1
|
Yao B, Zeng J, Shi J, Pang Y, Men J, Li Y, Wang H, Liu J, Hui W, Zhao L, Li C, Peng R, Fan J. Transcriptomic and metabolic profiling reveals the effects of long-term microwave exposure on testicular tissue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118040. [PMID: 40086029 DOI: 10.1016/j.ecoenv.2025.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The effect of electromagnetic exposure on health is becoming increasingly important as it affects many aspects of human life and health. However, the effects in environmental electromagnetic fields on the male reproductive system were still controversial, and the impacts of long-term microwave exposure on testicular tissue remain poorly defined. This study exposed rats to 30 mW/cm2 of microwave radiation (2.856 GHz) for six weeks and revealed that long-term microwave exposure damaged the testis structures, sperm motility, and morphology, affected hormone levels, energy metabolism, and induced oxidative stress. Assays for bulk RNA, metabonomics, single-cell RNA, and transposase-accessible chromatin with high-throughput sequencing were performed to analyze the transcriptional and metabolic atlas of testicular damage after microwave radiation. Differentially expressed genes were enriched in oxidative stress and energy metabolism pathways. Furthermore, ten subgroups were identified with scRNA-seq, including five developmental phases of germ cells, and radiation-associated changes in cell composition, especially stuck in round spermatids, were observed. Radiation significantly upregulated the expression of Atp6v1e2 in round spermatids and enriched the expression of many transcription factors by disturbing the accessibility profile of chromatin. This study provides effective insights into the long-term impacts of microwave radiation on male reproduction.
Collapse
Affiliation(s)
- Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zeng
- Department of Endocrinology, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Disease, Beijing 100853, China
| | - Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yueyue Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Chemistry and Materials Sciences, Hebei University, Baoding 071002, China
| | - Junqi Men
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanyang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Heran Wang
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wang Hui
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunlin Li
- Department of Endocrinology, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Disease, Beijing 100853, China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Wang Q, Liu X, Cui J, Yan Y. Multilayer porous poly (vinylidene fluoride)/MXene/cobalt ferrite composites with ternary gradients for electromagnetic wave absorption. J Colloid Interface Sci 2025; 679:662-675. [PMID: 39388952 DOI: 10.1016/j.jcis.2024.09.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
A composite material with a high potential for absorbing electromagnetic waves (EMW) was obtained by selecting poly (vinylidene fluoride) (PVDF) as the matrix, MXene as the conductive filler, and cobalt ferrite (CoFe2O4) as the magnetic filler. A layer-by-layer assembly strategy involved hot pressing and sequential blade coating, followed by vapor-induced phase separation, was used to implement the preparation of PVDF/MXene/CoFe2O4 (PMC) composites. The process facilitates the formation of a well-organized multilayer porous framework, providing a gradient of positive conductivity, negative magnetism, and porosity within the composites. Incorporating distinct multilayer, porous, and gradient structures into a single composite led to exceptional impedance matching (Z), with an area percentage of up to 8.4 % in the optimal range of 0.8 to 1.2. Furthermore, the multiple interfaces formed by the various components, multilayer structure, and porous configuration significantly enhanced the EMW attenuation capability, with the attenuation constant reaching as high as 274. Consequently, the PMC composite demonstrated outstanding performance with a minimal reflection loss (RLmin) of -56.5 dB, a specific RLmin of 23.5 dB/mm, and the broadest effective absorption bandwidth of 3.2 GHz. The combination of the competitive EMW absorption capability, low density, flexibility, adequate tensile strength, and amphiphilic Janus surface may significantly broaden the application scenarios of PMC composites.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuejiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Liu B, Zhang L, Cai Y, Zhang M, Huang W, Yan X, Chen H. Correlation analysis of occupational stress and metabolic syndrome among employees of a power grid enterprise in China. Work 2025; 80:107-121. [PMID: 39093109 DOI: 10.3233/wor-240234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Being in a state of high occupational stress may disrupt the metabolic balance of the body, thus increasing the risk of metabolic diseases. However, the evidence about the relationship between occupational stress and metabolic syndrome was limited. OBJECTIVES To explore the association between occupational stress and metabolic syndrome (MetS) in employees of a power grid enterprise. METHODS A total of 1091 employees were recruited from a power grid enterprise in China. Excluding those who failed to complete the questionnaire and those who had incomplete health check-ups, 945 subjects were included in the study. Assessment of occupational stress was used by job demand-control (JDC) and effort-reward imbalance (ERI) questionnaires, respectively. The information on body mass index (BMI), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were collected. The levels of high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and fasting blood glucose (FBG) in the fasting venous blood samples were measured. Logistic regression analysis and multiple linear regression methods were used to analyze the correlation between JDC and ERI models of occupational stress, metabolic syndrome, and its components, respectively. RESULTS The prevalence of MetS was 8.4% and 9.9% in JDC and ERI model high occupational stress employees, respectively. ERI model occupational stress and smoking are significantly associated with the risk of MetS. ERI ratio was significantly associated with lower HDL-C levels. Gender, age, marital status, smoking, high-temperature and high-altitude work were significantly associated with metabolic component levels. CONCLUSION Our study revealed a high detection rate of occupational stress in both JDC and ERI models among employees of a power grid enterprise. ERI model occupational stress, demanding more attention, was associated with the risk of MetS as well as its components such as HDL-C.
Collapse
Affiliation(s)
- Bin Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- Department of Preventive Medicine, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Lingyu Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yashi Cai
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Min Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Weixu Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Xuehua Yan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Huifeng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Nyberg R, McCredden J, Hardell L. The European Union assessments of radiofrequency radiation health risks - another hard nut to crack (Review). REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:707-719. [PMID: 37609829 DOI: 10.1515/reveh-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 08/24/2023]
Abstract
In 2017 an article was published on the unwillingness of the WHO to acknowledge the health effects associated with the use of wireless phones. It was thus stated that the WHO is 'A Hard Nut to Crack'. Since then, there has been no progress, and history seems to be repeating in that the European Union (EU) is following in the blind man's footsteps created by the WHO. Despite increasing evidence of serious negative effects from radiofrequency radiation on human health and the environment, the EU has not acknowledged that there are any risks. Since September 2017, seven appeals by scientists and medical doctors have been sent to the EU requesting a halt to the roll-out of the fifth generation of wireless communication (5G). The millimeter waves (MMW) and complex waveforms of 5G contribute massively harmful additions to existing planetary electromagnetic pollution. Fundamental rights and EU primary law make it mandatory for the EU to protect the population, especially children, from all kinds of harmful health effects of wireless technology. However, several experts associated with the WHO and the EU have conflicts of interest due to their ties to industry. The subsequent prioritizing of economic interests is resulting in human and planetary health being compromised. Experts must make an unbiased evaluation with no conflicts of interest. The seven appeals to the EU have included requests for immediate protective action, which have been ignored. On the issue of wireless radiation and the health of citizens, the EU seems to be another hard nut to crack.
Collapse
Affiliation(s)
- Rainer Nyberg
- Åbo Akademi University Faculty of Education and Welfare Studies, Vasa, Finland
| | - Julie McCredden
- Oceania Radiofrequency Scientific Advisory Association, Brisbane, QLD, Australia
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Orebro, Sweden
| |
Collapse
|
5
|
Deruelle F. Microwave radiofrequencies, 5G, 6G, graphene nanomaterials: Technologies used in neurological warfare. Surg Neurol Int 2024; 15:439. [PMID: 39640342 PMCID: PMC11618680 DOI: 10.25259/sni_731_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Scientific literature, with no conflicts of interest, shows that even below the limits defined by the International Commission on Non-Ionizing Radiation Protection, microwaves from telecommunication technologies cause numerous health effects: neurological, oxidative stress, carcinogenicity, deoxyribonucleic acid and immune system damage, electro-hypersensitivity. The majority of these biological effects of non-thermal microwave radiation have been known since the 1970s. Methods Detailed scientific, political, and military documents were analyzed. Most of the scientific literature comes from PubMed. The other articles (except for a few) come from impacted journals . The rare scientific documents that were not peer reviewed were produced by recognized scientists in their fields. The rest of the documentation comes from official sources: political (e.g., European Union and World Health Organization), military (e.g., US Air Force and NATO), patents, and national newspapers. Results (1) Since their emergence, the authorities have deployed and encouraged the use of wireless technologies (2G, 3G, 4G, WiFi, WiMAX, DECT, Bluetooth, cell phone towers/masts/base stations, small cells, etc.) in full awareness of their harmful effects on health. (2) Consequences of microwave radiation from communication networks are comparable to the effects of low-power directed-energy microwave weapons, whose objectives include behavioral modification through neurological (brain) targeting. Above 20 gigahertz, 5G behaves like an unconventional chemical weapon. (3) Biomedical engineering (via graphene-based nanomaterials) will enable brain-computer connections, linked wirelessly to the Internet of Everything through 5G and 6G networks (2030) and artificial intelligence, gradually leading to human-machine fusion (cyborg) before the 2050s. Conclusion Despite reports and statements from the authorities presenting the constant deployment of new wireless communication technologies, as well as medical research into nanomaterials, as society's ideal future, in-depth research into these scientific fields shows, above all, an objective linked to the current cognitive war. It could be hypothesized that, in the future, this aim will correspond to the control of humanity by machines.
Collapse
|
6
|
Malvandi H, Fallahi M, Saghi MH, Hassanzadeh N. Evaluation of electric field (E) exposure levels and its relationship with the sleep quality of residents around the BTS antennas in Sabzevar, Iran. RADIATION PROTECTION DOSIMETRY 2024; 200:1405-1415. [PMID: 39214550 DOI: 10.1093/rpd/ncae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mobile devices and base transceiver station (BTS) are the main sources of human exposure to radio frequency electromagnetic fields (RF-EMFs). Therefore, the aim of the present study was to evaluate the levels of exposure to RF-EMF in three different time intervals and three different distances from BTS antennas in Sabzevar. Additional goals were to investigate the electric field (E) difference between different microenvironments, between the suburbs and downtown, and evaluating the sleep quality of residents around BTS antennas at different distances. The results showed significant differences between the values of E Avg and E max Avg at different times (T1, T2, and T3), different distances (50, 100, and 300 m) from BTS antennas, and between BTS antennas located in the suburbs and downtown. No significant differences were observed between the values of E Avg and E max Avg in terms of microenvironments. Poor sleep quality (>5) was recorded in the residents around the BTS antennas at different distances, and a significant difference was observed between the sleep quality of the residents at a distance of ˂100 m compared to the residents at a distance of ˃300 m. The recorded levels of E in all places and times were below the human safety limits set by the Iranian National Standardization Organization, the Information and Communication Technologies Authority and the International Commission on Non-Ionizing Radiation Protection, indicating the absence of potential risk due to exposure to E in the study area.
Collapse
Affiliation(s)
- Hassan Malvandi
- Department of Environmental Sciences and Engineering, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Tovhid Shahr, 9617976487, Sabzevar, Iran
- EthnoBiology Core, Hakim Sabzevari University, Tovhid Shahr, 9617976487, Sabzevar, Khorasan Razavi, Iran
| | - Majid Fallahi
- Non-Communicable Diseases Research Center, Department of Occupational Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Tovhid Shahr, 9617913112, Sabzevar, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Department of Environmental Health Engineering School of Public Health, Sabzevar University of Medical Sciences, Tovhid Shahr, 9617913112, Sabzevar, Iran
| | - Nasrin Hassanzadeh
- Department of Environmental Sciences, Faculty of Environment and Natural Resource, Malayer University, Arak-Malayer Road, 65741-84621, Malayer, Iran
| |
Collapse
|
7
|
Belpomme D, Irigaray P. Response to Letter to the Editor: Electrohypersensitivity is always real. ENVIRONMENTAL RESEARCH 2024; 251:114839. [PMID: 36423669 DOI: 10.1016/j.envres.2022.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
8
|
Calvente I, Núñez MI. Is the sustainability of exposure to non-ionizing electromagnetic radiation possible? Med Clin (Barc) 2024; 162:387-393. [PMID: 38151370 DOI: 10.1016/j.medcli.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023]
Abstract
Technological advances imply an increase in artificially generating sources of electromagnetic fields (EMF), therefore, resulting in a permanent exposure of people and the environment (electromagnetic pollution). Inconsistent results have been published considering the evaluated health effects. The purpose of this study was to review scientific literature on EMF to provide a global and retrospective perspective, on the association between human exposure to non-ionizing radiation (NIR, mainly radiofrequency-EMF) and health and environmental effects. Studies on the health effects of 5G radiation exposure have not yet been performed with sufficient statistical power, as the exposure time is still relatively short and also the latency and intensity of exposure to 5G. The safety standards only consider thermal effects, do not contemplate non-thermal effects. We consider relevant to communicate this knowledge to the general public to improve education in this field, and to healthcare professionals to prevent diseases that may result from RF-EMF exposures.
Collapse
Affiliation(s)
- Irene Calvente
- Research Support Unit, Biosanitary Institute of Granada (ibs.GRANADA), University Hospital Complex of Granada, Spain
| | - María Isabel Núñez
- Research Support Unit, Biosanitary Institute of Granada (ibs.GRANADA), University Hospital Complex of Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Spain.
| |
Collapse
|
9
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
10
|
Ben Ishai P, Davis D, Taylor H, Birnbaum L. Problems in evaluating the health impacts of radio frequency radiation. ENVIRONMENTAL RESEARCH 2024; 243:115038. [PMID: 36863648 DOI: 10.1016/j.envres.2022.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 02/06/2024]
Abstract
In an effort to clarify the nature of causal evidence regarding the potential impacts of RFR on biological systems, this paper relies on a well-established framework for considering causation expanded from that of Bradford Hill, that combines experimental and epidemiological evidence on carcinogenesis of RFR. The Precautionary Principle, while not perfect, has been the effective lodestone for establishing public policy to guard the safety of the general public from potentially harmful materials, practices or technologies. Yet, when considering the exposure of the public to anthropogenic electromagnetic fields, especially those arising from mobile communications and their infrastructure, it seems to be ignored. The current exposure standards recommended by the Federal Communications Commission (FCC) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) consider only thermal effects (tissue heating) as potentially harmful. However, there is mounting evidence of non-thermal effects of exposure to electromagnetic radiation in biological systems and human populations. We review the latest literature on in vitro and in vivo studies, on clinical studies on electromagnetic hypersensitivity, as well as the epidemiological evidence for cancer due to the action of mobile based radiation exposure. We question whether the current regulatory atmosphere truly serves the public good when considered in terms of the Precautionary Principle and the principles for deducing causation established by Bradford Hill. We conclude that there is substantial scientific evidence that RFR causes cancer, endocrinological, neurological and other adverse health effects. In light of this evidence the primary mission of public bodies, such as the FCC to protect public health has not been fulfilled. Rather, we find that industry convenience is being prioritized and thereby subjecting the public to avoidable risks.
Collapse
Affiliation(s)
- Paul Ben Ishai
- Department of Physics, Ariel University, Ariel, 4070000, Israel.
| | - Devra Davis
- Environmental Health Trust, Washington, DC, 20002, USA; School of Medicine,Ondokuz-Mayis University, Samsun, Turkey
| | - Hugh Taylor
- Yale School of Medicine, New Haven, CT, 05620, USA
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Durham, NC, 27709, USA
| |
Collapse
|
11
|
Askaripour K, Żak A. A systematic review on cellular responses of Escherichia coli to nonthermal electromagnetic irradiation. Bioelectromagnetics 2024; 45:16-29. [PMID: 37807247 DOI: 10.1002/bem.22484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023]
Abstract
Investigation of Escherichia coli under electromagnetic fields is of significance in human studies owing to its short doubling time and human-like DNA mechanisms. The present review aims to systematically evaluate the literature to conclude causality between 0 and 300 GHz electromagnetic fields and biological effects in E. coli. To that end, the OHAT methodology and risk of bias tool were employed. Exponentially growing cells exposed for over 30 min at temperatures up to3 7 ∘ C $3{7}^{\circ }\,{\rm{C}}$ with fluctuations below1 ∘ C ${1}^{\circ }\,{\rm{C}}$ were included from the Web-of-Knowledge, PubMed, or EMF-Portal databases. Out of 904 records identified, 25 articles satisfied the selection criteria, with four excluded during internal validation. These articles examined cell growth (11 studies), morphology (three studies), and gene regulation (11 studies). Most experiments (85%) in the included studies focused on the extremely low-frequency (ELF) range, with 60% specifically at 50 Hz. Changes in growth rate were observed in 74% of ELF experiments and 71% of radio frequency (RF) experiments. Additionally, 80% of ELF experiments showed morphology changes, while gene expression changes were seen in 33% (ELF) and 50% (RF) experiments. Due to the limited number of studies, especially in the intermediate frequency and RF ranges, establishing correlations between EMF exposure and biological effects on E. coli is not possible.
Collapse
Affiliation(s)
- Khadijeh Askaripour
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Pomorskie, Poland
| | - Arkadiusz Żak
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Pomorskie, Poland
| |
Collapse
|
12
|
Santos LF, Silva AS, Mano JF. Magnetic-Based Strategies for Regenerative Medicine and Tissue Engineering. Adv Healthc Mater 2023; 12:e2300605. [PMID: 37543723 DOI: 10.1002/adhm.202300605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The fabrication of biological substitutes to repair, replace, or enhance tissue- and organ-level functions is a long-sought goal of tissue engineering (TE). However, the clinical translation of TE is hindered by several challenges, including the lack of suitable mechanical, chemical, and biological properties in one biomaterial, and the inability to generate large, vascularized tissues with a complex structure of native tissues. Over the past decade, a new generation of "smart" materials has revolutionized the conventional medical field, transforming TE into a more accurate and sophisticated concept. At the vanguard of scientific development, magnetic nanoparticles (MNPs) have garnered extensive attention owing to their significant potential in various biomedical applications owing to their inherent properties such as biocompatibility and rapid remote response to magnetic fields. Therefore, to develop functional tissue replacements, magnetic force-based TE (Mag-TE) has emerged as an alternative to conventional TE strategies, allowing for the fabrication and real-time monitoring of tissues engineered in vitro. This review addresses the recent studies on the use of MNPs for TE, emphasizing the in vitro, in vivo, and clinical applications. Future perspectives of Mag-TE in the fields of TE and regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana S Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
13
|
Hardell L, Moskowitz JM. A critical analysis of the MOBI-Kids study of wireless phone use in childhood and adolescence and brain tumor risk. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:409-421. [PMID: 35567503 DOI: 10.1515/reveh-2022-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The MOBI-Kids case-control study on wireless phone use and brain tumor risk in childhood and adolescence included the age group 10-24 years diagnosed between 2010 and 2015. Overall no increased risk was found although for brain tumors in the temporal region an increased risk was found in the age groups 10-14 and 20-24 years. Most odds ratios (ORs) in MOBI-Kids were <1.0, some statistically significant, suggestive of a preventive effect from RF radiation; however, this is in contrast to current knowledge about radiofrequency (RF) carcinogenesis. The MOBI-Kids results are not biologically plausible and indicate that the study was flawed due to methodological problems. For example, not all brain tumor cases were included since central localization was excluded. Instead, all brain tumor cases should have been included regardless of histopathology and anatomical localization. Only surgical controls with appendicitis were used instead of population-based controls from the same geographical area as for the cases. In fact, increased incidence of appendicitis has been postulated to be associated with RF radiation which makes selection of control group in MOBI-Kids questionable. Start of wireless phone use up to 10 years before diagnosis was in some analyses included in the unexposed group. Thus, any important results demonstrating late carcinogenesis, a promoter effect, have been omitted from analysis and may underestimate true risks. Linear trend was in some analyses statistically significant in the calculation of RF-specific energy and extremely low frequency (ELF)-induced current in the center of gravity of the tumor. Additional case-case analysis should have been performed. The data from this study should be reanalyzed using unconditional regression analysis adjusted for potential confounding factors to increase statistical power. Then all responding cases and controls could be included in the analyses. In sum, we believe the results as reported in this paper seem uninterpretable and should be dismissed.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, University Hospital, Örebro, Sweden
- The Environment and Cancer Research Foundation, Studievägen 35, SE-702 17 Örebro, Sweden
| | - Joel M Moskowitz
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Niu T, Zhi Y, Wei L, Liu W, Ju X, Pi W, Fu Z, Tong H, Hu H, Dong J. Sirtuin 3 controls cardiac energetics and protects against oxidative stress in electromagnetic radiation-induced cardiomyopathy. Free Radic Biol Med 2023; 205:1-12. [PMID: 37268048 DOI: 10.1016/j.freeradbiomed.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Electromagnetic radiation can cause injuries to both the structures and functions of the heart. No therapy is currently available to inhibit these untoward effects. Mitochondrial energetic damage and oxidative stress are drivers of electromagnetic radiation-induced cardiomyopathy (eRIC); however, the pathways that mediate these events are poorly defined. Sirtuin 3 (SIRT3) has been emerged as a key target for maintaining mitochondrial redox potential and metabolism, but its role in eRIC remains unknown. Here, Sirt3-KO mice and cardiac-specific SIRT3 transgenic mice were subjected to the investigation of eRIC. We found that Sirt3 protein expression level was down-regulated in eRIC mice model. Sirt3-KO markedly exaggerated decreases in cardiac energetics and increases in oxidative stress in microwave irradiation (MWI)-stressed mice. Conversely, cardiac-specific SIRT3 overexpression protected the hearts from these effects and rescued cardiac malfunction. Mechanistically, Sirt3 maintained AMP-activated protein kinase (AMPK) signaling pathway in MWI-stressed hearts in vivo. In conclusion, electromagnetic radiation repressed SIRT3 expression and disturbed cardiac energetics and redox homeostasis. The increased SIRT3 expression and AMPK activation in vivo prevented eRIC, indicating that SIRT3 will be a potential therapeutic target for curative interventions in eRIC.
Collapse
Affiliation(s)
- Tianhui Niu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Air Force Medical Center, PLA, Beijing, China
| | - Yan Zhi
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Lizhao Wei
- Department of Clinical Laboratory, Air Force Medical Center, PLA, Beijing, China
| | - Wenjun Liu
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Xiaoxiao Ju
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Weiping Pi
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Zhaojun Fu
- Department of Medical Appraisal, Air Force Medical Center, PLA, Beijing, China
| | - Hao Tong
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China
| | - Haixiang Hu
- Department of Andrology, Air Force Medical Center, PLA, Beijing, China.
| | - Jing Dong
- Department of Traditional Chinese Medicine, Air Force Medical Center, PLA, Beijing, China.
| |
Collapse
|
15
|
Hardell L, Koppel T. Electromagnetic hypersensitivity close to mobile phone base stations - a case study in Stockholm, Sweden. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:219-228. [PMID: 35238501 DOI: 10.1515/reveh-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/13/2022] [Indexed: 06/02/2023]
Abstract
A previously healthy worker developed symptoms assigned to electromagnetic hypersensitivity (EHS) after moving to an office with exposure to high levels of anthropogenic electromagnetic fields (EMFs). These symptoms consisted of e.g. headache, arthralgia, tinnitus, dizziness, memory loss, fatique, insomnia, transitory cardiovascular abnormalities, and skin lesions. Most of the symptoms were alleviated after 2 weeks sick leave. The highest radiofrequency (RF) field level at the working place was 1.72 V/m (7,852 μW/m2). Maximum value for extremely low frequency electromagnetic field (ELF-EMF) from electric power at 50 Hz was measured to 285 nT (mean 241 nT). For electric train ELF-EMF at 16.7 Hz was measured to 383 nT (mean 76 nT). Exposure to EMFs at the working place could be the cause for developing EHS related symptoms. The association was strengthened by the symptom reduction outside the working place.
Collapse
Affiliation(s)
- Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| | - Tarmo Koppel
- Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
16
|
Moon J. The relationship between radiofrequency-electromagnetic radiation from cell phones and brain tumor: The brain tumor incidence trends in South Korea. ENVIRONMENTAL RESEARCH 2023; 226:115657. [PMID: 36906274 DOI: 10.1016/j.envres.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION The aim of this study is to investigate the relationship between the nationwide cell phone subscription rate and the nationwide incidence of brain tumors in South Korea. The nationwide cell phone subscription rate was used as a proxy for the RF-EMR exposure assessment. METHODS The data for cell phone subscriptions per 100 persons from 1985 to 2019 were found in the Statistics, International Telecom Union (ITU). The brain tumor incidence data from 1999 to 2018 provided by the South Korea Central Cancer Registry operated by the National Cancer Center were used. RESULTS In South Korea, the subscription rate increased from 0 per 100 persons in 1991 to 57 per 100 persons in 2000. The subscription rate became 97 per 100 persons in 2009 and 135 per 100 persons in 2019. For the correlation coefficient between cell phone subscription rate before 10 years and ASIR per 100,000, a positive correlation coefficient with a statistical significance was reported in 3 benign brain tumors (International Classification of Diseases, ICD-10 code, D32, D33, and D32.0) and in 3 malignant brain tumors (ICD-10 code, C71.0, C71.1, and C71.2). Positive correlation coefficients with a statistical significance in malignant brain tumors ranged from 0.75 (95% CI 0.46-0.90) for C71.0 to 0.85 (95% CI 0.63-0.93) for C71.1. DISCUSSION In consideration of the fact that the main route for RF-EMR exposure has been through the frontotemporal side of the brain (the location of both ears), the positive correlation coefficient with a statistical significance in the frontal lobe (C71.1) and temporal lobe (C71.2) can be understood. Statistically insignificant results from recent cohort and large population international studies and contrasting results from many previous case-control studies could indicate a difficulty in identifying a factor as a determinant of a disease in ecological study design.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inhang-ro 27, Jung-gu, Incheon, 22332, South Korea; Department of Environmental Health Science, Graduate School of Public Health, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Héroux P, Belyaev I, Chamberlin K, Dasdag S, De Salles AAA, Rodriguez CEF, Hardell L, Kelley E, Kesari KK, Mallery-Blythe E, Melnick RL, Miller AB, Moskowitz JM. Cell Phone Radiation Exposure Limits and Engineering Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5398. [PMID: 37048013 PMCID: PMC10094704 DOI: 10.3390/ijerph20075398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
In the 1990s, the Institute of Electrical and Electronics Engineers (IEEE) restricted its risk assessment for human exposure to radiofrequency radiation (RFR) in seven ways: (1) Inappropriate focus on heat, ignoring sub-thermal effects. (2) Reliance on exposure experiments performed over very short times. (3) Overlooking time/amplitude characteristics of RFR signals. (4) Ignoring carcinogenicity, hypersensitivity, and other health conditions connected with RFR. (5) Measuring cellphone Specific Absorption Rates (SAR) at arbitrary distances from the head. (6) Averaging SAR doses at volumetric/mass scales irrelevant to health. (7) Using unrealistic simulations for cell phone SAR estimations. Low-cost software and hardware modifications are proposed here for cellular phone RFR exposure mitigation: (1) inhibiting RFR emissions in contact with the body, (2) use of antenna patterns reducing the Percent of Power absorbed in the Head (PPHead) and body and increasing the Percent of Power Radiated for communications (PPR), and (3) automated protocol-based reductions of the number of RFR emissions, their duration, or integrated dose. These inexpensive measures do not fundamentally alter cell phone functions or communications quality. A health threat is scientifically documented at many levels and acknowledged by industries. Yet mitigation of RFR exposures to users does not appear as a priority with most cell phone manufacturers.
Collapse
Affiliation(s)
- Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC H3A 1G1, Canada
| | - Igor Belyaev
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kent Chamberlin
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Suleyman Dasdag
- Biophysics Department, Medical School, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Alvaro Augusto Almeida De Salles
- Graduate Program on Electrical Engineering (PPGEE), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | | | - Lennart Hardell
- Department of Oncology, Orebro University Hospital, 701 85 Orebro, Sweden (Retired)
- The Environment and Cancer Research Foundation, 702 17 Orebro, Sweden
| | - Elizabeth Kelley
- ICBE-EMF and International EMF Scientist Appeal, and Electromagnetic Safety Alliance, Tempe, AZ 85282, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Erica Mallery-Blythe
- Physicians’ Health Initiative for Radiation and Environment, East Sussex TN6, UK
- British Society of Ecological Medicine, London W1W 6DB, UK
- Oceania Radiofrequency Scientific Advisory Association, Scarborough, QLD 4020, Australia
| | - Ronald L. Melnick
- National Toxicology Program (Retired), National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
- Ron Melnick Consulting LLC, North Logan, UT 84341, USA
| | - Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | | |
Collapse
|
18
|
Yu G, Zhu Y, Song C, Chen L, Tang Z, Wu T. The ZIP9-centered androgen pathway compensates for the 2605 MHz radiofrequency electromagnetic radiation-mediated reduction in resistance to H 2O 2 damage in Sertoli cells of adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114733. [PMID: 36889209 DOI: 10.1016/j.ecoenv.2023.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The direct biological effects of radiofrequency electromagnetic radiation (RF-EMR) from wireless communication equipment on the testes are still unclear. Our previous study proved that long-term exposure to 2605 MHz RF-EMR gradually damage spermatogenesis and resulted in time-dependent reproductive toxicity by directly disrupting blood-testis barrier circulation. Although short-term exposure did not cause readily observable damage to fertility, whether it caused specific biological effects and how these effects contributed to the time-dependent reproductive toxicity of RF-EMR were currently unknown. Studies on this issue are important for elucidating the time-dependent reproductive toxicity of RF-EMR. The present study established a 2605 MHz RF-EMR (SAR=1.05 W/Kg) scrotal exposure model with rats and extracted primary Sertoli cells for exposure to investigate the direct biological effects of short-term RF-EMR exposure on the testis. The results showed that short-term RF-EMR exposure did not decrease sperm quality and spermatogenesis, but it increased the levels of testicular testosterone (T) and zinc transporter 9 (ZIP9) in Sertoli cells of rats. In vitro, 2605 MHz RF-EMR exposure did not increase the apoptosis rate of Sertoli cells, but it increased the apoptosis rate and MDA of Sertoli cells exposed to H2O2. T reversed these changes and increased ZIP9 level in Sertoli cells, whereas inhibiting ZIP9 expression significantly suppressed these T-mediated protective effects. Moreover, T increased the levels of phosphorylated inositol-requiring enzyme 1 (P-IRE1), phosphorylated protein kinase R (PKR)-like endoplasmic reticulum kinase (P-PERK), phosphorylated eukaryotic initiation factor 2a (P-eIF2a) and phosphorylated activating transcription factor 6 (P-ATF6) in Sertoli cells, and these effects were reversed by ZIP9 inhibition. With prolonged exposure time, testicular ZIP9 was gradually downregulated, and testicular MDA increased. ZIP9 level was negatively correlated with MDA level in the testes of exposed rats. Thus, although short-term exposure to 2605 MHz RF-EMR (SAR=1.05 W/kg) did not significantly disturb spermatogenesis, it suppressed the ability of Sertoli cells to resist external insults, which was rescued by enhancing the ZIP9-centered androgen pathway in the short term. Increasing the unfolded protein response might be an important downstream mechanism involved. These results promote a better understanding of the time-dependent reproductive toxicity of 2605 MHz RF-EMR.
Collapse
Affiliation(s)
- Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Yabing Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Liang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zeping Tang
- Guangdong Environmental Radiation Monitoring Center, Guangzhou, Guangdong Province, China
| | - Tianpeng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
19
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
20
|
Peleg M, Berry EM, Deitch M, Nativ O, Richter E. On radar and radio exposure and cancer in the military setting. ENVIRONMENTAL RESEARCH 2023; 216:114610. [PMID: 36279918 DOI: 10.1016/j.envres.2022.114610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION In 2018, we reported a case series of 47 patients diagnosed with cancer following several years of exposure to high-intensity whole-body radiofrequency radiation (RFR) using the parameter of percentage frequency (PF). Consistent high and statistically significant PFs of hematolymphoid (HL) cancers were found in this group and in four previous reports on RFR-exposed groups in Belgium, Poland and Israel together with increased all-cancers rates. In this paper we report a new series of 46 young cancer patients who were exposed during military service to such radiation. MATERIALS AND METHODS The new group of patients comprises Israeli soldiers previously exposed to occupational RFR. The patients were self-selected to enroll in the research in cooperation with an NGO assisting patients with administrative counseling and legal and social services. The new group of patients was studied with respect to distribution (proportion) of cancer types using the method of PF. When possible, cancer risk ratios (RR) were estimated too. The results are compared to those of other occupational groups in three countries. RESULTS Median age at diagnosis was 23 years; duration of exposure was between 1 and 3 years and the latencies were short, median 4.6 years. The PF of HL cancers was 41.3%, 95% CI (27%-57%), versus 22.7% expected in non-exposed subjects matched for age and gender profiles, p = 0.003; 19 out of the 46 patients had HL cancers. The PF of Hodgkin lymphoma cancers was 21.7%, 95%CI (11%-36%), versus 11.6% expected, p = 0.033. For a subgroup of 6 patients, the number of soldiers in the units was known, and we were able estimate approximately the overall cancer risk ratio (RR) after 8 years as being 8.0 with 95% CI (2.9, 17), p < 0.002, with only 0.75 cases expected from the Cancer Registry data. In this subgroup, there were 3 HL cancer cases and 3 non-HL cases. Sarcoma PF was higher than expected, 7 out of the 46 patients were diagnosed with sarcoma, PF = 15.2%, 95%CI (6.3%-28.9%), p = 0.04 versus the expected PF of 7%. CONCLUSION The HL PF was high and consistent with previous reports. Epidemiological studies on excess risk for HL and other cancers, brain tumors in cellphone users, and experimental studies on RFR and carcinogenicity strongly point to a cause-effect relationship. It is mandatory to reduce the RFR exposure of all personnel to that of the typical community levels, including the peak level of radar pulses. Radiation protection, safety instructions, cancer risk warnings and quantitative data on individual exposure together with regular medical monitoring must be instituted for all personnel exposed to such risks. The findings from our study add to the growing body of evidence underscoring the gross inadequacy of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) thermal standards. Based on our findings and on the previous accumulated research, we endorse the recommendations to reclassify RFR exposure as a human carcinogen, International Agency for Research on Cancer (IARC) group 1.
Collapse
Affiliation(s)
| | - Elliot M Berry
- Hebrew University-Hadassah School of Public Health and Community Medicine, Israel
| | - Mora Deitch
- Bar Ilan University, Israel and the German Institute for Global and Area Studies (GIGA), Hamburg, Germany
| | - Or Nativ
- Unit of Occupational and Environmental Medicine, Hebrew University-Hadassah School of Public Health and Community Medicine, Israel
| | - Elihu Richter
- Unit of Occupational and Environmental Medicine, Hebrew University-Hadassah School of Public Health and Community Medicine, Israel
| |
Collapse
|
21
|
Acute radiofrequency electromagnetic radiation exposure impairs neurogenesis and causes neuronal DNA damage in the young rat brain. Neurotoxicology 2023; 94:46-58. [PMID: 36336097 DOI: 10.1016/j.neuro.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
A mobile phone is now a commonly used device for digital media and communication among all age groups. Young adolescents use it for longer durations, which exposes them to radiofrequency electromagnetic radiation (RF-EMR). This exposure can lead to neuropsychiatric changes. The underlying cellular mechanism behind these changes requires detailed investigation. In the present study, we investigated the effect of RF-EMR emitted from mobile phones on young adolescent rat brains. Wistar rats (5 weeks, male) were exposed to RF-EMR signal (2115 MHz) at a head average specific absorption rate (SAR) of 1.51 W/kg continuously for 8 h. Higher level of lipid peroxidation, carbon-centered lipid radicals, and single-strand DNA damage was observed in the brain of rat exposed to RF-EMR. The number of BrdU-positive cells in the dentate gyrus (DG) decreased in RF-EMR-exposed rats, indicating reduced neurogenesis. RF-EMR exposure also induced degenerative changes and neuronal loss in DG neurons but had no effect on the CA3 and CA1 neurons of the hippocampus and cerebral cortex. The activity of Pro-caspase3 did not increase upon exposure in any of the brain regions, pointing out that degeneration observed in the DG region is not dependent on caspase activation. Results indicate that short-term acute exposure to RF-EMR induced the generation of carbon-centered lipid radicals and nuclear DNA damage, both of which likely played a role in the impaired neurogenesis and neuronal degeneration seen in the young brain's hippocampus region. The understanding of RF-EMR-induced alteration in the brain at the cellular level will help develop appropriate interventions for reducing its adverse impact.
Collapse
|
22
|
Bektas H, Algul S, Altindag F, Yegin K, Akdag MZ, Dasdag S. Effects of 3.5 GHz radiofrequency radiation on ghrelin, nesfatin-1, and irisin level in diabetic and healthy brains. J Chem Neuroanat 2022; 126:102168. [PMID: 36220504 DOI: 10.1016/j.jchemneu.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Diabetes, mobile phone use, and obesity have increased simultaneously in recent years. The radiofrequency radiation (RFR) emitted from mobile phones is largely absorbed in the heads of users. With 5 G, which has started to be used in some countries without the necessary precautions being taken, the amount of RFR to which living things are exposed will increase. In this study, the changes in energy homeostasis and redox balance caused by 5 G (3.5 GHz, GSM-modulated) were explored. The effects of RFR on the brains of diabetic and healthy rats were investigated and histopathological analysis was performed. Twenty-eight Wistar albino rats weighing 200-250 g were divided into 4 groups as sham, RFR, diabetes, and RFR+diabetes groups (n = 7). The rats in each group were kept in a plexiglass carousel for 2 h a day for 30 days. While the rats in the experimental groups were exposed to RFR for 2 h a day, the rats in the sham group were kept under the same experimental conditions but with the radiofrequency generator turned off. At the end of the experiment, brain tissues were collected from euthanized rats. Total antioxidant (TAS), total oxidant (TOS), hydrogen peroxide (H2O2), ghrelin, nesfatin-1, and irisin levels were determined. In addition, histopathological analyses of the brain tissues were performed. The specific absorption rate in the gray matter of the brain was calculated as 323 mW/kg and 195 mW/kg for 1 g and 10 g averaging, respectively. After RFR exposure among diabetic and healthy rats, decreased TAS levels and increased TOS and H2O2 levels were observed in brain tissues. RFR caused increases in ghrelin and irisin and a decrease in nesfatin-1 in the brain. It was also observed that RFR increased the number of degenerated neurons in the hippocampus. Our results indicate that 3.5 GHz RFR causes changes in the energy metabolism and appetite of both healthy and diabetic rats. Thus, 5 G may not be innocent in terms of its biological effects, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Ege University, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakır, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
23
|
López I, Rivera M, Félix N, Maestú C. It is mandatory to review environmental radiofrequency electromagnetic field measurement protocols and exposure regulations: An opinion article. Front Public Health 2022; 10:992645. [PMID: 36353271 PMCID: PMC9639819 DOI: 10.3389/fpubh.2022.992645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel López
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marco Rivera
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nazario Félix
- Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Arquitectura y Tecnología de Sistemas Informáticos (DATSI), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ceferino Maestú
- Departamento de Fotónica y Bioingeniería (TFB), Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,Laboratorio de Bioelectromagnetismo, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain,CIBER–BBN Centro de Investigación Biomédica en Red, Madrid, Spain,*Correspondence: Ceferino Maestú
| |
Collapse
|
24
|
Borzoueisileh S, Shabestani Monfared A, Mortazavi SMJ, Zabihi E, Pouramir M, Niksirat F, Seyfizadeh N, Shafiee M. Pre-Exposure to Radiofrequency Electromagnetic Fields and Induction of Radioadaptive Response in Rats Irradiated with High Doses of X-Rays. J Biomed Phys Eng 2022; 12:505-512. [PMID: 36313415 PMCID: PMC9589077 DOI: 10.31661/jbpe.v0i0.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/30/2019] [Indexed: 11/06/2022]
Abstract
Background Some evidence shows that a pre-exposure to RF can mitigate the effects of subsequent exposures to high doses of ionizing radiation. Objective We aimed to assess the effect of a pre-exposure to non-ionizing RF radiation on survival, weight changes, food consumption, and water intake of lethally irradiated rats. Material and Methods In this case-control study, we used a commercial mobile phone (GSM, 900/1800 MHz) as well as a 2.4 GHz Wi-Fi router as the sources of pre-exposure to RF radiation. Forty-eight rats were randomly divided into six groups of control, "8 Gy X-rays", mobile phone, "mobile phone+8 Gy", Wi-Fi, and "Wi-Fi+8 Gy". Then, the survival fraction, weight loss, water, and food consumption changes were compared in different groups. Results The survival analysis indicated that the survival rates in all of the exposed animals ("8 Gy X-rays", "mobile phone+8 Gy", "Wi-Fi+8 Gy") were significantly lower than the control, "Wi-Fi", and "mobile phone" groups. The changes in survival rates of "mobile+8 Gy", "Wi-Fi+8 Gy", and 8 Gy alone were not statistically significant. However, food and water intake were significantly affected by exposure to both RF pre-exposures and exposure to high dose ionizing radiation. Conclusion To the best of our knowledge, the existence of a dose window for the induction of AR can be the cause of the lack of AR in our experiment. Our findings confirm that in a similar pattern with the adaptive responses induced by pre-exposure to ionizing radiation, the induction of adaptive response by RF-pre-exposures requires a minimum level of damage to trigger adaptive phenomena.
Collapse
Affiliation(s)
- Sajad Borzoueisileh
- MSc, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- MSc, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- PhD, Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mohammad Javad Mortazavi
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Zabihi
- PhD, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Pouramir
- PhD, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Niksirat
- MSc, Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nayer Seyfizadeh
- PhD, Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Shafiee
- MSc, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
25
|
Deruelle F. Are persistent aircraft trails a threat to the environment and health? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:407-421. [PMID: 34233386 DOI: 10.1515/reveh-2021-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
According to most scientific studies, media and governments, the white trails that can be seen behind aircraft in flight, corresponding to condensation mixed with engine particulate emissions, only persist under specific atmospheric conditions. They are called condensation trails, and cirrus contrails when they remain for hours to reach several kilometers wide. The fact that they have gradually filled the skies over the last twenty years would be due to the increase in air traffic. However, other official documents link these persistent trails to a weather modification technology called solar geoengineering by stratospheric aerosol injection (SAI). These sprays would be mainly composed of metallic particles (Al, Ba, Sr, Fe, nanoparticles) and sulfur, which would considerably increase air, soil and water pollution. Many of the current environmental and health problems are consistent with those described in the literature on solar geoengineering by SAI if this method was employed. For example, metal particles used are well known environmental contaminants, ozone layer depletion, cardiorespiratory diseases, neurodegenerative diseases, sunburn. The observations (whiter skies, less solar power) also correspond to the same risks as those described in the solar geoengineering works. Patents show that this weather modification technology has been known and mastered for a long time. In addition, some scientific papers as well as policy documents suggest that solar geoengineering by SAI has been used for many years. The amount of official information presented in this review is intended to open new ways of investigation, free of conflicts of interest, about the growing global pollution of persistent aircraft trails and their possible links with solar geoengineering by SAI.
Collapse
|
26
|
Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. ENVIRONMENTAL RESEARCH 2022; 212:113374. [PMID: 35537497 DOI: 10.1016/j.envres.2022.113374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless their causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven "functional impairment". To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a mainly new real EMF causally-related pathology.
Collapse
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
27
|
Najera A, Ramis R, Las-Heras Andes F, Garcia-Pardo C, Alonso JI, Gonzalez-Rubio J, Hernando A, Martinez JL, Marcos FV. Comments on "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid". ENVIRONMENTAL RESEARCH 2022; 212:113314. [PMID: 35500852 DOI: 10.1016/j.envres.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Alberto Najera
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Rebeca Ramis
- Chronic Diseases Department, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.
| | - Fernando Las-Heras Andes
- Signal Theory and Communications (TSC-UNIOVI), Dept. of Electrical Engineering, University of Oviedo, Oviedo, Spain.
| | | | - Jose I Alonso
- Dpto. Señales, Sistemas y Radiocomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jesus Gonzalez-Rubio
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Antonio Hernando
- Instituto de Magnetismo Aplicado, Complutense University, Madrid, Spain; IMDEA, Nanociencia, Universidad Antonio de Nebrija, Madrid and Donosti International Physics Center, San Sebastián, Spain.
| | | | - Francisco Vargas Marcos
- Department: General Sub-Directorate of Environmental Health and Occupational Health, General Directorate of Public Health, Ministry of Health, Madrid, Spain.
| |
Collapse
|
28
|
Lemercier CE, Garenne A, Poulletier de Gannes F, El Khoueiry C, Arnaud-Cormos D, Levêque P, Lagroye I, Percherancier Y, Lewis N. Comparative study between radiofrequency-induced and muscimol-induced inhibition of cultured networks of cortical neuron. PLoS One 2022; 17:e0268605. [PMID: 36044461 PMCID: PMC9432733 DOI: 10.1371/journal.pone.0268605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.6 W/kg and co-occurred with an elevation of the culture medium temperature of ~1°C. Exposure to RF fields preferentially inhibits bursting over spiking activity and exerts fewer constraints on neural network bursting synchrony, differentiating it from a pharmacological inhibition with MU. Network rebound excitation, a phenomenon relying on the intrinsic properties of cortical neurons, was observed following the removal of tonic hyperpolarization after washout of MU but not in response to cessation of RF exposure. This implies that hyperpolarization is not the main driving force mediating the inhibitory effects of RF fields. At the level of single neurons, network inhibition induced by MU and RF fields occurred with reduced action potential (AP) half-width. As changes in AP waveform strongly influence efficacy of synaptic transmission, the narrowing effect on AP seen under RF exposure might contribute to reducing network bursting activity. By pointing only to a partial overlap between the inhibitory hallmarks of these two forms of inhibition, our data suggest that the inhibitory mechanisms of the action of RF fields differ from the ones mediated by the activation of GABAA receptors.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Faculty of Medicine, Institute of Physiology, Department of Systems Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail: (CEL); (NL)
| | - André Garenne
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | | | - Corinne El Khoueiry
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Isabelle Lagroye
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Paris “Sciences et Lettres” Research University, Paris, France
| | - Yann Percherancier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Noëlle Lewis
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- * E-mail: (CEL); (NL)
| |
Collapse
|
29
|
Pegios A, Kavvadas D, Ζarras K, Mpani K, Soukiouroglou P, Charalampidou S, Vagdatli E, Papamitsou T. The Effect of Electromagnetic Radiation Transmitted from Routers on Antibiotic Susceptibility of Bacterial Pathogens. J Biomed Phys Eng 2022; 12:327-338. [PMID: 36059284 PMCID: PMC9395630 DOI: 10.31661/jbpe.v0i0.2111-1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Electromagnetic non-ionizing radiation has both thermal and non-thermal outcomes on biological systems, such as humans, animals, and bacteria. OBJECTIVE This study aimed to investigate the effect of non-ionizing radiofrequency radiation, emitted by Wi-Fi routers, on bacterial strains and the modification of their susceptibility to modern antibiotics. MATERIAL AND METHODS In this case-control paired study, four bacteria were selected, and one colony from each bacterial strain was exposed to Wi-Fi radiation forming the exposure group. Another set of colonies was not exposed to Wi-Fi radiation, forming the control group. Eight different antibiotic disks were set on the bacterial plates, and the inhibition zone was measured every 3 h for each colony. RESULTS Electromagnetic radiation affects bacterial colonies and their susceptibility to antibiotics. Analysis revealed statistically significant differences, correlated with the bacterial strain, the antibiotic agent, and the time of the exposure, in the inhibition zones, mostly after 6 and 24 h (p-value < 0.05). CONCLUSION A correlation was observed between antibiotic susceptibility and non-ionizing radiofrequency exposure. Studying the effects of radiofrequency radiation on prokaryotic organisms could clarify more complicated cell structures and organisms, such as eukaryotic. Further experiments, in vitro and in vivo, could provide more information about these outcomes and cause experts to discuss the current guidelines of exposure limits.
Collapse
Affiliation(s)
- Athanasios Pegios
- MD, Pediatric Surgeon, Hippokratio General Hospital, Thessaloniki, Greece
| | - Dimitrios Kavvadas
- PhD Candidate, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos Ζarras
- MD, Department of Molecular Biology and Genetics, Democritus University of Thrace, Greece
| | - Konstantia Mpani
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Prodromos Soukiouroglou
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Sofia Charalampidou
- MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Eleni Vagdatli
- PhD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece
| | - Theodora Papamitsou
- PhD, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
30
|
Zhao L, Yao C, Wang H, Dong J, Zhang J, Xu X, Wang H, Yao B, Ren K, Sun L, Peng R. Immune Responses to Multi-Frequencies of 1.5 GHz and 4.3 GHz Microwave Exposure in Rats: Transcriptomic and Proteomic Analysis. Int J Mol Sci 2022; 23:ijms23136949. [PMID: 35805954 PMCID: PMC9266614 DOI: 10.3390/ijms23136949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
With the rapidly increasing application of microwave technologies, the anxiety and speculation about microwave induced potential health hazards has been attracting more and more attention. In our daily life, people are exposed to complex environments with multi-frequency microwaves, especially L band and C band microwaves, which are commonly used in communications. In this study, we exposed rats to 1.5 GHz (L10), 4.3 GHz (C10) or multi-frequency (LC10) microwaves at an average power density of 10 mW/cm2. Both single and multi-frequency microwaves induced slight pathological changes in the thymus and spleen. Additionally, the white blood cells (WBCs) and lymphocytes in peripheral blood were decreased at 6 h and 7 d after exposure, suggesting immune suppressive responses were induced. Among lymphocytes, the B lymphocytes were increased while the T lymphocytes were decreased at 7 d after exposure in the C10 and LC10 groups, but not in the L10 group. Moreover, multi-frequency microwaves regulated the B and T lymphocytes more strongly than the C band microwave. The results of transcriptomics and proteomics showed that both single and multi-frequency microwaves regulated numerous genes associated with immune regulation and cellular metabolism in peripheral blood and in the spleen. However, multi-frequency microwaves altered the expression of many more genes and proteins. Moreover, multi-frequency microwaves down-regulated T lymphocytes’ development, differentiation and activation-associated genes, while they up-regulated B lymphocytes’ activation-related genes. In conclusion, multi-frequency microwaves of 1.5 GHz and 4.3 GHz produced immune suppressive responses via regulating immune regulation and cellular metabolism-associated genes. Our findings provide meaningful information for exploring potential mechanisms underlying multi-frequency induced immune suppression.
Collapse
|
31
|
Rangkooy H, Rahmati A, Dehaghi BF. Base transceiver station antennae exposure and workers' health. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2022; 29:863-868. [PMID: 35722815 DOI: 10.1080/10803548.2022.2085892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND With the rapid development of technologies related to the communications industry, human exposure to electromagnetic fields has increased during recent decades. The study aimed at investigating the effect of exposure to waves emitted from the base transceiver stations (BTS) on workers' health. METHODS 240 workers (120 BTS maintenance workers (case group) and 120 office staff (control group)) participated in the study. In order to determine the general health conditions in two groups, along with electromagnetic waves exposure measurement, the general health questionnaire (GHQ) was completed and the data on blood parameters were assessed. RESULTS The mean age and job experience in the case and control groups were 34.1 ± 4.8 and 10.1 ± 6 years and 31.6 ± 5.5 and 8.8 ± 7 years, respectively. According to the GHQ results, only anxiety and insomnia subscales showed a significant difference between the two groups. The white blood cell and red blood cell counts in the case and control groups were 6715.6 ± 1591 and 7594 ± 2416, 5.3×106±4.6×105 and 5.05×106±5.39×105 per ml, respectively. Analysis of the results showed that the difference between the two groups was significant. CONCLUSION The results revealed that blood parameters in the BTS operators showed more changes. Thus, it can be concluded that these health impacts result from occupational exposure to BTS waves.
Collapse
Affiliation(s)
- Hosseinali Rangkooy
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Rahmati
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Fouladi Dehaghi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Occupational Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Wang N, Zou W, Li X, Liang Y, Wang P. Study and application status of the nonthermal effects of microwaves in chemistry and materials science - a brief review. RSC Adv 2022; 12:17158-17181. [PMID: 35755588 PMCID: PMC9180129 DOI: 10.1039/d2ra00381c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
Abstract
Microwaves (MWs) are widely known and used in human life and production activities based on their thermal effects. In contrast, their nonthermal effects are still under debate. Fortunately, the nonthermal effects of MWs have been investigated by an increasing number of researchers and have shown great potential in industrial production. In this review, typical studies that demonstrate the nonthermal effects of MWs in chemistry and materials science are introduced and discussed, and the applications of and the harms that are caused by these effects are summarized to facilitate the safe use of these MW effects. The mechanisms of the nonthermal effects of MWs that have been proposed by researchers with various backgrounds are presented. Because some researchers did not detect nonthermal effects of MWs, four typical relevant studies are identified and introduced. Various types of MW reactors (single-mode and multimode reactors and reactors without a MW cavity) are summarized and compared. Finally, possible directions for future research on the nonthermal effects of MWs are proposed. This work focuses on summary and analysis of the nonthermal effect of microwaves in chemistry and materials science.![]()
Collapse
Affiliation(s)
- Nannan Wang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology Beijing 102617 PR China +86-13704517275
| | - Wenhui Zou
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 PR China
| | - Xinyue Li
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology Beijing 102617 PR China +86-13704517275
| | - Yaqi Liang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology Beijing 102617 PR China +86-13704517275
| | - Peng Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 PR China
| |
Collapse
|
33
|
López I, Félix N, Rivera M, Alonso A, Maestú C. Response to the comments by the authors Hamed Jalilian et al. On: "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid", by I. López, N. Félix, M. Rivera, A. Alonso, and C. Maestú. Environmental Health 10.1016/j.envres.2021.110734. ENVIRONMENTAL RESEARCH 2022; 209:112850. [PMID: 35120889 DOI: 10.1016/j.envres.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Isabel López
- Polytechnique University of Madrid, UPM, Madrid, Spain.
| | | | - Marco Rivera
- Biomedical Technology Center, CTB, Madrid, Spain
| | | | - Ceferino Maestú
- Polytechnique University of Madrid, UPM, Madrid, Spain; CIBER - BBN, Madrid, Spain
| |
Collapse
|
34
|
Dömötör Z, Ruzsa G, Thuróczy G, Necz PP, Nordin S, Köteles F, Szemerszky R. An idiographic approach to Idiopathic Environmental Intolerance attributed to Electromagnetic Fields (IEI-EMF) Part II. Ecological momentary assessment of three individuals with severe IEI-EMF. Heliyon 2022; 8:e09421. [PMID: 35607495 PMCID: PMC9123209 DOI: 10.1016/j.heliyon.2022.e09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
IEI-EMF refers to a self-reported sensitivity characterized by attribution of non-specific physical symptoms to exposure to weak EMFs. The majority of empirical results do not support the existence of a causal relationship between EMF and IEI-EMF. However, this conclusion was drawn from environmental and experimental studies that are not without methodological limitations. In the current study, as part of a complex biopsychosocial approach, an ecological momentary assessment (EMA) protocol was applied for the investigation of the temporal relationship between actual radio frequency (RF) EMF exposure and IEI-EMF, at the individual level. Continuous measurement of autonomic variables by holter electrocardiogram (ECG) monitors and the ambient RF EMF by personal dosimeters, as well as repeated (8/day) paper-and-pencil assessments of momentary internal states (symptoms, mood, perceived EMF intensity) and situational factors was conducted for 21 days with the participation of three individuals with severe IEI-EMF. Temporal relationships were examined by time series analyses. For two participants, the results did not support the association between the suspected EMF frequency range(s) and symptom reports. Nevertheless, the results revealed a reverse association with respect to another frequency range (GSM900 downlink), which contradicts the IEI-EMF condition. Autonomic activation related findings were inconsistent. For the third participant, the claimed association was partly supported, both for symptom reports and autonomic reactions (UMTS downlink, total RF; RMS values). The findings of this study suggest that IEI-EMF does not have a unitary aetiology. For certain individuals, a biophysical background cannot be excluded, whereas no such underlying factor appears to be at work for others. EMA is a useful method for the investigation of the aetiology of IEI-EMF.
Collapse
Affiliation(s)
- Zsuzsanna Dömötör
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Ruzsa
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Statistics, Corvinus University of Budapest, Budapest, Hungary
| | - György Thuróczy
- National Public Health Center, National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Péter P Necz
- National Public Health Center, National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Steven Nordin
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Ferenc Köteles
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renáta Szemerszky
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
35
|
López I, Félix N, Alonso A, Rivera M, Maestú C. Response to the comments on: "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid", by I. López, N. Félix, M. Rivera, A. Alonso, and C. Maestú. Environmental Health 10.1016/j.envres.2021.110734. ENVIRONMENTAL RESEARCH 2022; 208:112193. [PMID: 34678254 DOI: 10.1016/j.envres.2021.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Isabel López
- Polytechnic University of Madrid, UPM, Madrid, Spain.
| | | | | | - Marco Rivera
- Biomedical Technology Center, CTB, Madrid, Spain
| | - Ceferino Maestú
- Biomedical Technology Center, CTB, Madrid, Spain; CIBER - BBN, Spain
| |
Collapse
|
36
|
Koppel T, Ahonen M, Carlberg M, Hardell L. Very high radiofrequency radiation at Skeppsbron in Stockholm, Sweden from mobile phone base station antennas positioned close to pedestrians' heads. ENVIRONMENTAL RESEARCH 2022; 208:112627. [PMID: 34995546 DOI: 10.1016/j.envres.2021.112627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In urban environment there is a constant increase of public exposure to radiofrequency electromagnetic fields from mobile phone base stations. With the placement of mobile phone base station antennas radiofrequency hotspots emerge. This study investigates an area at Skeppsbron street in Stockholm, Sweden with an aggregation of base station antennas placed at low level close to pedestrians' heads. Detailed spatial distribution measurements were performed with 1) a radiofrequency broadband analyzer and 2) a portable exposimeter. The results display a greatly uneven distribution of the radiofrequency field with hotspots. The highest spatial average across all quadrat cells was 12.1 V m⁻1 (388 mW m⁻2), whereas the maximum recorded reading from the entire area was 31.6 V m⁻1 (2648 mW m⁻2). Exposimeter measurements show that the majority of exposure is due to mobile phone downlink bands. Most dominant are 2600 and 2100 MHz bands used by 4G and 3G mobile phone services, respectively. The average radiofrequency radiation values from the earlier studies show that the level of ambient RF radiation exposure in Stockholm is increasing. This study concluded that mobile phone base station antennas at Skeppsbron, Stockholm are examples of poor radiofrequency infrastructure design which brings upon highly elevated exposure levels to popular seaside promenade and a busy traffic street.
Collapse
Affiliation(s)
- Tarmo Koppel
- Tallinn University of Technology, SOC353 Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Mikko Ahonen
- Päivölä Institute, Päivöläntie 52, Tarttila, 37770, Finland
| | - Michael Carlberg
- The Environment and Cancer Research Foundation, Studievägen 35, SE 702 17, Örebro, Sweden
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Studievägen 35, SE 702 17, Örebro, Sweden.
| |
Collapse
|
37
|
Sun A, Zhao X, Li Z, Gao Y, Liu Q, Zhou H, Dong G, Wang C. Effects of Long-Term and Multigeneration Exposure of Caenorhabditis elegans to 9.4 GHz Microwaves. Bioelectromagnetics 2022; 43:336-346. [PMID: 35544783 DOI: 10.1002/bem.22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
A large number of studies on the biological effects of microwaves are carried out using rodents and cells, but the conditions are difficult to control, and the irradiation period is short; the results obtained have always been controversial and difficult to reproduce. In this study, we expose nematodes to an electromagnetic environment for a long-term and multigeneration period to explore the possible biological effects. Wild-type N2 strains of Caenorhabditis elegans are exposed to 9.4 GHz microwaves at a specific adsorption rate of 4 W/kg for 10 h per day from L1 larvae to adults. Then, adult worms are washed off, and the laid eggs are kept to hatch L1 larvae, which are continuously exposed to microwaves until passing through 20 generations. The worms of the 10th, 15th, and 20th generations are collected for index detection. Interestingly, we found that the fecundity of C. elegans decreased significantly in the exposed group from the 15th generation. At the same time, we found that the growth of C. elegans decreased, motility decreased, and oxidative stress occurred in the exposed group from the 10th generation, which may play roles in the decreased spawning in worms. We preliminarily believe that the microwave energy received by worms leads to oxidative stress, which causes a decrease in the spawning rate, and the underlying mechanism needs to be further studied. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aihua Sun
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xuelong Zhao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Qi Liu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Hongmei Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
38
|
Gou D, Huang K, Liu Y, Shi H, Wu Z. Investigation of Spatial Orientation and Kinetic Energy of Reactive Site Collision between Benzyl Chloride and Piperidine: Novel Insight into the Microwave Nonthermal Effect. J Phys Chem A 2022; 126:2690-2705. [PMID: 35447029 DOI: 10.1021/acs.jpca.2c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microwave nonthermal effect in chemical reactions is still an uncertain problem. In this work, we have studied the spatial orientation and kinetic energy of reactive site collision between benzyl chloride and piperidine molecules in substitution reaction under microwave irradiation using the molecular dynamics simulation. Our results showed that microwave polarization can change the spatial orientation of reactive site collision. Collision probability between the Cl atom of the C-Cl group of benzyl chloride and the H atom of the N-H group of piperidine increased by up to 33.5% at an effective spatial solid angle (θ, φ) of (100∼110°, 170∼190°) under microwave irradiation. Also, collision probability between the C atom of the C-Cl group of benzyl chloride and the N atom of the N-H group of piperidine also increased by up to 25.6% at an effective spatial solid angle (θ, φ) of (85∼95°, 170∼190°). Moreover, the kinetic energy of collision under microwave irradiation was also changed, that is, for the collision between the Cl atom of the C-Cl group and the H atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J increased by 45.9 times under microwave irradiation, and for the collision between the C atom of the C-Cl group and the N atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J also increased by 29.2 times. Through simulation, the reaction rate increased by 34.4∼50.3 times under microwave irradiation, which is close to the experimental increase of 46.3 times. In the end, spatial orientation and kinetic energy of molecular collision changed by microwave polarization are summarized as the microwave postpolarization effect. This effect provides a new insight into the physical mechanism of the microwave nonthermal effect.
Collapse
Affiliation(s)
- Dezhi Gou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Liu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxiao Shi
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyan Wu
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
39
|
The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs. Vet Sci 2022; 9:vetsci9050201. [PMID: 35622729 PMCID: PMC9147188 DOI: 10.3390/vetsci9050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
The present study aims to determine the effects of long-term exposure to electromagnetic radiation from mobile phones (MPs) on heart rate variability (HRV), cardiac function, blood profiles, body surface temperature, and semen quality in healthy dogs. Eight male dogs were exposed to MPs (1962–1966 MHz; specific absorption rate 0.96 W/kg) for 2 h/day, 5 days/week, for 10 weeks. Holter monitoring for HRV analysis was performed at baseline (BL) and every 2 weeks, until the end of the study. Electrocardiograms (ECG), blood pressure (BP), echocardiography, cardiac troponin I (cTnI), hematology and biochemistry profiles, body surface temperature, and semen quality were evaluated at BL, week 5, and week 10 during exposure. The results showed that most of the HRV parameters did not significantly differ among timepoints, except for the mean of an interval between continuous normal R waves in week 6 that was higher than that at BL (p = 0.022). The RR and QT intervals from ECG in week 5 were prolonged, compared to the BL values (p = 0.001 and p = 0.003, respectively), but those parameters were within the normal limits. The echocardiography, BP, cTnI concentrations, body surface temperature, and semen quality results were not different from BL values. In conclusion, this study found no evidence suggesting an adverse effect of cell phone exposure on HRV, cardiac function, blood profiles, body surface temperature, or semen quality in healthy dogs, when exposed for 10 weeks.
Collapse
|
40
|
Gupta S, Sharma RS, Singh R. Non-ionizing radiation as possible carcinogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:916-940. [PMID: 32885667 DOI: 10.1080/09603123.2020.1806212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The advent of wireless technologies has revolutionized the way we communicate. The steady upsurge in the use of mobile phone all over the world in the last two decades, while triggered economic growth, has caused substantial damage to the environment, both directly and indirectly. The electromagnetic radiation generated from mobile phones, radio-based stations, and phone towers, high-voltage power lines have been reported which leads to the variety of health scares such as the risk of cancer in human beings and adverse effects in animals, birds, etc. Though the usage of such radiation emitting from mobile phones has risen steeply, there is a lack of proper knowledge about the associated risks. The review provides the latest research evidence based both on in vitro studies, in vivo studies, and possible gaps in our knowledge. Moreover, the present review also summarizes available literature in this subject, reports and studies which will help to form guidelines for its exposure limits to the public.Abbreviations: Continuous Wave: CW; Code Division Multiple Access: CDMA; Global System for Mobile Communications: GSM; Peripheral Blood Mononuclear Cell: PBMC; Radiofrequency: RF; Radiofrequency radiation: RFR; Universal Mobile Telecommunications System: UMTS; Wideband Code Division Multiple Access: WCDMA; Specific Absorption Rate: SAR; National Toxicology Program: NTP; amplitude-modulated or amplitude-modulation: AM; Electromagnetic frequencies: EMF; confidence interval: CI; Gigahertz: GHz; odds ratio: OR; incidence ratio: IR; reactive oxygen species: ROS; specific absorption rate: SAR; International Agency of Research on Cancer: IARC; single-strand breaks: SSB; double-strand breaks: DSB (7,12-Dimethylbenz[a]anthracene): DMBA; Hour: h; international commission on non-ionizing radiation protection: ICNIRP; extremely low frequency: ELFl; microtesla: mT; Gigahertz: GHz; hertz: Hz; decibel: dB; kilometer: Km; Watt per square meter: W/m2; Hour: h; positron emission tomography: PET.
Collapse
Affiliation(s)
- Shiwangi Gupta
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Radhey Shyam Sharma
- Department of RBMH & CH, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
41
|
Singh KV, Arya R, Nirala JP, Sahu D, Nanda RK, Rajamani P. Effects of mobile phone electromagnetic radiation on rat hippocampus proteome. ENVIRONMENTAL TOXICOLOGY 2022; 37:836-847. [PMID: 34984797 DOI: 10.1002/tox.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, the number of mobile phone users has increased from 5.57 billion in 2011 to 6.8 billion in 2019. However, short- and long-term impact of the electromagnetic radiation emitting from mobile phones on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 h/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/sham) ≥ ±1.0, p-value <.05). Majority of these deregulated proteins grouped into three clusters sharing similar molecular pathways. A set of four proteins (Succinate-semialdehyde dehydrogenase: Aldh5a1, Na+ K+ transporting ATPase: Atp1b2, plasma membrane calcium transporting ATPase: PMCA and protein S100B) presenting each functional pathway were selected for validation. Western blot analysis of these proteins, in an independent sample set, corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100B have a neuroprotective role. In conclusion, we present a deregulated hippocampus proteome upon mobile phone radiation exposure, which might influence the healthy functioning of the brain.
Collapse
Affiliation(s)
| | - Rakesh Arya
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Debasis Sahu
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Ranjan Kumar Nanda
- Translational Health Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
42
|
Weed DL. Do Cell Phones Cause Brain Tumors? Another Piece of the Puzzle. J Natl Cancer Inst 2022; 114:643-644. [PMID: 35350076 PMCID: PMC9086749 DOI: 10.1093/jnci/djac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Douglas L Weed
- DLW Consulting Services, LLC, Salt Lake City, UT, USA.,National Cancer Institute (retired), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Echchgadda I, Cantu JC, Tolstykh GP, Butterworth JW, Payne JA, Ibey BL. Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Sci Rep 2022; 12:3506. [PMID: 35241689 PMCID: PMC8894459 DOI: 10.1038/s41598-022-06914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Exposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system. The present study investigated changes in neuronal activity and synaptic transmission following a 60-min exposure to 3.0 GHz RF-EMF at a low dose (specific absorption rate (SAR) < 1 W/kg). We showed that RF-EMF exposure decreased the amplitude of action potential (AP), depolarized neuronal resting membrane potential (MP), and increased neuronal excitability and synaptic transmission in cultured primary hippocampal neurons (PHNs). The results show that RF-EMF exposure can alter neuronal activity and highlight that more investigations should be performed to fully explore the RF-EMF effects and mechanisms.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA.
| | - Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Joseph W Butterworth
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Jason A Payne
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| |
Collapse
|
44
|
Pooam M, Jourdan N, Aguida B, Dahon C, Baouz S, Terry C, Raad H, Ahmad M. Exposure to 1.8 GHz radiofrequency field modulates ROS in human HEK293 cells as a function of signal amplitude. Commun Integr Biol 2022; 15:54-66. [PMID: 35126804 PMCID: PMC8816398 DOI: 10.1080/19420889.2022.2027698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The modern telecommunications industry is ubiquitous throughout the world, with a significant percentage of the population using cellular phones on a daily basis. The possible physiological consequences of wireless emissions in the GHz range are therefore of major interest, but remain poorly understood. Here, we show that exposure to a 1.8 GHz carrier frequency in the amplitude range of household telecommunications induces the formation of ROS (Reactive Oxygen Species) in human HEK293 cultured cells. The ROS concentrations detected by fluorescent imaging techniques increased significantly after 15 minutes of RF field exposure, and were localized to both nuclear and cytosolic cellular compartments. qPCR analysis showed altered gene expression of both anti-oxidative (SOD, GPX, GPX, and CAT) and oxidative (Nox-2) enzymes. In addition, multiple genes previously identified as responsive to static magnetic fields were found to also be regulated by RF, suggesting common features in response mechanisms. By contrast, many RF effects showed evidence of hormesis, whereby biological responsivity does not occur linearly as a function of signal amplitude. Instead, biphasic dose response curves occur with ‘blind’ spots at certain signal amplitudes where no measureable response occurs. We conclude that modulation of intracellular ROS can be a direct consequence of RF exposure dependent on signal frequency and amplitude. Since changes in intracellular ROS may have both harmful and beneficial effects, these could provide the basis for many reported physiological effects of RF exposure.
Collapse
Affiliation(s)
- Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | - Colin Terry
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Haider Raad
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Margaret Ahmad
- Sorbonne Université - CNRS, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| |
Collapse
|
45
|
Molecular Mechanism of Malignant Transformation of Balb/c-3T3 Cells Induced by Long-Term Exposure to 1800 MHz Radiofrequency Electromagnetic Radiation (RF-EMR). Bioengineering (Basel) 2022; 9:bioengineering9020043. [PMID: 35200397 PMCID: PMC8869874 DOI: 10.3390/bioengineering9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose: We aimed to investigate RF-EMR-induced cell malignant transformation. Methods: We divided Balb/c-3T3 cells into sham and expo groups. The expo groups were exposed to a 1800 MHz RF continuous wave for 40 and 60 days, for 4 h per day. The sham group was sham-exposed. Cells were harvested for a cell transformation assay, transplantation in severe combined immune deficient (SCID) mice, soft agar clone formation detection, and a transwell assay. The mRNA microarray assay was used to declare key genes and pathways. Results: The exposed Balb/c-3T3 cells showed a strong increase in cell proliferation and migration. Malignant transformation was observed in expo Balb/c-3T3 cells exposed for 40 days and 60 days, which was symbolized with visible foci and clone formation. Expo Balb/c-3T3 cells that were exposed for 40 days and 60 days produced visible tumors in the SCID mice. Lipid metabolism was the key biological process and pathway involved. The mevalonate (MVA) pathway was the key metabolic pathway. The interacted miRNAs could be further research targets to examine the molecular mechanism of the carcinogenic effects of long-term exposure. Conclusion: Exposure for 40 and 60 days to 1800 MHz RF-EMR induced malignant transformation in Balb/c-3T3 cells at the SAR of 8.0 W/kg. We declared that lipid metabolism was the pivotal biological process and pathway. The MVA pathway was the key metabolic pathway.
Collapse
|
46
|
Hardell L, Carlberg M. Lost opportunities for cancer prevention: historical evidence on early warnings with emphasis on radiofrequency radiation. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:585-597. [PMID: 33594846 DOI: 10.1515/reveh-2020-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Some historical aspects on late lessons from early warnings on cancer risks with lost time for prevention are discussed. One current example is the cancer-causing effect from radiofrequency (RF) radiation. Studies since decades have shown increased human cancer risk. The fifth generation, 5G, for wireless communication is about to be implemented world-wide despite no comprehensive investigations of potential risks to human health and the environment. This has created debate on this technology among concerned people in many countries. In an appeal to EU in September 2017, currently endorsed by more than 400 scientists and medical doctors, a moratorium on the 5G deployment was required until proper scientific evaluation of negative consequences has been made (www.5Gappeal.eu). That request has not been taken seriously by EU. Lack of proper unbiased risk evaluation of the 5G technology makes adverse effects impossible to be foreseen. This disregard is exemplified by the recent report from the International Commission on non-ionizing radiation protection (ICNIRP) whereby only thermal (heating) effects from RF radiation are acknowledged despite a large number of reported non-thermal effects. Thus, no health effects are acknowledged by ICNIRP for non-thermal RF electromagnetic fields in the range of 100 kHz-300 GHz. Based on results in three case-control studies on use of wireless phones we present preventable fraction for brain tumors. Numbers of brain tumors of not defined type were found to increase in Sweden, especially in the age group 20-39 years in both genders, based on the Swedish Inpatient Register. This may be caused by the high prevalence of wireless phone use among children and in adolescence taking a reasonable latency period and the higher vulnerability to RF radiation among young persons.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
47
|
Rivera González MX, Félix González N, López I, Ochoa Zambrano JS, Miranda Martínez A, Maestú Unturbe C. Compact Exposimeter Device for the Characterization and Recording of Electromagnetic Fields from 78 MHz to 6 GHz with Several Narrow Bands (300 kHz). SENSORS (BASEL, SWITZERLAND) 2021; 21:7395. [PMID: 34770707 PMCID: PMC8588337 DOI: 10.3390/s21217395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.
Collapse
Affiliation(s)
- Marco Xavier Rivera González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Nazario Félix González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Isabel López
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | | | - Andrés Miranda Martínez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Ceferino Maestú Unturbe
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
48
|
Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, Kovalev AV, Ovchinnikov AV, Chefonov OV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. BIOMEDICAL OPTICS EXPRESS 2021; 12:7122-7138. [PMID: 34858704 PMCID: PMC8606137 DOI: 10.1364/boe.440460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
For the first time, the data have been obtained on the effects of high-intensity terahertz (THz) radiation (with the intensity of 30 GW/cm2, electric field strength of 3.5 MV/cm) on human skin fibroblasts. A quantitative estimation of the number of histone Н2АХ foci of phosphorylation was performed. The number of foci per cell was studied depending on the irradiation time, as well as on the THz pulse energy. The performed studies have shown that the appearance of the foci is not related to either the oxidative stress (the cells preserve their morphology, cytoskeleton structure, and the reactive oxygen species content does not exceed the control values), or the thermal effect of THz radiation. The prolonged irradiation of fibroblasts also did not result in a decrease of their proliferative index.
Collapse
Affiliation(s)
- Dmitry S. Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Inna V. Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A. Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Sergey A. Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Svetlana A. Gurova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Rimma O. Shatalova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Alexey V. Kovalev
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Andrey V. Ovchinnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Chefonov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A. Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| |
Collapse
|
49
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
50
|
Ozel HB, Cetin M, Sevik H, Varol T, Isik B, Yaman B. The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biol Futur 2021; 72:359-365. [PMID: 34554556 DOI: 10.1007/s42977-021-00085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/19/2021] [Indexed: 12/26/2022]
Abstract
Electromagnetic radiation is a substantial pollution factor that most of the living things found almost everywhere are constantly exposed to with current technology. The number of studies conducted on the effects of this exposed radiation on the living things constantly is limited; and almost all of the studies conducted are aimed at measuring the effects of short-term exposure. In addition to this, most of the studies conducted on plants focus on herbaceous plant species. In this study, the effects of distance to base station on flower and cone yield and germination percentage were investigated in Pinus brutia individuals, one of the critical forest tree species. The study results revealed that being close to the base station significantly reduced the number of flowers and cones in P. brutia individuals, and that the values obtained in individuals at a distance of 800 m from the base station were 11 times more than the number of flowers and 7 times more than the number of cones compared to the individuals at a distance of 100 m. In the seeds subject to the study, there is a three-times difference in terms of the germination percentage among the individuals located at the furthest and closest distance to the base station. These results show that P. brutia individuals are considerably affected by the base station.
Collapse
Affiliation(s)
- Halil Baris Ozel
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Mehmet Cetin
- Faculty of Engineering and Architecture, Department of Landscape Architecture, Kastamonu University, Kuzeykent Campus, 37150, Kastamonu, Turkey.
| | - Hakan Sevik
- Faculty of Engineering and Architecture, Department of Environmental Engineering, Kastamonu University, Kuzeykent Campus, 37150, Kastamonu, Turkey
| | - Tugrul Varol
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Berkant Isik
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| | - Barbaros Yaman
- Faculty of Forestry, Department of Forest Engineering, Bartin University, Bartin, Turkey
| |
Collapse
|