% of cases required no edits. The adaptive plan was the preference in 95% of fractions. The adaptive plan met more goals than the scheduled plan in 78% of fractions, while in 15% of fractions the number of goals met was the same. The online adaptive recontouring and replanning process was carried out in 19 min on average. Significant improvements in dosimetry are possible with the Ethos online adaptive system in prostate radiotherapy.
Collapse
Affiliation(s)
- Mikel Byrne
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia.,School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ben Archibald-Heeren
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Yunfei Hu
- Icon Cancer Centre Gosford, Gosford, New South Wales, Australia
| | - Amy Teh
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Rhea Beserminji
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Emma Cai
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Guilin Liu
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Angela Yates
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - James Rijken
- Icon Cancer Centre Windsor Gardens, Windsor Gardens, South Australia, Australia
| | - Nick Collett
- Icon Cancer Centre Wahroonga, Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Trent Aland
- Icon Core Office, South Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Evaluation of the Dose Delivery Consistency and Its Dependence on Imaging Modality and Deformable Image Registration Algorithm in Prostate Cancer Patients. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00673-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
CT-on-Rails Versus In-Room CBCT for Online Daily Adaptive Proton Therapy of Head-and-Neck Cancers. Cancers (Basel) 2021; 13:cancers13235991. [PMID: 34885100 PMCID: PMC8656713 DOI: 10.3390/cancers13235991] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To compare the efficacy of CT-on-rails versus in-room CBCT for daily adaptive proton therapy. METHODS We analyzed a cohort of ten head-and-neck patients with daily CBCT and corresponding virtual CT images. The necessity of moving the patient after a CT scan is the most significant difference in the adaptation workflow, leading to an increased treatment execution uncertainty σ. It is a combination of the isocenter-matching σi and random patient movements induced by the couch motion σm. The former is assumed to never exceed 1 mm. For the latter, we studied three different scenarios with σm = 1, 2, and 3 mm. Accordingly, to mimic the adaptation workflow with CT-on-rails, we introduced random offsets after Monte-Carlo-based adaptation but before delivery of the adapted plan. RESULTS There were no significant differences in accumulated dose-volume histograms and dose distributions for σm = 1 and 2 mm. Offsets with σm = 3 mm resulted in underdosage to CTV and hot spots of considerable volume. CONCLUSION Since σm typically does not exceed 2 mm for in-room CT, there is no clinically significant dosimetric difference between the two modalities for online adaptive therapy of head-and-neck patients. Therefore, in-room CT-on-rails can be considered a good alternative to CBCT for adaptive proton therapy.
Collapse
|
18
|
Calvo-Ortega JF, Moragues-Femenía S, Laosa-Bello C, Torices-Caballero J, Hermida-López M, Casals-Farran J. Clinical Experience in Prostate Ultrahypofractionated Radiation Therapy With an Online Adaptive Method. Pract Radiat Oncol 2021; 12:e144-e152. [PMID: 34670139 DOI: 10.1016/j.prro.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to describe the feasibility of the online adaptive radiation therapy (oART) method developed at the Hospital Quirónsalud Barcelona for prostate cancer, using a standard C-arm linear accelerator (linac) and without the support of artificial intelligence. METHODS AND MATERIALS The first 18 patients treated at the Hospital Quirónsalud Barcelona with the developed oART method were included. An ultrahypofractionated radiation therapy scheme consisting of 7 × 6.1 Gy was used. Patients were treated on 2 conventional Varian C-arm linacs. For each patient, a reference plan based on a planning computed tomography (pCT) scan was generated using the Eclipse system. On each treatment session, the pCT scan was rigidly registered with the daily cone beam computed tomography (CT) scan. The pCT-based target (prostate) and organs at risk were mapped onto the cone beam CT images and manually adapted to take into account the anatomy of the day. The reference plan was then copied to the cone beam CT scan, and a full reoptimization was done for the current anatomy (adapted plan). For each treatment session, the unaltered reference plan was recomputed on the daily cone beam CT scan by mimicking the soft-tissue alignment performed per our standard procedure (nonadapted plan). Over the 126 adapted sessions from the 18 patients, a dosimetric comparison of adapted against nonadapted plans was done. RESULTS A significant difference in the target coverage was found between the adapted and nonadapted plans (97.1 vs 90.4; P < .001) in favor of adapting. Without online adaptation, the optimal coverage of the prostate was not attained in 35% of fractions. Adapting allows for the improvement of the target coverage with compliance of all organ-at-risk dose constraints in all treatment fractions. CONCLUSIONS The oART technique described in this study is technically feasible with a C-arm linac. To our knowledge, this is the first clinical experience with oART for prostate cancer including full replanning and delivered with a C-arm linac without artificial intelligence capability.
Collapse
Affiliation(s)
| | | | - Coral Laosa-Bello
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | | | - Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joan Casals-Farran
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| |
Collapse
|
19
|
Eckl M, Sarria GR, Springer S, Willam M, Ruder AM, Steil V, Ehmann M, Wenz F, Fleckenstein J. Dosimetric benefits of daily treatment plan adaptation for prostate cancer stereotactic body radiotherapy. Radiat Oncol 2021; 16:145. [PMID: 34348765 PMCID: PMC8335467 DOI: 10.1186/s13014-021-01872-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hypofractionation is increasingly being applied in radiotherapy for prostate cancer, requiring higher accuracy of daily treatment deliveries than in conventional image-guided radiotherapy (IGRT). Different adaptive radiotherapy (ART) strategies were evaluated with regard to dosimetric benefits. METHODS Treatments plans for 32 patients were retrospectively generated and analyzed according to the PACE-C trial treatment scheme (40 Gy in 5 fractions). Using a previously trained cycle-generative adversarial network algorithm, synthetic CT (sCT) were generated out of five daily cone-beam CT. Dose calculation on sCT was performed for four different adaptation approaches: IGRT without adaptation, adaptation via segment aperture morphing (SAM) and segment weight optimization (ART1) or additional shape optimization (ART2) as well as a full re-optimization (ART3). Dose distributions were evaluated regarding dose-volume parameters and a penalty score. RESULTS Compared to the IGRT approach, the ART1, ART2 and ART3 approaches substantially reduced the V37Gy(bladder) and V36Gy(rectum) from a mean of 7.4cm3 and 2.0cm3 to (5.9cm3, 6.1cm3, 5.2cm3) as well as to (1.4cm3, 1.4cm3, 1.0cm3), respectively. Plan adaptation required on average 2.6 min for the ART1 approach and yielded doses to the rectum being insignificantly different from the ART2 approach. Based on an accumulation over the total patient collective, a penalty score revealed dosimetric violations reduced by 79.2%, 75.7% and 93.2% through adaptation. CONCLUSION Treatment plan adaptation was demonstrated to adequately restore relevant dose criteria on a daily basis. While for SAM adaptation approaches dosimetric benefits were realized through ensuring sufficient target coverage, a full re-optimization mainly improved OAR sparing which helps to guide the decision of when to apply which adaptation strategy.
Collapse
Affiliation(s)
- Miriam Eckl
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sandra Springer
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marvin Willam
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Arne M Ruder
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Volker Steil
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Michael Ehmann
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Frederik Wenz
- University Medical Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
20
|
Sibolt P, Andersson LM, Calmels L, Sjöström D, Bjelkengren U, Geertsen P, Behrens CF. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 17:1-7. [PMID: 33898770 PMCID: PMC8057957 DOI: 10.1016/j.phro.2020.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Background and purpose Studies have demonstrated the potential of online adaptive radiotherapy (oART). However, routine use has been limited due to resource demanding solutions. This study reports on experiences with oART in the pelvic region using a novel cone-beam computed tomography (CBCT)-based, artificial intelligence (AI)-driven solution. Material and methods Automated pre-treatment planning for thirty-nine pelvic cases (bladder, rectum, anal, and prostate), and one hundred oART simulations were conducted in a pre-clinical release of Ethos (Varian Medical Systems, Palo Alto, CA). Plan quality, AI-segmentation accuracy, oART feasibility and an integrated calculation-based quality assurance solution were evaluated. Experiences from the first five clinical oART patients (three bladder, one rectum and one sarcoma) are reported. Results Auto-generated pre-treatment plans demonstrated similar planning target volume (PTV) coverage and organs at risk doses, compared to institution reference. More than 75% of AI-segmentations during simulated oART required none or minor editing and the adapted plan was superior in 88% of cases. Limitations in AI-segmentation correlated to cases where AI model training was lacking. The five first treated patients complied well with the median adaptive procedure duration of 17.6 min (from CBCT acceptance to treatment delivery start). The treated bladder patients demonstrated a 42% median primary PTV reduction, indicating a 24%-30% reduction in V45Gy to the bowel cavity, compared to non-ART. Conclusions A novel commercial oART solution was demonstrated feasible for various pelvic sites. Clinically acceptable AI-segmentation and auto-planning enabled adaptation within reasonable timeslots. Possibilities for reduced PTVs observed for bladder cancer indicated potential for toxicity reductions.
Collapse
Affiliation(s)
- Patrik Sibolt
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lina M Andersson
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Lucie Calmels
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - David Sjöström
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Ulf Bjelkengren
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Poul Geertsen
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| | - Claus F Behrens
- Department of Oncology, Herlev & Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
21
|
Ferrara E, Beldì D, Yin J, Vigna L, Loi G, Krengli M. Adaptive Strategy for External Beam Radiation Therapy in Prostate Cancer: Management of the Geometrical Uncertainties With Robust Optimization. Pract Radiat Oncol 2020; 10:e521-e528. [DOI: 10.1016/j.prro.2020.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
22
|
Glide-Hurst CK, Lee P, Yock AD, Olsen JR, Cao M, Siddiqui F, Parker W, Doemer A, Rong Y, Kishan AU, Benedict SH, Li XA, Erickson BA, Sohn JW, Xiao Y, Wuthrick E. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys 2020; 109:1054-1075. [PMID: 33470210 DOI: 10.1016/j.ijrobp.2020.10.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided.
Collapse
Affiliation(s)
- Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado- Denver, Denver, Colorado
| | - Minsong Cao
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - William Parker
- Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Yi Rong
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California-Davis, Sacramento, California
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason W Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
23
|
Lim SN, Ahunbay EE, Nasief H, Zheng C, Lawton C, Li XA. Indications of Online Adaptive Replanning Based On Organ Deformation. Pract Radiat Oncol 2020; 10:e95-e102. [PMID: 31446149 DOI: 10.1016/j.prro.2019.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Although vital to account for interfractional variations during radiation therapy, online adaptive replanning (OLAR) is time-consuming and labor-intensive compared with the repositioning method. Repositioning is enough for minimal interfractional deformations. Therefore, determining indications for OLAR is desirable. We introduce a method to rapidly determine the need for OLAR by analyzing the Jacobian determinant histogram (JDH) obtained from deformable image registration between reference (planning) and daily images. METHODS AND MATERIALS The proposed method was developed and tested based on daily computed tomography (CT) scans acquired during image guided radiation therapy for prostate cancer using an in-room CT scanner. Deformable image registration between daily and reference CT scans was performed. JDHs were extracted from the prostate and a uniform surrounding 10-mm expansion. A classification tree was trained to determine JDH metrics to predict the need for OLAR for a daily CT set. Sixty daily CT scans from 12 randomly selected prostate cases were used as the training data set, with dosimetric plans for both OLAR and repositioning used to determine their class. The resulting classification tree was tested using an independent data set of 45 daily CT scans from 9 other patients with 5 CT scans each. RESULTS Of a total of 27 JDH metrics tested, 5 were identified predicted whether OLAR was substantially superior to repositioning for a given fraction. A decision tree was constructed using the obtained metrics from the training set. This tree correctly identified all cases in the test set where benefits of OLAR were obvious. CONCLUSIONS A decision tree based on JDH metrics to quickly determine the necessity of online replanning based on the image of the day without segmentation was determined using a machine learning process. The process can be automated and completed within a minute, allowing users to quickly decide which fractions require OLAR.
Collapse
Affiliation(s)
- Sara N Lim
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ergun E Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Haidy Nasief
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cheng Zheng
- Department of Biostatistics, University of Wisconsin Milwaukee, Milwaukee, Wisconsin
| | - Colleen Lawton
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
24
|
Hammers JE, Pirozzi S, Lindsay D, Kaidar-Person O, Tan X, Chen RC, Das SK, Mavroidis P. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT. J Appl Clin Med Phys 2020; 21:14-25. [PMID: 32058663 PMCID: PMC7020979 DOI: 10.1002/acm2.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/08/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose To assess the performance and limitations of contour propagation with three commercial deformable image registration (DIR) algorithms using fractional scans of CT‐on‐rails (CTOR) and Cone Beam CT (CBCT) in image guided prostate therapy patients treated with IMRT/VMAT. Methods Twenty prostate cancer patients treated with IMRT/VMAT were selected for analysis. A total of 453 fractions across those patients were analyzed. Image data were imported into MIM (MIM Software, Inc., Cleveland, OH) and three DIR algorithms (DIR Profile, normalized intensity‐based (NIB) and shadowed NIB DIR algorithms) were applied to deformably register each fraction with the planning CT. Manually drawn contours of bladder and rectum were utilized for comparison against the DIR propagated contours in each fraction. Four metrics were utilized in the evaluation of contour similarity, the Hausdorff Distance (HD), Mean Distance to Agreement (MDA), Dice Similarity Coefficient (DSC), and Jaccard indices. A subfactor analysis was performed per modality (CTOR vs. CBCT) and time (fraction). Point estimates and 95% confidence intervals were assessed via a Linear Mixed Effect model for the contour similarity metrics. Results No statistically significant differences were observed between the DIR Profile and NIB algorithms. However, statistically significant differences were observed between the shadowed NIB and NIB algorithms for some of the DIR evaluation metrics. The Hausdorff Distance calculation showed the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 14.82 mm vs. 8.34 mm for bladder and 15.87 mm vs. 11 mm for rectum, respectively. Similarly, the Mean Distance to Agreement calculation comparing the NIB propagated contours vs. shadowed NIB propagated contours against the manual contours were 2.43 mm vs. 0.98 mm for bladder and 2.57 mm vs. 1.00 mm for rectum, respectively. The Dice Similarity Coefficients comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.844 against 0.936 for bladder and 0.772 against 0.907 for rectum, respectively. The Jaccard indices comparing the NIB propagated contours and shadowed NIB propagated contours against the manual contours were 0.749 against 0.884 for bladder and 0.637 against 0.831 for rectum, respectively. The shadowed NIB DIR, which showed the closest agreement with the manual contours performed significantly better than the DIR Profile in all the comparisons. The OAR with the greatest agreement varied substantially across patients and image guided radiation therapy (IGRT) modality. Intra‐patient variability of contour metric evaluation was insignificant across all the DIR algorithms. Statistical significance at α = 0.05 was observed for manual vs. deformably propagated contours for bladder for all the metrics except Hausdorff Distance (P = 0.01 for MDA, P = 0.02 for DSC, P = 0.01 for Jaccard), whereas the corresponding values for rectum were: P = 0.03 for HD, P = 0.01 for MDA, P < 0.01 for DSC, P < 0.01 for Jaccard. The performance of the different metrics varied slightly across the fractions of each patient, which indicates that weekly contour propagation models provide a reasonable approximation of the daily contour propagation models. Conclusion The high variance of Hausdorff Distance across all automated methods for bladder indicates widely variable agreement across fractions for all patients. Lower variance across all modalities, methods, and metrics were observed for rectum. The shadowed NIB propagated contours were substantially more similar to the manual contours than the DIR Profile or NIB contours for both the CTOR and CBCT imaging modalities. The relationship of each algorithm to similarity with manual contours is consistent across all observed metrics and organs. Screening of image guidance for substantial differences in bladder and rectal filling compared with the planning CT reference could aid in identifying fractions for which automated DIR would prove insufficient.
Collapse
Affiliation(s)
- Jacob E Hammers
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | | | - Daniel Lindsay
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Orit Kaidar-Person
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC
| | - Ronald C Chen
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Shiva K Das
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC
| |
Collapse
|
25
|
Draulans C, De Roover R, van der Heide UA, Haustermans K, Pos F, Smeenk RJ, De Boer H, Depuydt T, Kunze-Busch M, Isebaert S, Kerkmeijer L. Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus. Radiother Oncol 2019; 140:131-142. [PMID: 31276989 DOI: 10.1016/j.radonc.2019.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiotherapy (SBRT) for prostate cancer (PCa) is gaining interest by the recent publication of the first phase III trials on prostate SBRT and the promising results of many other phase II trials. Before long term results became available, the major concern for implementing SBRT in PCa in daily clinical practice was the potential risk of late genitourinary (GU) and gastrointestinal (GI) toxicity. A number of recently published trials, including late outcome and toxicity data, contributed to the growing evidence for implementation of SBRT for PCa in daily clinical practice. However, there exists substantial variability in delivering SBRT for PCa. The aim of this topical review is to present a number of prospective trials and retrospective analyses of SBRT in the treatment of PCa. We focus on the treatment strategies and techniques used in these trials. In addition, recent literature on a simultaneous integrated boost to the tumor lesion, which could create an additional value in the SBRT treatment of PCa, was described. Furthermore, we discuss the multicenter consensus of the FLAME consortium on SBRT for PCa with a focal boost to the macroscopic intraprostatic tumor nodule(s).
Collapse
Affiliation(s)
- Cédric Draulans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Robin De Roover
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Hans De Boer
- Department of Radiation Oncology, University Medical Center, Utrecht, The Netherlands.
| | - Tom Depuydt
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Martina Kunze-Busch
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Sofie Isebaert
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Linda Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Radiation Oncology, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
26
|
État des lieux de la radiothérapie adaptative en 2019 : de la mise en place à l’utilisation clinique. Cancer Radiother 2019; 23:581-591. [DOI: 10.1016/j.canrad.2019.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
|
27
|
Jagt TZ, Breedveld S, van Haveren R, Nout RA, Astreinidou E, Heijmen BJM, Hoogeman MS. Plan-library supported automated replanning for online-adaptive intensity-modulated proton therapy of cervical cancer. Acta Oncol 2019; 58:1440-1445. [PMID: 31271076 DOI: 10.1080/0284186x.2019.1627414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Intensity-modulated proton therapy is sensitive to inter-fraction variations, including density changes along the pencil-beam paths and variations in organ-shape and location. Large day-to-day variations are seen for cervical cancer patients. The purpose of this study was to develop and evaluate a novel method for online selection of a plan from a patient-specific library of prior plans for different anatomies, and adapt it for the daily anatomy. Material and methods: The patient-specific library of prior plans accounting for altered target geometries was generated using a pretreatment established target motion model. Each fraction, the best fitting prior plan was selected. This prior plan was adapted using (1) a restoration of spot-positions (Bragg peaks) by adapting the energies to the new water equivalent path lengths; and (2) a spot addition to fully cover the target of the day, followed by a fast optimization of the spot-weights with the reference point method (RPM) to obtain a Pareto-optimal plan for the daily anatomy. Spot addition and spot-weight optimization could be repeated iteratively. The patient cohort consisted of six patients with in total 23 repeat-CT scans, with a prescribed dose of 45 Gy(RBE) to the primary tumor and the nodal CTV. Using a 1-plan-library (one prior plan based on all motion in the motion model) was compared to choosing from a 2-plan-library (two prior plans based on part of the motion). Results: Applying the prior-plan adaptation method with one iteration of adding spots resulted in clinically acceptable target coverage ( V95%≥95% and V107%≤2% ) for 37/46 plans using the 1-plan-library and 41/46 plans for the 2-plan-library. When adding spots twice, the 2-plan-library approach could obtain acceptable coverage for all scans, while the 1-plan-library approach showed V107%>2% for 3/46 plans. Similar OAR results were obtained. Conclusion: The automated prior-plan adaptation method can successfully adapt for the large day-to-day variations observed in cervical cancer patients.
Collapse
Affiliation(s)
- Thyrza Z. Jagt
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rens van Haveren
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Remi A. Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleftheria Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ben J. M. Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mischa S. Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
28
|
Posiewnik M, Piotrowski T. A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer. Phys Med 2019; 59:13-21. [DOI: 10.1016/j.ejmp.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022] Open
|
29
|
Zou W, Dong L, Kevin Teo BK. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy. Semin Radiat Oncol 2018; 28:238-247. [PMID: 29933883 DOI: 10.1016/j.semradonc.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Image guidance technology has evolved and seen widespread application in the past several decades. Advancements in the diagnostic imaging field have found new applications in radiation oncology and promoted the development of therapeutic devices with advanced imaging capabilities. A recent example is the development of linear accelerators that offer magnetic resonance imaging for real-time imaging and online adaptive planning. Volumetric imaging, in particular, offers more precise localization of soft tissue targets and critical organs which reduces setup uncertainty and permit the use of smaller setup margins. We present a review of the status of current imaging modalities available for radiation oncology and its impact on target margins and use for adaptive therapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Zhang J, Ahunbay E, Li XA. Technical Note: Acceleration of online adaptive replanning with automation and parallel operations. Med Phys 2018; 45:4370-4376. [PMID: 30053325 DOI: 10.1002/mp.13106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Limited by various human interventions and manual operations, the routine practice of online adaptive replanning (OLAR) is time consuming and impractical with the current planning technology. To accelerate OLAR and to minimize human efforts, the methods and software tools are developed to automate OLAR workflow and to use parallel processing during OLAR. METHODS Speedy online adaptive replanning SOLAR, a software tool, was developed to automate the OLAR workflow and to implement parallel operation in plan generation and contour editing. The SOLAR tool is designed to automate and monitor the operation of OLAR on multiple client workstations and to allow parallel manual contour editing and plan generation with multiple workstations. The performance of the SOLAR tool was tested on selected prostate and pancreatic cancer cases. RESULTS The SOLAR system has been tested in the clinical environment. With the automation and parallel operations, the operation time for OLAR can be reduced by 70%, allowing OLAR to be completed within 10 min for the tested prostate cancer cases and within 15 min for the pancreatic cancer cases. The SOLAR system generated superior plans compared to the standard repositioning method. CONCLUSION SOLAR software was developed to accelerate online adaptive replanning workflow with automation and parallel operations. By reducing the time and human intervention, thus, reducing potential human error, the SOLAR solution would improve the practicality of OLAR.
Collapse
Affiliation(s)
- Jingqiao Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
31
|
Li W, Lu L, Stephans KL, Sharma N, Vassil A, Shen ZL, Stockham A, Djemil T, Tendulkar RD, Xia P. Volumetric-based image guidance is superior to marker-based alignments for stereotactic body radiotherapy of prostate cancer. J Appl Clin Med Phys 2018; 19:198-203. [PMID: 29450961 PMCID: PMC5849820 DOI: 10.1002/acm2.12280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
Purposes The aim of this study was to evaluate a dual marker‐based and soft‐tissue based image guidance for inter‐fractional corrections in stereotactic body radiotherapy (SBRT) of prostate cancer. Methods/Materials We reviewed 18 patients treated with SBRT for prostate cancer. An endorectal balloon was inserted at simulation and each treatment. Planning margins were 3 mm/0 mm posteriorly. Prior to each treatment, a dual image guidance protocol was applied to align three makers using stereoscopic x ray images and then to the soft tissue using kilo‐voltage cone beam CT (kV‐CBCT). After treatment, prostate (CTV), rectal wall, and bladder were delineated on each kV‐CBCT, and delivered dose was recalculated. Dosimetric endpoints were analyzed, including V36.25 Gy for prostate, and D0.03 cc for bladder and rectal wall. Results Following initial marker alignment, additional translational shifts were applied to 22 of 84 fractions after kV‐CBCT. Among the 22 fractions, ten fractions exceeded 3 mm shifts in any direction, including one in the left‐right direction, four in the superior‐inferior direction, and five in the anterior‐posterior direction. With and without the additional kV‐CBCT shifts, the average V36.25 Gy of the prostate for the 22 fractions was 97.6 ± 2.6% with the kV x ray image alone, and was 98.1 ± 2.4% after applying the additional kV‐CBCT shifts. The improvement was borderline statistical significance using Wilcoxon signed‐rank test (P = 0.007). D0.03 cc was 45.8 ± 6.3 Gy vs. 45.1 ± 4.9 Gy for the rectal wall; and 49.5 ± 8.6 Gy vs. 49.3 ± 7.9 Gy for the bladder before and after applying kV‐CBCT shifts. Conclusions Marker‐based alignment alone is not sufficient. Additional adjustments are needed for some patients based kV‐CBCT.
Collapse
Affiliation(s)
- Wen Li
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lan Lu
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Naveen Sharma
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrew Vassil
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Zhilei Liu Shen
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abigail Stockham
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Toufik Djemil
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rahul D Tendulkar
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
32
|
Choi HS, Jo GS, Chae JP, Lee SB, Kim CH, Jeong BK, Jeong H, Lee YH, Ha IB, Kang KM, Song JH. Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:4149591. [PMID: 29403539 PMCID: PMC5748323 DOI: 10.1155/2017/4149591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
We evaluated the changes in the dose distribution of radiation during volumetric arc radiotherapy (VMAT), to determine the right time for adaptive replanning in prostate cancer patients with progressive weight (WT) changes. Five prostate cancer patients treated with VMAT were selected for dosimetric analysis. On the original computed tomography images, nine artificial body contours were created to reflect progressive WT changes. Combined with three different photon energies (6, 10, and 15-MV), 27 comparable virtual VMAT plans were created per patient. The dosimetric analysis included evaluation of target coverage (D95%, Dmax), conformity index, homogeneity index, and organs at risk doses. The dose differences among the plans were determined using the gamma index analysis and were compared with the dosimetric analysis. Mean D95% became lower than 98% when body contour expanded by 2.0 cm or more and Dmax became higher than 107% when body contour contracted by 1.5 cm or more in 10-MV plans. This cut-off values correlated well with gamma index analysis results. Adaptive replanning should, therefore, be considered if the depth of body contour becomes 1.5 cm smaller (WT loss) or 2.0 cm larger (WT gain) in patients treated by VMAT with 10-MV photons.
Collapse
Affiliation(s)
- Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Guang Sub Jo
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Jong Pyo Chae
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Sang Bong Lee
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Chul Hang Kim
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Yun Hee Lee
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - In Bong Ha
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
33
|
Bert C, Herfarth K. Management of organ motion in scanned ion beam therapy. Radiat Oncol 2017; 12:170. [PMID: 29110693 PMCID: PMC5674859 DOI: 10.1186/s13014-017-0911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategies for patient specific treatment planning such as an increased beam focus or the use of internal target volumes incorporating range changes.Several work packages of the Clinical Research Units 214 and 214/2 funded by the German Research Council investigated the management of organ motion in scanned ion beam therapy. A focus was laid on 4D treatment planning using TRiP4D and the development of motion mitigation strategies including their quality assurance. This review focuses on the activity in the second funding period covering adaptive treatment planning strategies, 4D treatment plan optimization, and the application of motion management in pre-clinical research on radiation therapy of cardiac arrhythmias.
Collapse
Affiliation(s)
- Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 99:994-1003. [DOI: 10.1016/j.ijrobp.2017.04.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
|
35
|
Shang Q, Godley A, Huang L, Qi P, Xia P. Sensitivity of array detector measurements in determining shifts of MLC leaf positions. J Appl Clin Med Phys 2017; 18:80-88. [PMID: 28799273 PMCID: PMC5874934 DOI: 10.1002/acm2.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/01/2017] [Accepted: 06/01/2017] [Indexed: 11/15/2022] Open
Abstract
Using a MatriXX 2D ionization chamber array, we evaluated the detection sensitivity of systematically introduced MLC leaf positioning shifts to test whether the conventional IMRT QA method can be used for quality assurance of an MLC tracking algorithm. Because of finite special resolution, we first tested whether the detection sensitivity was dependent of the locations of leaf shifts and positions of ionization chambers. We then introduced the same systematic leaf shifts in two clinical intensity modulated radiotherapy plans (prostate and head and neck cancer). Our results reported differences between the measured planar doses with and without MLC shifts (errors). Independent of the locations of the leaf position shifts and positions of the detectors, for the simple rectangular fields, the MatriXX was able to detect ±2 mm MLC leaf positioning shifts with Gamma index of 3%/3 mm and ±1 mm MLC leaf position shifts with Gamma index of 2%/2 mm. For the clinical plans, measuring the fields individually, leaf positioning shifts of ±2 mm were detected using Gamma index of 3%/3 mm and a passing rate of 95%. When the fields were measured compositely, the Gamma index exhibited less sensitivity for the detection of leaf positioning shifts than when the fields were measured individually. In conclusion, if more than 2 mm MLC leaf shifts were required, the commercial detector array (MatriXX) is able to detect such MLC positioning shifts, otherwise a more sensitive quality assurance method should be used.
Collapse
Affiliation(s)
- Qingyang Shang
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Godley
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Long Huang
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Qi
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol 2017; 125:439-444. [PMID: 28811038 DOI: 10.1016/j.radonc.2017.07.028] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). MATERIAL AND METHODS SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART3CM) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V95%, Dmean, D1cc) and institutional OAR constraints (e.g. V33Gy). RESULTS SMART3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V95%=89%). Adaptive plans with SMART3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V33Gy dose constraint. CONCLUSIONS SMART3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians.
Collapse
|
37
|
Sheng Y, Li T, Lee WR, Yin FF, Wu QJ. Exploring the Margin Recipe for Online Adaptive Radiation Therapy for Intermediate-Risk Prostate Cancer: An Intrafractional Seminal Vesicles Motion Analysis. Int J Radiat Oncol Biol Phys 2017; 98:473-480. [DOI: 10.1016/j.ijrobp.2017.02.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
|
38
|
Adaptive Radiotherapy for Bladder Cancer—A Systematic Review. J Med Imaging Radiat Sci 2017; 48:199-206. [DOI: 10.1016/j.jmir.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022]
|
39
|
Oates R, Brown A, Tan A, Foroudi F, Lim Joon M, Schneider M, Herschtal A, Kron T. Real-time Image-guided Adaptive-predictive Prostate Radiotherapy using Rectal Diameter as a Predictor of Motion. Clin Oncol (R Coll Radiol) 2016; 29:180-187. [PMID: 27780695 DOI: 10.1016/j.clon.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
AIMS To investigate a relationship between maximum rectal diameter (MRD) on pre-treatment cone beam computed tomography (CBCT) and intra-fraction prostate motion, in the context of an adaptive image-guided radiotherapy (IGRT) method. MATERIALS AND METHODS The MRD was measured on 2125 CBCTs from 55 retrospective patient datasets and related to prostate displacement from intra-fraction imaging. A linear regression model was developed to determine a threshold MRD associated with a high probability of small prostate displacement. Standard and reduced adaptive margin plans were created to compare rectum and bladder normal tissue complication probability (NTCP) with each method. RESULTS A per-protocol analysis carried out on 1910 fractions from 51 patients showed with 90% confidence that for a MRD≤3 cm, prostate displacement will be ≤5 mm and that for a MRD≤3.5 cm, prostate displacement will be ≤5.5 mm. In the first scenario, if adaptive therapy was used instead of standard therapy, median reductions in NTCP for rectum and bladder were 0.5% (from 9.5% to 9%) and 1.3% (from 6.6% to 5.3%), respectively. In the second scenario, the NTCP for rectum and bladder would have median reductions of 1.1% and 2.6%, respectively. CONCLUSIONS We have identified a potential method for adaptive prostate IGRT based upon predicting small prostate intra-fraction motion by measuring MRD on pre-treatment CBCT.
Collapse
Affiliation(s)
- R Oates
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Bendigo, Victoria, Australia; Medical Imaging & Radiation Sciences, Monash University, Melbourne, Victoria, Australia.
| | - A Brown
- Radiation Oncology, Townsville Cancer Centre, Townsville, Queensland, Australia
| | - A Tan
- Radiation Oncology, Townsville Cancer Centre, Townsville, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Queensland, Australia
| | - F Foroudi
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - M Lim Joon
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - M Schneider
- Medical Imaging & Radiation Sciences, Monash University, Melbourne, Victoria, Australia
| | - A Herschtal
- Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - T Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Li D, Zang P, Chai X, Cui Y, Li R, Xing L. Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models. Med Phys 2016; 43:5426. [PMID: 27782723 PMCID: PMC5035314 DOI: 10.1118/1.4962468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Accurate segmentation of pelvic organs in CT images is of great importance in external beam radiotherapy for prostate cancer. The aim of this studying is to develop a novel method for automatic, multiorgan segmentation of the male pelvis. METHODS The authors' segmentation method consists of several stages. First, a pretreatment includes parameterization, principal component analysis (PCA), and an established process of region-specific hierarchical appearance cluster (RSHAC) model which was executed on the training dataset. After the preprocessing, online automatic segmentation of new CT images is achieved by combining the RSHAC model with the PCA-based point distribution model. Fifty pelvic CT from eight prostate cancer patients were used as the training dataset. From another 20 prostate cancer patients, 210 CT images were used for independent validation of the segmentation method. RESULTS In the training dataset, 15 PCA modes were needed to represent 95% of shape variations of pelvic organs. When tested on the validation dataset, the authors' segmentation method had an average Dice similarity coefficient and mean absolute distance of 0.751 and 0.371 cm, 0.783 and 0.303 cm, 0.573 and 0.604 cm for prostate, bladder, and rectum, respectively. The automated segmentation process took on average 5 min on a personal computer equipped with Core 2 Duo CPU of 2.8 GHz and 8 GB RAM. CONCLUSIONS The authors have developed an efficient and reliable method for automatic segmentation of multiple organs in the male pelvis. This method should be useful for treatment planning and adaptive replanning for prostate cancer radiotherapy. With this method, the physicist can improve the work efficiency and stability.
Collapse
Affiliation(s)
- Dengwang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Biomedical Sciences, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China and Medical Physics Division, Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Pengxiao Zang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Biomedical Sciences, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiangfei Chai
- Medical Physics Division, Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Yi Cui
- Medical Physics Division, Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Ruijiang Li
- Medical Physics Division, Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Lei Xing
- Medical Physics Division, Department of Radiation Oncology, Stanford University, Stanford, California 94305
| |
Collapse
|
41
|
Liu F, Tai A, Ahunbay E, Gore E, Johnstone C, Li XA. Management of independent motion between multiple targets in lung cancer radiation therapy. Pract Radiat Oncol 2016; 7:26-34. [PMID: 27742559 DOI: 10.1016/j.prro.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/26/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE To quantify interfractional independent motions between multiple primary targets in radiation therapy (RT) of lung cancer and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. METHODS AND MATERIALS Ninety-five on-treatment diagnostic-quality computed tomography (CT) scans acquired for 9 lung cancer patients treated with image-guided RT (IGRT) using a CT-on-rails (CTVision, Siemens) were analyzed. On each on-treatment CT set, contours of the targets (gross tumor volume, clinical target volume, or involved nodes), and organs at risk were generated by populating the planning contours using an autosegmentation tool (ABAS, Elekta) with manual editing. For each patient, an intensity modulated RT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2 Gy per fraction. Three plans were generated and compared for each on-treatment CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes, and segment weights of the original plan to conform to the on-treatment anatomy and a new fully reoptimized plan based on the on-treatment CT. RESULTS The interfractional deviations of the distance between centers of masses of the targets from the planning CTs varied from -1.0 to 0.8 cm with an average -0.09 ± 0.41 cm (1 standard deviation). The average combined CTV receiving at least 100% of the prescribed dose (V100) were 99.0 ± 0.7%, 97.8 ± 2.8%, 99.0 ± 0.6%, and 99.1 ± 0.6%, and the lung V20Gy 928 ± 332 cm3, 944 ± 315 cm3, 917 ± 300 cm3, and 891 ± 295 cm3 for the original, repositioning, adaptive, and reoptimized plans, respectively. Wilcoxon signed-rank tests showed that the adaptive plans were statistically significantly better than the repositioning plans and comparable with the reoptimized plans. CONCLUSION Interfractional, relative volume changes and independent motions between multiple primary targets during lung cancer RT, which cannot be accounted for by the current IGRT repositioning exist, but can be corrected by the online adaptive replanning method.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth Gore
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Candice Johnstone
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Thörnqvist S, Hysing LB, Tuomikoski L, Vestergaard A, Tanderup K, Muren LP, Heijmen BJM. Adaptive radiotherapy strategies for pelvic tumors - a systematic review of clinical implementations. Acta Oncol 2016; 55:943-58. [PMID: 27055486 DOI: 10.3109/0284186x.2016.1156738] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Introdution: Variation in shape, position and treatment response of both tumor and organs at risk are major challenges for accurate dose delivery in radiotherapy. Adaptive radiotherapy (ART) has been proposed to customize the treatment to these motion/response patterns of the individual patients, but increases workload and thereby challenges clinical implementation. This paper reviews strategies and workflows for clinical and in silico implemented ART for prostate, bladder, gynecological (gyne) and ano-rectal cancers. MATERIAL AND METHODS Initial identification of papers was based on searches in PubMed. For each tumor site, the identified papers were screened independently by two researches for selection of studies describing all processes of an ART workflow: treatment monitoring and evaluation, decision and execution of adaptations. Both brachytherapy and external beam studies were eligible for review. RESULTS The review consisted of 43 clinical studies and 51 in silico studies. For prostate, 1219 patients were treated with offline re-planning, mainly to adapt prostate motion relative to bony anatomy. For gyne 1155 patients were treated with online brachytherapy re-planning while 25 ano-rectal cancer patients were treated with offline re-planning, all to account for tumor regression detected by magnetic resonance imaging (MRI)/computed tomography (CT). For bladder and gyne, 161 and 64 patients, respectively, were treated with library-based online plan selection to account for target volume and shape variations. The studies reported sparing of rectum (prostate and bladder cancer), bladder (ano-rectal cancer) and bowel cavity (gyne and bladder cancer) as compared to non-ART. CONCLUSION Implementations of ART were dominated by offline re-planning and online brachytherapy re-planning strategies, although recently online plan selection workflows have increased with the availability of cone-beam CT. Advantageous dosimetric and outcome patterns using ART was documented by the studies of this review. Despite this, clinical implementations were scarce due to challenges in target/organ re-contouring and suboptimal patient selection in the ART workflows.
Collapse
Affiliation(s)
- Sara Thörnqvist
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv B. Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Laura Tuomikoski
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Anne Vestergaard
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig P. Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Ben J. M. Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Abstract
We reviewed the literature on the use of margins in radiotherapy of patients with prostate cancer, focusing on different options for image guidance (IG) and technical issues. The search in PubMed database was limited to include studies that involved external beam radiotherapy of the intact prostate. Post-prostatectomy studies, brachytherapy and particle therapy were excluded. Each article was characterized according to the IG strategy used: positioning on external marks using room lasers, bone anatomy and soft tissue match, usage of fiducial markers, electromagnetic tracking and adapted delivery. A lack of uniformity in margin selection among institutions was evident from the review. In general, introduction of pre- and in-treatment IG was associated with smaller planning target volume (PTV) margins, but there was a lack of definitive experimental/clinical studies providing robust information on selection of exact PTV values. In addition, there is a lack of comparative research regarding the cost-benefit ratio of the different strategies: insertion of fiducial markers or electromagnetic transponders facilitates prostate gland localization but at a price of invasive procedure; frequent pre-treatment imaging increases patient in-room time, dose and labour; online plan adaptation should improve radiation delivery accuracy but requires fast and precise computation. Finally, optimal protocols for quality assurance procedures need to be established.
Collapse
Affiliation(s)
- Slav Yartsev
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| | - Glenn Bauman
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
44
|
Ahunbay EE, Ates O, Li XA. An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams. Med Phys 2016; 43:4575. [DOI: 10.1118/1.4955439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
45
|
McPartlin AJ, Li XA, Kershaw LE, Heide U, Kerkmeijer L, Lawton C, Mahmood U, Pos F, van As N, van Herk M, Vesprini D, van der Voort van Zyp J, Tree A, Choudhury A. MRI-guided prostate adaptive radiotherapy - A systematic review. Radiother Oncol 2016; 119:371-80. [PMID: 27162159 DOI: 10.1016/j.radonc.2016.04.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022]
Abstract
Dose escalated radiotherapy improves outcomes for men with prostate cancer. A plateau for benefit from dose escalation using EBRT may not have been reached for some patients with higher risk disease. The use of increasingly conformal techniques, such as step and shoot IMRT or more recently VMAT, has allowed treatment intensification to be achieved whilst minimising associated increases in toxicity to surrounding normal structures. To support further safe dose escalation, the uncertainties in the treatment target position will need be minimised using optimal planning and image-guided radiotherapy (IGRT). In particular the increasing usage of profoundly hypo-fractionated stereotactic therapy is predicated on the ability to confidently direct treatment precisely to the intended target for the duration of each treatment. This article reviews published studies on the influences of varies types of motion on daily prostate position and how these may be mitigated to improve IGRT in future. In particular the role that MRI has played in the generation of data is discussed and the potential role of the MR-Linac in next-generation IGRT is discussed.
Collapse
Affiliation(s)
- A J McPartlin
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - X A Li
- Medical College of Wisconsin, USA
| | - L E Kershaw
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - U Heide
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
| | - L Kerkmeijer
- University Medical Center Utrecht, The Netherlands
| | - C Lawton
- Medical College of Wisconsin, USA
| | - U Mahmood
- MD Anderson Cancer Center, Houston, USA
| | - F Pos
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
| | - N van As
- Royal Marsden Hospital, UK; Institute of Cancer Research, UK
| | - M van Herk
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK
| | - D Vesprini
- Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | | | - A Tree
- Royal Marsden Hospital, UK
| | - A Choudhury
- The Christie NHS Foundation Trust and Manchester Cancer Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, UK.
| | | |
Collapse
|
46
|
Hild S, Graeff C, Rucinski A, Zink K, Habl G, Durante M, Herfarth K, Bert C. Scanned ion beam therapy for prostate carcinoma. Strahlenther Onkol 2015; 192:118-26. [DOI: 10.1007/s00066-015-0925-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
|
47
|
Sheng Y, Li T, Zhang Y, Lee WR, Yin FF, Ge Y, Wu QJ. Atlas-guided prostate intensity modulated radiation therapy (IMRT) planning. Phys Med Biol 2015; 60:7277-91. [PMID: 26348663 PMCID: PMC4605424 DOI: 10.1088/0031-9155/60/18/7277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An atlas-based IMRT planning technique for prostate cancer was developed and evaluated. A multi-dose atlas was built based on the anatomy patterns of the patients, more specifically, the percent distance to the prostate and the concaveness angle formed by the seminal vesicles relative to the anterior-posterior axis. A 70-case dataset was classified using a k-medoids clustering analysis to recognize anatomy pattern variations in the dataset. The best classification, defined by the number of classes or medoids, was determined by the largest value of the average silhouette width. Reference plans from each class formed a multi-dose atlas. The atlas-guided planning (AGP) technique started with matching the new case anatomy pattern to one of the reference cases in the atlas; then a deformable registration between the atlas and new case anatomies transferred the dose from the atlas to the new case to guide inverse planning with full automation. 20 additional clinical cases were re-planned to evaluate the AGP technique. Dosimetric properties between AGP and clinical plans were evaluated. The classification analysis determined that the 5-case atlas would best represent anatomy patterns for the patient cohort. AGP took approximately 1 min on average (corresponding to 70 iterations of optimization) for all cases. When dosimetric parameters were compared, the differences between AGP and clinical plans were less than 3.5%, albeit some statistical significances observed: homogeneity index (p > 0.05), conformity index (p < 0.01), bladder gEUD (p < 0.01), and rectum gEUD (p = 0.02). Atlas-guided treatment planning is feasible and efficient. Atlas predicted dose can effectively guide the optimizer to achieve plan quality comparable to that of clinical plans.
Collapse
Affiliation(s)
- Yang Sheng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705
| | - Taoran Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - You Zhang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705
| | - W. Robert Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705
| | - Yaorong Ge
- Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Q. Jackie Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27705
| |
Collapse
|
48
|
Oates R, Gill S, Foroudi F, Joon ML, Schneider M, Bressel M, Kron T. What benefit could be derived from on-line adaptive prostate radiotherapy using rectal diameter as a predictor of motion? J Med Phys 2015; 40:18-23. [PMID: 26150683 PMCID: PMC4471640 DOI: 10.4103/0971-6203.152237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
This study investigated a relationship between rectum diameter and prostate motion during treatment with a view to reducing planning target volume (PTV) margins for an adaptive protocol. One hundred and ninety-four cone-beam computed tomography (CBCT) images of 10 patients were used to relate rectum diameter on CBCT to prostate intrafraction displacement. A threshold rectum diameter was used to model the impact of an adaptive PTV margin on rectum and bladder dose. Potential dose escalation with a 6 mm uniform margin adaptive protocol was compared to a PTV margin of 10 mm expansion of the clinical target volume (CTV) except 6 mm posterior. Of 194 fractions, 104 had a maximum rectal diameter of ≤3.5 cm. The prostate displaced ≤4 mm in 102 of those fractions. Changing from a standard to an adaptive PTV margin reduced the volume of rectum receiving 25, 50, 60, and 70 Gy by around 12, 9, 10, and 16%, respectively and bladder by approximately 21, 27, 29, and 35%, respectively. An average dose escalation of 4.2 Gy may be possible with an adaptive prostate radiotherapy protocol. In conclusion, a relationship between the prostate motion and the diameter of the rectum on CBCT potentially could enable daily adaptive radiotherapy which can be implemented from the first fraction.
Collapse
Affiliation(s)
- Richard Oates
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Bendigo, Victoria, Australia ; Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria, Australia
| | - Suki Gill
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Farshad Foroudi
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia ; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Lim Joon
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michal Schneider
- Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mathias Bressel
- Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia ; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Qin A, Sun Y, Liang J, Yan D. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 91:1026-33. [DOI: 10.1016/j.ijrobp.2014.12.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/08/2014] [Indexed: 10/23/2022]
|
50
|
Yu G, Liang Y, Yang G, Shu H, Li B, Yin Y, Li D. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy. Phys Med Biol 2015; 60:2765-83. [PMID: 25767898 DOI: 10.1088/0031-9155/60/7/2765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a 'bi-directional' force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.
Collapse
Affiliation(s)
- Gang Yu
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, People's Republic of China. Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|