1
|
Zhu JK, Wang J. Cytochrome P450 3A gene family in gastric cancer: Unveiling diagnostic biomarkers and therapeutic targets for personalized treatment. World J Clin Oncol 2025; 16:101548. [DOI: 10.5306/wjco.v16.i4.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
The cytochrome P450 3A (CYP3A) gene family’s role in early progression of gastric cancer was comprehensively investigated. Its potential as a therapeutic target was evaluated. Upon literature review, aberrant expression of the CYP3A gene family has a strong correlation with gastric cancer onset, although the precise underlying mechanisms remain unclear. To assess its potential as a biomarker for early diagnosis and a therapeutic target, we have provided a comprehensive review of the regulatory mechanisms governing CYP3A gene family expression in gastric cancer, as well as its relation with early tumor progression and the tumor microenvironment. The CYP3A gene family is crucial in the proliferation, migration, and invasion of gastric cancer cells and promotes cancer progression by modulating inflammatory responses and oxidative stress within the tumor microenvironment. Furthermore, genetic polymorphisms in CYP3Aenzymes highlight its potential value in personalized medicine. Based on these findings, this paper explores the feasibility of developing inhibitors and activators targeting CYP3A enzymes and discusses potential applications in gene therapy. This research provides crucial theoretical support for the CYP3A gene family as an early diagnostic marker and therapeutic target for gastric cancer. In the future, multi-omics studies and large-scale clinical trials will be essential to advance clinical translation of these findings.
Collapse
Affiliation(s)
- Jun-Kun Zhu
- Department of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jing Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
2
|
Mishra P, Singh SC, Ramadass B. Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action. World Neurosurg X 2024; 22:100328. [PMID: 38444870 PMCID: PMC10914588 DOI: 10.1016/j.wnsx.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Drug-resistant epilepsy (DRE) poses a significant global challenge, impacting the well-being of patients. Anti-epileptic drugs often fail to effectively control seizures in individuals with DRE. This condition not only leads to persistent seizures but also induces neurochemical imbalances, elevating the risk of sudden unexpected death in epilepsy and comorbidities. Moreover, patients experience mood and personality alterations, educational and vocational setbacks, social isolation, and cognitive impairments. Ketogenic diet has emerged as a valuable therapeutic approach for DRE, having been utilized since 1920. Various types of ketogenic diets have demonstrated efficacy in controlling seizures. By having a multimodal mechanism of action, the ketogenic diet reduces neuronal excitability and the frequency of seizure episodes. In our narrative review, we have initially provided a concise overview of the factors contributing to drug resistance in epilepsy. Subsequently, we have discussed the different available ketogenic diets. We have reviewed the underlying mechanisms through which the ketogenic diet operates. These mechanisms encompass decreased neuronal excitability, enhanced mitochondrial function, alterations in sleep patterns, and modulation of the gut microbiome. Understanding the complex mechanisms by which this diet acts is essential as it is a rigorous diet and requires good compliance. Hence knowledge of the mechanisms may help to advance research on achieving similar therapeutic effects through other less stringent approaches.
Collapse
Affiliation(s)
- Priyadarshini Mishra
- Department of Physiology, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| | - Sajal Clarence Singh
- Department of Physiology, Institute of Medical Sciences & SUM Hospital, Odisha, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Samia P, Shah A, Patel A, Olielo P, Mudave L, Gwer S. The ethical and validity conundrum in epilepsy research in LMIC settings. Front Neurol 2023; 14:1196261. [PMID: 37265468 PMCID: PMC10231638 DOI: 10.3389/fneur.2023.1196261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Pauline Samia
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, Nairobi, Kenya
- Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Adeel Shah
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, Nairobi, Kenya
| | - Archana Patel
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Philip Olielo
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, Nairobi, Kenya
| | - Lionel Mudave
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, Nairobi, Kenya
| | - Samson Gwer
- School of Medicine, Kenyatta University, Nairobi, Kenya
- Department of Neurology, Gertrude's Children's Hospital, Nairobi, Kenya
- Afya Research Africa, Nairobi, Kenya
| |
Collapse
|
4
|
Deep eutectic solvents for antiepileptic drug phenytoin solubilization: thermodynamic study. Sci Rep 2021; 11:24081. [PMID: 34916530 PMCID: PMC8677722 DOI: 10.1038/s41598-021-03212-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Thermodynamic investigations provide information about the solute-solvent interactions in the selection of the proper solvent for different fields of pharmaceutical sciences. Especially, the study of antiepileptic drugs in solutions (ethanol/co-solvent) has been a subject of interest owing to their effect in the systems using interaction with a number of important biological membranes. This work focuses on the measurement of density and speed of sound of the phenytoin (PTH) in ethanol/deep eutectic solvents (choline chloride:ethylene glycol, and choline chloride:glycerol) solutions as the innovative class of green solvents at temperature range (288.15 to 318.15) K. It was determined Hansen solubility parameters for assessment of PTH interactions in the solvent media. Some thermophysical parameters including apparent molar volumes Vϕ, apparent molar isobaric expansion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_\varphi^0$$\end{document}Eφ0, and Hepler’s constant, apparent molar isentropic compressibility κφ were obtained and calculated using these data. To correlate the Vϕ and κφ values, the Redlich-Meyer equation was used to calculate the number of quantities containing standard partial molar volume and partial molar isentropic compressibility. Finally, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \delta$$\end{document}Δδ values showed a strong interaction between PTH and solvent (ethanol/DES (ChCl:EG)). The thermodynamic analysis of the studied system also plays a crucial role in the pharmaceutical industry.
Collapse
|
5
|
Łukawski K, Czuczwar SJ. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin Drug Metab Toxicol 2021; 17:1075-1090. [PMID: 34310255 DOI: 10.1080/17425255.2021.1959912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The present evidence indicates that approximately 70% of patients with epilepsy can be successfully treated with antiepileptic drugs (AEDs). A significant proportion of patients are not under sufficient control, and pharmacoresistant epilepsy is clearly associated with poor quality of life and increased morbidity and mortality. There is a great need for newer therapeutic options able to reduce the percentage of drug-resistant patients. AREAS COVERED A number of hypotheses trying to explain the development of pharmacoresistance have been put forward. These include: target hypothesis (altered AED targets), transporter (overexpression of brain efflux transporters), pharmacokinetic (overexpression of peripheral efflux transporters in the intestine or kidneys), intrinsic severity (initial high seizure frequency), neural network (aberrant networks), and gene variant hypothesis (genetic polymorphisms). EXPERT OPINION A continuous search for newer AEDs or among non-AEDs (blockers of efflux transporters, interleukin antagonists, cyclooxygenase inhibitors, mTOR inhibitors, angiotensin II receptor antagonists) may provide efficacious drugs for the management of drug-resistant epilepsy. Also, combinations of AEDs exerting synergy in preclinical and clinical studies (for instance, lamotrigine + valproate, levetiracetam + valproate, topiramate + carbamazepine) might be of importance in this respect. Preclinically antagonistic combinations must be avoided (lamotrigine + carbamazepine, lamotrigine + oxcarbazepine).
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
6
|
Pérez-Pérez D, Frías-Soria CL, Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav 2021; 121:106430. [PMID: 31378558 DOI: 10.1016/j.yebeh.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant epilepsy affects approximately one-third of the patients with epilepsy. The pharmacoresistant condition in epilepsy is mainly explained by six hypotheses. In addition, several experimental models have been used to understand the mechanisms involved in pharmacoresistant epilepsy and to identify novel therapies to control this condition. However, the global prevalence of this disease persists without changes. Several factors can explain this situation. First of all, the pharmacoresistant epilepsy is explained by different and independent hypotheses. Each hypothesis indicates specific mechanisms to explain the drug-resistant condition in epilepsy. However, there are different findings suggesting common mechanisms between the different hypotheses. Other important situation is that the experimental models designed for the screening of drugs with potential anticonvulsant effect do not consider factors such as age, gender, type of epilepsy, and comorbid disorders. The present review focuses on indicating the limitations for each hypothesis and the relationships among them. The relevance to consider central and peripheral phenomena associated with the drug-resistant condition in different types of epilepsy is also indicated. The necessity to establish a global hypothesis that integrates all the phenomena associated with the pharmacoresistant epilepsy is proposed. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM (MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Luisa Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
7
|
Kanjanasilp J, Sawangjit R, Phanthaisong S, Borihanthanawuth W. A meta-analysis of effects of CYP2C9 and CYP2C19 polymorphisms on phenytoin pharmacokinetic parameters. Pharmacogenomics 2021; 22:629-640. [PMID: 34060344 DOI: 10.2217/pgs-2020-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Phenytoin is metabolized through CYP2C9 and CYP2C19. Polymorphisms of CYP2C9 and CYP2C19 may increase plasma concentration and side effects. Materials & methods: Systematic review and meta-analysis were performed to evaluate the effects of CYP2C9 and CYP2C19 polymorphism on pharmacokinetic parameters. PubMed, Science Direct, Cochrane library, and Thai databases were systematically searched. Results: Eight observational studies, comprising a total of 633 patients were included. Michaelis-Menten constant was significantly higher in the polymorphism of CYP2C9IM/CYP2C19EM and CYP2C9IM/CYP2C19IM groups as compared with the control groups (CYP2C9EM/CYP2C19EM) at 2.16 and 1.55 mg/l (p < 0.00001, p < 0.0001). The maximum rate of action was significantly lower in the control groups as compared with the polymorphism of CYP2C9IM/CYP2C19EM and CYP2C9IM/CYP2C19IM groups at 3.10 and 3.53 mg/kg/day (p = 0.00001, <0.0001). Conclusion: The dosage regimen for patients in the CYP2C9IM group to achieve phenytoin therapeutic levels was 2.1-3.4 mg/kg/day.
Collapse
Affiliation(s)
- Juntip Kanjanasilp
- Clinical Trials & Evidence-Based Synthesis Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Ratree Sawangjit
- Clinical Trials & Evidence-Based Synthesis Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Sirikhwan Phanthaisong
- Clinical Trials & Evidence-Based Synthesis Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Wongvaruth Borihanthanawuth
- Clinical Trials & Evidence-Based Synthesis Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, 44150, Thailand
| |
Collapse
|
8
|
Zan X, Yue G, Hao Y, Sima X. A systematic review and meta-analysis of the association of ABCC2/ABCG2 polymorphisms with antiepileptic drug responses in epileptic patients. Epilepsy Res 2021; 175:106678. [PMID: 34087576 DOI: 10.1016/j.eplepsyres.2021.106678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Accumulating evidence indicates that genetic polymorphisms in ATP-binding cassette superfamily members, such asABCC2 and ABCG2, alter responses to antiepileptic drugs (AEDs); however, this evidence is controversial and inconclusive. To provide strong evidence of the association between common polymorphisms in ABCC2 and ABCG2 and AED responses in patients with epilepsy, we performed a systematic review and meta-analysis. METHODS A literature search of electronic databases (PubMed, EBSCO, Ovid and the China National Knowledge Infrastructure) was performed. To evaluate the association of genetic polymorphisms inABCC2 and ABCG2 and risk of AED treatment, we calculated pooled odds ratios (ORs) and 95 % confidence intervals (CIs) using a fixed- or random-effect model. RESULTS A significant association of theABCC2 rs717620 polymorphism with resistance to AEDs was found in the overall pooled populations (homozygous comparison: OR = 1.77, 95 % CI, 1.27-2.48; dominant model: OR = 1.23, 95 % CI, 1.06-1.43; recessive model: OR = 1.75, 95 % CI, 1.28-2.40) and Asians (dominant model: OR = 1.21, 95 % CI, 1.03-1.42; recessive model: OR = 1.80, 95 % CI, 1.30-2.50). Using a recessive model, a similarly significant association of ABCC2 rs3740066 with AED resistance was observed in the overall pooled populations (OR = 2.29, 95 % CI, 1.44-3.64) and Asians (OR = 2.53, 95 % CI, 1.56-4.08). However, ABCC2 rs2273697, ABCG2 rs2231137 and rs2231142 were not found to be associated with AED responsiveness. CONCLUSION This meta-analysis suggests thatABCC2 rs717620 and rs3740066 are risk factors that predict responses to AEDs in epileptic patients.
Collapse
Affiliation(s)
- Xin Zan
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Gaohui Yue
- Operating Room of Anesthesia Surgery Center, West China Hospital/West China School of Nursing, Sichuan University, Chengdu, 610041, PR China.
| | - Yongli Hao
- Operating Room of Anesthesia Surgery Center, West China Hospital/West China School of Nursing, Sichuan University, Chengdu, 610041, PR China.
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
9
|
Morse GD. Strategies for Implementation Research to Investigate the Negative Pharmacokinetic Interaction Between Efavirenz and Dolutegravir. Clin Infect Dis 2021; 72:1823-1825. [PMID: 32667998 DOI: 10.1093/cid/ciaa982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 11/12/2022] Open
|
10
|
Lara DVD, Melo DOD, Silva RAM, Santos PCJLD. Pharmacogenetic testing in psychiatry and neurology: an overview of reviews. Pharmacogenomics 2021; 22:505-513. [PMID: 33973477 DOI: 10.2217/pgs-2020-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacogenetic testing is available to healthcare professionals to guide drug selection and prevent adverse events. However, its implementation in the clinical practice of psychiatry/neurology still has barriers, mainly due to a lack of evidence. We conducted a literature search on Cochrane Library, Embase and Pubmed, from their inception to 18 June 2020. We included 16 published systematic reviews. The most studied drug categories were anticonvulsants and selective serotonin reuptake inhibitors associated with human leukocyte antigen and cytochrome P450 genes (HLA-A, HLA-B, CYP2C9, CYP2D6, CYP2C19), classified as critically low quality/low quality. There is a need for more robust studies with adequate design to assess the potential benefits of adopting pharmacogenetics in health systems and services.
Collapse
Affiliation(s)
- Danilo Vieira de Lara
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela Oliveira de Melo
- Department of Pharmaceutical Sciences, Institute of Environmental Sciences, Chemistry and Pharmaceuticals, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Rafael Augusto Mantovani Silva
- Department of Pharmaceutical Sciences, Institute of Environmental Sciences, Chemistry and Pharmaceuticals, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | |
Collapse
|
11
|
Tang PF, Zheng X, Hu XX, Yang CC, Chen Z, Qian JC, Cai JP, Hu GX. Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5129-5141. [PMID: 33262574 PMCID: PMC7699448 DOI: 10.2147/dddt.s268796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
Abstract
Aim We aimed to systematically examine the effects of enzymatic activity of 38 human CYP2C9 alleles and 21 human CYP3A4 alleles, including wild-type CYP2C9.1 and CYP3A4.1, which contain the 24 CYP2C9 novel alleles (*36–*60) and 6 CYP3A4 novel alleles (*28–*34) newly found in the Chinese population, on sildenafil metabolism through in vitro experiment. Methods The recombinant cytochrome P450 alleles protein of CYP2C9 and CYP3A4 expressed in insect baculovirus expression system were reacted with 10–500 µM sildenafil for 30 minutes at 37°C, and the reaction was terminated by cooling to −80°C immediately. Next, we used ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection system to detect sildenafil and its active metabolite N-desmethyl sildenafil. Results The intrinsic clearance (Vmax/Km) values of most CYP2C9 variants were significantly altered when compared with the wild-type CYP2C9*1, with most of these variants exhibiting either reduced Vmax and/or increased Km values. Four alleles (CYP2C9*11, *14, *31, *49) exhibited no markedly decreased relative clearance (1-fold). The relative clearance of the remaining thirty-three variants exhibited decrease in different levels, ranging from 1.81% to 88.42%. For the CYP3A4 metabolic pathway, when compared with the wild-type CYP3A4*1, the relative clearance values of four variants (CYP3A4*3, *10, *14 and *I335T) showed significantly higher relative clearance (130.7–134.9%), while five variants (CYP3A4*2, *5, *24, *L22V and *F113I) exhibited sharply reduced relative clearance values (1.80–74.25%), and the remaining nine allelic variants showed no statistical difference. In addition, the kinetic parameters of two CYP3A4 variants (CYP3A4*17 and CYP3A4*30) could not be detected, due to the defect of the CYP3A4 gene. Conclusion These findings were the first evaluation of all these infrequent CYP2C9 and CYP3A4 alleles for sildenafil metabolism; when treating people who carry these CYP2C9 and CYP3A4 variants, there should be more focus on the relation of dose intensity, side effects and therapeutic efficacy when administering sildenafil. The study will provide fundamental data on effect of CYP2C9 and CYP3A4 allelic variation on sildenafil metabolism for further clinical research.
Collapse
Affiliation(s)
- Peng-Fei Tang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, Zhejiang, People's Republic of China
| | - Xiang Zheng
- Dong Yang People's Hospital, Jinhua, Zhejiang 322100, People's Republic of China
| | - Xiao-Xia Hu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, People's Republic of China
| | - Cheng-Cheng Yang
- Ningbo First Hospital, Ningbo 315010, Zhejiang, People's Republic of China
| | - Zhe Chen
- Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, People's Republic of China
| | - Guo-Xin Hu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, Zhejiang, People's Republic of China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Chang WC, Hung SI, Carleton BC, Chung WH. An update on CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol 2020; 16:723-734. [DOI: 10.1080/17425255.2020.1780209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wan-Chun Chang
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Shuen-Iu Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Teaching Hospital of School of Medicine, Tsinghua University, China
| |
Collapse
|
13
|
Makowska M, Smolarz B, Bryś M, Forma E, Romanowicz H. An association between the rs1799853 and rs1057910 polymorphisms of CYP2C9, the rs4244285 polymorphism of CYP2C19 and the prevalence rates of drug-resistant epilepsy in children. Int J Neurosci 2020; 131:1147-1154. [PMID: 32567426 DOI: 10.1080/00207454.2020.1781110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Epilepsy is a neurologically based disease. Literature data indicate a certain association between the polymorphism of these genes, which participate in the metabolism of drugs (CYP), and drug-resistant epilepsy.Aim: The reports describe studies in which an association was evaluated between the rs1799853 (430C > T) and rs1057910 (1075A > C) polymorphisms of CYP2C9 gene and the rs4244285 (c.681G > A) polymorphism of CYP2C19 gene on one hand and the incidence of drug-resistant epilepsy in children on the other.Material and methods: The above-mentioned polymorphisms were assessed by the PCR-RFLP technique in a group of patients with drug-resistant (n = 106) and drug-responsive (n = 80) epilepsy, as well as in non-epileptic children (n = 97), all of them hospitalised at the Department of Neurology of the Institute-Polish Mother's Memorial Hospital in Lodz.Results: It was demonstrated that CT genotype of the rs1799853 polymorphism of CYP2C9 gene and GA genotype of the rs4244285 polymorphism of CYP2C19 gene caused an enhanced risk of epilepsy. It was also shown that the occurrence of C-G-A haplotype, when referred to the rs1799853 polymorphism of CYP2C9 gene and the rs4244285 polymorphism of CYP2C19 gene, could be associated with a decreased risk of epilepsy occurrence. In case of the rs1799853 polymorphism in CYP2C9 gene, the occurrence of T allele four times increases the risk of drug-resistance in patients with diagnosed epilepsy.Conclusion: The obtained results indicated that the rs1799853 and rs1057910 polymorphisms of CYP2C9 gene and the rs4244285 polymorphism of CYP2C19 gene could be associated with the occurrence of drug-resistant epilepsy in children.
Collapse
Affiliation(s)
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
14
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Shanmukhan NK. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. THE PHARMACOGENOMICS JOURNAL 2019; 20:1-18. [PMID: 31819163 DOI: 10.1038/s41397-019-0135-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Personalized medicine has been a booming area in clinical research for the past decade, in which the detailed information about the patient genotype and clinical conditions were collected and considered to optimize the therapy to prevent adverse reactions. However, the utility of commercially available personalized medicine has not yet been maximized due to the lack of a structured protocol for implementation. In this narrative review, we explain the role of pharmacogenetics in personalized medicine, next-generation personalized medicine, i.e., patient-centric personalized medicine, in which the patient's comfort is considered along with pharmacogenomics to be a primary factor. We extensively discuss the classifications, strategies, tools, and drug delivery systems that can support the implementation of patient-centric personalized medicine from an industrial perspective.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India
| | | |
Collapse
|
15
|
Aboukaoud M, Israel S, Brautbar C, Eyal S. Genetic Basis of Delayed Hypersensitivity Reactions to Drugs in Jewish and Arab Populations. Pharm Res 2018; 35:211. [PMID: 30225831 DOI: 10.1007/s11095-018-2472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Genetic variation can affect drug pharmacokinetics and pharmacodynamics and contribute to variability between individuals in response to medications. Specifically, differences in allele frequencies among individuals and ethnic groups have been associated with variation in their propensity to develop drug hypersensitivity reactions (HSRs). This article reviews the current knowledge on the genetic background of HSRs and its relevance to Jewish and Arab populations. The focus is on human leukocyte antigen (HLA) alleles and haplotypes as predictive markers of HSRs ("immunopharmacogenetics"), but other genes and alleles are described as well. Also discussed is the translation of the pharmacogenetic information to practice recommendations.
Collapse
Affiliation(s)
- Mohammed Aboukaoud
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, 91120, Jerusalem, Israel
| | - Shoshana Israel
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chaim Brautbar
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, 91120, Jerusalem, Israel.
| |
Collapse
|
16
|
Silvado CE, Terra VC, Twardowschy CA. CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:51-58. [PMID: 29636628 PMCID: PMC5880189 DOI: 10.2147/pgpm.s108113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT) is an antiepileptic drug widely used in the treatment of focal epilepsy and status epilepticus, and effective in controlling focal seizures with and without tonic-clonic generalization and status epilepticus. The metabolization of PHT is carried out by two oxidative cytochrome P450 enzymes CYP2C9 and CYP2C19; 90% of this metabolization is done by CYP2C9 and the remaining 10% by CYP2C19. Genetic polymorphism of CYP2C9 may reduce the metabolism of PHT by 25-50% in patients with variants *2 and *3 compared to those with wild-type variant *1. The frequency distribution of CYP2C9 polymorphism alleles in patients with epilepsy around the world ranges from 4.5 to 13.6%, being less frequent in African-Americans and Asians. PHT has a narrow therapeutic range and a nonlinear pharmacokinetic profile; hence, its poor metabolization has significant clinical implications as it causes more frequent and more serious adverse effects requiring discontinuation of treatment, even if it had been effective. There is evidence that polymorphisms of CYP2C9 and the use of PHT are associated with an increase in the frequency of some side effects, such as cerebellar atrophy, gingival hypertrophy or acute cutaneous reactions. The presence of HLA-B*15:02 and CYP2C9 *2 or *3 in the same patient increases the risk of Stevens-Johnson syndrome and toxic epidermal necrolysis; hence, PHT should not be prescribed in these patients. In patients with CYP2C9 *1/*2 or *1/*3 alleles (intermediate metabolizers), the usual PHT maintenance dose (5-10 mg/kg/day) must be reduced by 25%, and in those with CYP2C9 *2/*2, *2/*3 or *3/*3 alleles (poor metabolizers), the dose must be reduced by 50%. It is controversial whether CYP2C9 genotyping should be done before starting PHT treatment. In this paper, we aim to review the influence of CYP2C9 polymorphism on the metabolization of PHT and the clinical implications of poor metabolization in the treatment of epilepsies.
Collapse
Affiliation(s)
- Carlos Eduardo Silvado
- Comprehensive Epilepsy Program, Hospital de Clinicas, Federal University of Parana (UFPR), Curitiba, Brazil
| | - Vera Cristina Terra
- Comprehensive Epilepsy Program, Hospital de Clinicas, Federal University of Parana (UFPR), Curitiba, Brazil
| | | |
Collapse
|