1
|
Xu C, Liao M, Zhang S, Chen Y, Shulai X, Wang G, Aa J. The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex. Metabolites 2025; 15:34. [PMID: 39852377 PMCID: PMC11767987 DOI: 10.3390/metabo15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown. METHODS For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models. Depp1 levels were increased in the mPFC but not in other brain regions, such as the hippocampus or nucleus accumbens, according to Western blot and PCR assays. RESULTS Glucose dysregulation and synaptic loss occur in both depression and T2DM. The typical hyperglycemia in T2DM was observed in two models of depression, namely, chronic social defeat stress (CSDS) and chronic restraint stress (CRS). Hyperglycemia, which occurred in T2DM, was observed, and metabolomics data clearly showed the perturbation of glucose levels and glucose metabolism in the medial prefrontal cortex (mPFC). Decreased protein levels of BDNF and PSD95 suggested significant synaptic loss in depressed and diabetic mice. CONCLUSION These findings suggest that the comorbidity of depression and diabetes is involved in the dysfunction of Depp1 in the mPFC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Sheikh-Hosseini M, Salimi M, Mozdarani H. A-Kinase anchor protein 4 (AKAP4) may be considered as a potential early diagnostic breast cancer marker detectable in blood. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Liu D, Wan Y, Qu N, Fu Q, Liang C, Zeng L, Yang Y. LncRNA-FAM66C Was Identified as a Key Regulator for Modulating Tumor Microenvironment and Hypoxia-Related Pathways in Glioblastoma. Front Public Health 2022; 10:898270. [PMID: 35874989 PMCID: PMC9299378 DOI: 10.3389/fpubh.2022.898270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Although the role of hypoxia has been greatly explored and unveiled in glioblastoma (GBM), the mechanism of hypoxia-related long non-coding (lnc) RNAs has not been clearly understood. This study aims to reveal the crosstalk among hypoxia-related lncRNAs, tumor microenvironment (TME), and tumorigenesis for GBM. Gene expression profiles of GBM patients were used as a basis for identifying hypoxia-related lncRNAs. Unsupervised consensus clustering was conducted for classifying samples into different molecular subtypes. Gene set enrichment analysis (GSEA) was performed to analyze the enrichment of a series of genes or gene signatures. Three molecular subtypes were constructed based on eight identified hypoxia-related lncRNAs. Oncogenic pathways, such as epithelial mesenchymal transition (EMT), tumor necrosis factor-α (TNF-α) signaling, angiogenesis, hypoxia, P53 signaling, and glycolysis pathways, were significantly enriched in C1 subtype with poor overall survival. C1 subtype showed high immune infiltration and high expression of immune checkpoints. Furthermore, we identified 10 transcription factors (TFs) that were highly correlated with lncRNA-FAM66C. Three key lncRNAs (ADAMTS9-AS2, LINC00968, and LUCAT1) were screened as prognostic biomarkers for GBM. This study shed light on the important role of hypoxia-related lncRNAs for TME modulation and tumorigenesis in GBM. The eight identified hypoxia-related lncRNAs, especially FAM66C may serve as key regulators involving in hypoxia-related pathways.
Collapse
Affiliation(s)
- Dan Liu
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Yue Wan
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Ning Qu
- Department of Pediatrics, Jinzhou Central Hospital, Jinzhou, China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Chao Liang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lingda Zeng
- Department of Otorhinolaryngology Surgery, Jinzhou Central Hospital, Jinzhou, China
| | - Yang Yang
- Department of Neurosurgery, Jinzhou Central Hospital, Jinzhou, China
| |
Collapse
|
4
|
Napolioni V, Bianconi F, Potenza R, Carpi FM, Ludovini V, Picciolini M, Tofanetti FR, Bufalari A, Pallotti S, Poggi C, Anile M, Daddi N, Venuta F, Puma F, Vannucci J. Genome-wide expression of the residual lung reacting to experimental Pneumonectomy. BMC Genomics 2021; 22:881. [PMID: 34872491 PMCID: PMC8650537 DOI: 10.1186/s12864-021-08171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background Acute or chronic irreversible respiratory failure may occur in patients undergoing pneumonectomy. Aim of this study was to determine transcriptome expression changes after experimental pneumonectomy in swine model. Experimental left pneumonectomy was performed in five pigs under general anaesthesia. Both the resected and the remaining lung, after 60 post-operative completely uneventful days, underwent genome-wide bulk RNA-Sequencing (RNA-Seq). Results Histological analysis showed dilation of air spaces and rupture of interalveolar septa. In addition, mild inflammation, no fibrosis, radial stretch of the bronchus, strong enlargement of airspaces and thinning of the blood supply were observed. Bioinformatic analyses of bulk RNA-Seq data identified 553 Differentially Expressed Genes (DEGs) at adjusted P-value below 0.001, between pre- and post-pneumonectomy. The top 10 up-regulated DEGs were Edn1, Areg, Havcr2, Gadd45g, Depp1, Cldn4, Atf3, Myc, Gadd45b, Socs3; the top 10 down-regulated DEGs were Obscn, Cdkn2b, ENSSSCG00000015738, Prrt2, Amer1, Flrt3, Efnb2, Tox3, Znf793, Znf365. Leveraging digital cytometry tools, no difference in cellular abundance was found between the two experimental groups, while the analysis of cell type-specific gene expression patterns highlighted a striking predominance of macrophage-specific genes among the DEGs. DAVID-based gene ontology analysis showed a significant enrichment of “Extrinsic apoptotic signaling pathway” (FDR q = 7.60 × 10− 3) and “Response to insulin” (FDR q = 7.60 × 10− 3) genes, along with an enrichment of genes involved as “Negative regulators of DDX58/IFIH1 signaling” (FDR q = 7.50 × 10− 4) found by querying the REACTOME pathway database. Gene network analyses indicated a general dysregulation of gene inter-connections. Conclusion This translational genomics study highlighted the existence both of individual genes, mostly dysregulated in certain cellular populations (e.g., macrophages), and gene-networks involved in pulmonary reaction after left pneumonectomy. Their involvement in lung homeostasis is largely supported by previous studies, carried out both in humans and in other animal models (under homeostatic or disease-related conditions), that adopted candidate-gene approaches. Overall, the present findings represent a preliminary assessment for future, more focused, studies on compensatory lung adaptation, pulmonary regeneration and functional reload. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08171-3.
Collapse
Affiliation(s)
- Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Rossella Potenza
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Francesca R Tofanetti
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Stefano Pallotti
- Genetics and Animal Breeding Group, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Camilla Poggi
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Anile
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Niccolò Daddi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
5
|
Hermawan A, Putri H. Systematic analysis of potential targets of the curcumin analog pentagamavunon-1 (PGV-1) in overcoming resistance of glioblastoma cells to bevacizumab. Saudi Pharm J 2021; 29:1289-1302. [PMID: 34819791 PMCID: PMC8596150 DOI: 10.1016/j.jsps.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy. Methods Target prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0. Results We found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR. Conclusion This study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.
Collapse
Key Words
- ADAM10, a disintegrant and metalloproteinase 10
- AKRs, Aldo keto reductases
- Bevacizumab resistance
- Bioinformatics
- CAFs, Cancer-associated fibroblasts
- COX-2, cyclooxigenase-2
- DEGs, differentially expressed genes
- DT, Direct targets of PGV-1
- GSTM1, glutathione S-transferase mu 1
- GSTP1, glutathione S-transferase Pi-1
- Glioblastoma
- HSD17B10, Human type 10 17beta-hydroxysteroid dehydrogenase
- Immunotherapy
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- PBR, potential therapeutic target genes of PGV-1 against bevacizumab resistance glioblastoma
- PGV-1
- PGV-1, Pentagamavunon-1
- PTGS2, prostaglandin-endoperoxide synthase 2
- ROS, reactive oxygen species
- SEA, Similarity ensemble approach
- Target prediction
- VEGF, vascular endothelial growth factor
- Webgestalt, WEB-based GEne SeT AnaLysis Toolkit
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
6
|
Qian Z, Shang D, Fan L, Zhang J, Ji L, Chen K, Zhao R. Heterogeneity analysis of the immune microenvironment in laryngeal carcinoma revealed potential prognostic biomarkers. Hum Mol Genet 2021; 31:1487-1499. [PMID: 34791236 DOI: 10.1093/hmg/ddab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is the second most prevalent malignancy occurring in the head and neck with a high incidence and mortality rate. Immunotherapy has recently become an emerging treatment for cancer. It is therefore essential to explore the role of tumour immunity in laryngeal cancer. Our study first delineated and evaluated the comprehensive immune infiltration landscapes of the tumour microenvironment in LSCC. A hierarchical clustering method was applied to classify the LSCC samples into two groups (high- and low-infiltration groups). We found that individuals with low immune infiltration characteristics had significantly better survival than those in the high-infiltration group, possibly because of the elevated infiltration of immune suppressive cells, such as regulatory T cells and myeloid-derived suppressor cells (MDSCs), in the high-infiltration group. Differentially expressed genes (DEGs) between two groups were involved in some immune-related terms, such as antigen processing and presentation. A univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed to identify an immune gene-set-based prognostic signature (IBPS) to assess the risk of LSCC. The prognostic model comprising six IBPSs was successfully verified to be robust in different cohorts. The expression of the six IBPSs was detected by immunohistochemistry (IHC) in 110 cases of LSCC. In addition, different inflammatory profiles and immune checkpoint landscape of LSCC were found between two groups. Hence, our model could serve as a candidate immunotherapeutic biomarker and potential therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Zhipeng Qian
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Desi Shang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Fan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiarui Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linhao Ji
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Chen
- Department of Pathology, the Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
The Expression of Decidual Protein Induced by Progesterone (DEPP) is Controlled by Three Distal Consensus Hypoxia Responsive Element (HRE) in Hypoxic Retinal Epithelial Cells. Genes (Basel) 2020; 11:genes11010111. [PMID: 31963726 PMCID: PMC7016973 DOI: 10.3390/genes11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia affects the development and/or progression of several retinopathies. Decidual protein induced by progesterone (DEPP) has been identified as a hypoxia-responsive gene that may be part of cellular pathways such as autophagy and connected to retinal diseases. To increase our understanding of DEPP regulation in the eye, we defined its expression pattern in mouse and human retina and retinal pigment epithelium (RPE). Interestingly, DEPP expression was increased in an age-dependent way in the central human RPE. We showed that DEPP was regulated by hypoxia in the mouse retina and eyecup and that this regulation was controlled by hypoxia-inducible transcription factors 1 and 2 (HIF1 and HIF2). Furthermore, we identified three hypoxia response elements (HREs) about 3.5 kb proximal to the transcriptional start site that were responsible for hypoxic induction of DEPP in a human RPE cell line. Comparative genomics analysis suggested that one of the three HREs resides in a highly conserved genomic region. Collectively, we defined the molecular elements controlling hypoxic induction of DEPP in an RPE cell line, and provided evidence for an enrichment of DEPP in the aged RPE of human donors. This makes DEPP an interesting gene to study with respect to aging and age-related retinal pathologies.
Collapse
|
8
|
Yang H, Baladandayuthapani V, Rao AUK, Morris JS. Quantile Function on Scalar Regression Analysis for Distributional Data. J Am Stat Assoc 2019; 115:90-106. [PMID: 32981991 PMCID: PMC7517594 DOI: 10.1080/01621459.2019.1609969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 02/05/2023]
Abstract
Radiomics involves the study of tumor images to identify quantitative markers explaining cancer heterogeneity. The predominant approach is to extract hundreds to thousands of image features, including histogram features comprised of summaries of the marginal distribution of pixel intensities, which leads to multiple testing problems and can miss out on insights not contained in the selected features. In this paper, we present methods to model the entire marginal distribution of pixel intensities via the quantile function as functional data, regressed on a set of demographic, clinical, and genetic predictors to investigate their effects of imaging-based cancer heterogeneity. We call this approach quantile functional regression, regressing subject-specific marginal distributions across repeated measurements on a set of covariates, allowing us to assess which covariates are associated with the distribution in a global sense, as well as to identify distributional features characterizing these differences, including mean, variance, skewness, heavy-tailedness, and various upper and lower quantiles. To account for smoothness in the quantile functions, account for intrafunctional correlation, and gain statistical power, we introduce custom basis functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given data set and containing a Gaussian subspace so non-Gaussianness can be assessed. We fit this model using a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of the basis space modeling through simulation studies, and apply the method to Magnetic resonance imaging (MRI) based radiomic dataset from Glioblastoma Multiforme to relate imaging-based quantile functions to various demographic, clinical, and genetic predictors, finding specific differences in tumor pixel intensity distribution between males and females and between tumors with and without DDIT3 mutations.
Collapse
Affiliation(s)
- Hojin Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | - Arvind U K Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jeffrey S Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
9
|
Li Q, Tang H, Hu F, Qin C. Knockdown of A-kinase anchor protein 4 inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in human gastric cancer cells. J Cell Biochem 2018; 119:10013-10020. [PMID: 30145836 DOI: 10.1002/jcb.27331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Hypoxia induces epithelial-mesenchymal transition (EMT) in tumorigenesis. A-kinase anchor protein 4 (AKAP4) is a member of AKAPs family and plays a critical role in tumorigenesis. However, the biological role of AKAP4 in gastric cancer remains unknown. Thus, we investigated the effect of AKAP4 on EMT in human gastric cancer cells under hypoxic conditions. Our results showed that AKAP4 expression was significantly upregulated in human gastric cancer cell lines. In addition, silenced expression of hypoxia-inducible factor-1α markedly suppressed AKAP4 expression in gastric cancer cells under hypoxia. Furthermore, knockdown of AKAP4 significantly prevented hypoxia-induced migration, invasion, and EMT process in gastric cancer cells. Mechanistically, knockdown of AKAP4 prevented the activation of the Wnt/β-catenin pathway in gastric cancer cells under hypoxia condition. These findings indicate that knockdown of AKAP4 inhibits hypoxia-induced EMT in human gastric cancer cells, at least in part, via inactivation of the Wnt/β-catenin signaling pathway. It is, therefore, AKAP4 may be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongna Tang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fangfang Hu
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
10
|
Li W, Ji M, Lin Y, Miao Y, Chen S, Li H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21. FASEB J 2018; 32:5459-5469. [PMID: 29702025 DOI: 10.1096/fj.201800357r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Decidual protein induced by progesterone (DEPP/DEPP1/C10ORF10) is induced by denying access to food and reduced by refeeding in insulin-sensitive organs in vivo. The negative regulation of DEPP by insulin is also proven in several cell lines. However, the functions of DEPP in insulin-sensitive organs remain unknown. In the present study, we investigated the impact of DEPP on hepatic energy metabolism and addressed the underlying mechanisms. The metabolic effects of DEPP were investigated in mice with adenovirus-mediated hepatic overexpression. Liver triglyceride (TG), glycogen, and serum metabolites were detected by biochemical assays. Energy homeostasis was measured by indirect calorimetry. Quantitative PCR was used to examine expression of genes involved in fatty acid oxidation, ketogenesis, lipogenesis, and gluconeogenesis. To evaluate the role of fibroblast growth factor 21 (FGF21) mediating the metabolic effects of DEPP, FGF21 antibody was administrated intraperitoneally to mice at 24 h after the delivery of adenovirus, and the metabolic alterations were examined. Reactive oxygen species (ROS) levels were measured by catalase activity assay, live cell fluorescence, or quantitative PCR. Effects of DEPP on the phenotype of db/db mice were also assessed. Acute hepatic overexpression of DEPP significantly reduced serum glucose and TG levels, dramatically elevated β-hydroxybutyrate levels, and improved glucose clearance. Compared with controls, DEPP overexpression reduced food intake, the energy expenditure rate, and the respiratory quotient. DEPP overexpression significantly increased fatty acid oxidation and ketogenesis but suppressed lipid synthesis and gluconeogenesis. Investigations of the underlying mechanisms revealed that DEPP regulates energy metabolism by inducing oxidative stress. With the impairment of the ROS scavenging system and promotion of ROS formation, DEPP overexpression leads to ROS accumulation. FGF21 is upregulated in response to oxidative stress and mediates the effects of DEPP on fatty acid oxidation, ketogenesis, and lipid synthesis but not gluconeogenesis, as evidenced by the fact that the FGF21 antibody dramatically suppressed a DEPP-induced increase of fatty acid oxidation and ketogenesis, reversed the reduction of lipid synthesis, but did not change the suppression of gluconeogenesis. Moreover, overexpression of DEPP in db/ db mice led to a marked reduction in body weight and serum glucose levels and significantly improved insulin sensitivity. Hepatic overexpression of DEPP in mice promotes fatty acid oxidation and ketogenesis and suppresses lipogenesis and gluconeogenesis, which is partly mediated by FGF21 induced by elevated cellular ROS levels.-Li, W., Ji, M., Lin, Y., Miao, Y., Chen, S., Li, H. DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Meiling Ji
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yandie Lin
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Simin Chen
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Hao Li
- Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Xu Y, Fan Y, Fan W, Jing J, Xue K, Zhang X, Ye B, Ji Y, Liu Y, Ding Z. RNASET2 impairs the sperm motility via PKA/PI3K/calcium signal pathways. Reproduction 2018; 155:383-392. [DOI: 10.1530/rep-17-0746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/13/2018] [Indexed: 12/30/2022]
Abstract
Asthenozoospermia is one of the leading causes of male infertility owing to a decline in sperm motility. Herein, we determined if there is a correlation between RNASET2 content on human spermatozoa and sperm motility in 205 semen samples from both asthenozoospermia patients and normozoospermia individuals. RNASET2 content was higher in sperm from asthenozoospermia patients than in normozoospermia individuals. On the other hand, its content was inversely correlated with sperm motility as well as progressive motility. Moreover, the inhibitory effect of RNASET2 on sperm motility was induced by incubating normozoospermic sperm with RNase T2 protein. Such treatment caused significant declines in intracellular spermatozoa PKA activity, PI3K activity and calcium level, which resulted in severely impaired sperm motility, and the sperm motility was largely rescued by cAMP supplementation. Finally, protein immunoprecipitation and mass spectrometry identified proteins whose interactions with RNASET2 were associated with declines in human spermatozoa motility. AKAP4, a protein regulating PKA activity, coimmunoprecipated with RNASET2 and they colocalized with one another in the sperm tail, which might contribute to reduced sperm motility. Thus, RNASET2 may be a novel biomarker of asthenozoospermia. Increases in RNASET2 can interact with AKAP4 in human sperm tail and subsequently reduce sperm motility by suppressing PKA/PI3K/calcium signaling pathways.
Collapse
|
12
|
Wang Z, Ma L, Su M, Zhou Y, Mao K, Li C, Peng G, Zhou C, Shen B, Dou J. Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis 2018; 9:217. [PMID: 29440765 PMCID: PMC5833439 DOI: 10.1038/s41419-017-0223-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
Baicalin is a natural flavonoid glycoside which has potent anti-tumor and antioxidant activity in cancer cells. In the present study, we found that baicalin treatment significantly induced senescence in colon cancer cells. Furthermore, baicalin upregulated the expression of decidual protein induced by progesterone (DEPP) in HCT116 colon cancer cells, which accompanied with the activation of Ras/Raf/MEK/ERK and p16INK4A/Rb signaling pathways. Meanwhile, these phenomena also appeared under the anti-oxidation effect exerted by baicalin. In addition, ectopic expression of DEPP in HCT116 cells significantly induced the activity of senescence-associated β-galactosidase (SA-β-Gal) in tumor cells regulated by Ras/Raf/MEK/ERK signaling pathway. Knockdown of DEPP by RNA interference efficiently counteracted the baicalin-mediated growth inhibition, senescence and cell cycle arrest in cancer cells. Importantly, in a xenograft mouse model of human colon cancer, we further confirmed that baicalin treatment dramatically inhibited tumor growth, which was due to the induction of tumor cellular senescence via the upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling in vivo. In addition to baicalin treatment, we found that the hypoxia-response protein DEPP functions as a positive regulator involving the regulations of Ras/Raf/MEK/ERK signaling pathway and inhibition of human colon cancer by other anti-oxidative drugs, such as curcumin and sulforaphane, resulting in tumor cellular senescence. These results collectively suggest that baicalin upregulates the expression of DEPP and activates its downstream Ras/Raf/MEK/ERK and p16INK4A/Rb pathways by acting as an antioxidant, leading to senescence in colon cancer cells.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China
| | - Lingman Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China
| | - Mengqi Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China
| | - Yiran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, China
| | - Ke Mao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China
| | - Chengqin Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China.
| | - Baiyong Shen
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, China.
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Shahid M, Cho KM, Nguyen MN, Choi TG, Jo YH, Aryal SN, Yoo JY, Yun HR, Lee JW, Eun YG, Lee JS, Kang I, Ha J, Yoon HJ, Kim SY, Kim SS. Prognostic value and their clinical implication of 89-gene signature in glioma. Oncotarget 2018; 7:51237-51250. [PMID: 27323413 PMCID: PMC5239472 DOI: 10.18632/oncotarget.9983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/01/2023] Open
Abstract
Gliomas are the most common and aggressive primary tumors in adults. The current approaches, such as histological classification and molecular genetics, have limitation in prediction of individual therapeutic outcomes due to heterogeneity within the tumor groups. Recent studies have proposed several gene signatures to predict glioma's prognosis. However, most of the gene expression profiling studies have been performed on relatively small number of patients and combined probes from diverse microarray chips. Here, we identified prognostic 89 common genes from diverse microarray chips. The 89-gene signature classified patients into good and bad prognostic groups which differed in the overall survival significantly, reflecting the biological characteristics and heterogeneity. The robustness and accuracy of the gene signature as an independent prognostic factor was validated in three microarray and one RNA-seq data sets independently. By incorporating into histological classification and molecular marker, the 89-gene signature could further stratify patients with 1p/19q co-deletion and IDH1 mutation. Additionally, subset analyses suggested that the 89-gene signature could predict patients who would benefit from adjuvant chemotherapy. Conclusively, we propose that the 89-gene signature would have an independent and accurate prognostic value for clinical use. This study also offers opportunities for novel targeted treatment of individual patients.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyoung Min Cho
- Department of Internal Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Minh Nam Nguyen
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Saurav Nath Aryal
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Youn Yoo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Woong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hwi-Joong Yoon
- Department of Internal Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Si-Young Kim
- Department of Internal Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The Role of Hypoxia in Glioblastoma Invasion. Cells 2017; 6:E45. [PMID: 29165393 PMCID: PMC5755503 DOI: 10.3390/cells6040045] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to temozolomide is frequent in GBM patients leading to subsequent tumor regrowth/relapse. For this reason, the development of more effective therapeutic approaches for GBM is of critical importance. Low tumor oxygenation, also known as hypoxia, constitutes a major concern for GBM patients, since it promotes cancer cell spreading (invasion) into the healthy brain tissue in order to evade this adverse microenvironment. Tumor invasion not only constitutes a major obstacle to surgery, radiotherapy, and chemotherapy, but it is also the main cause of death in GBM patients. Understanding how hypoxia triggers the GBM cells to become invasive is paramount to developing novel and more effective therapies against this devastating disease. In this review, we will present a comprehensive examination of the available literature focused on investigating how GBM hypoxia triggers an invasive cancer cell phenotype and the role of these invasive proteins in GBM progression.
Collapse
Affiliation(s)
- Ana Rita Monteiro
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
| | - Richard Hill
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
15
|
Salcher S, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol Cancer 2017; 16:95. [PMID: 28545464 PMCID: PMC5445297 DOI: 10.1186/s12943-017-0661-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/15/2017] [Indexed: 11/15/2022] Open
Abstract
Background Neuroblastoma is the most common solid tumor in childhood and develops from undifferentiated progenitor cells of the sympathetic nervous system. In neuronal tumor cells DNA-damaging chemotherapeutic agents activate the transcription factor FOXO3 which regulates the formation of reactive oxygen species (ROS) and cell death as well as a longevity program associated with therapy resistance. We demonstrated before that C10ORF10/DEPP, a transcriptional target of FOXO3, localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification. In the present study, we investigated the impact of FOXO3 and DEPP on the regulation of autophagy. Autophagy serves to reduce oxidative damage as it triggers a self-degradative process for the removal of aggregated or misfolded proteins and damaged organelles. Methods The effect of FOXO3 and DEPP on autophagy induction was analyzed using live cell fluorescence microscopy and immunoblot analyses of SH-EP cells transfected with a plasmid for EYFP-LC3 and with siRNAs specific for LC3, respectively. ROS steady-state levels were measured with reduced MitoTrackerRed CM-H2XROS. Cellular apoptosis was analyzed by flow cytometry and the caspase 3/7 assay. Results We report for the first time that DEPP induces ROS accumulation and thereby mediates the formation of autophagosomes as inhibition of ROS formation by N-acetyl-cysteine completely blocks autophagy. We further demonstrate that H2O2-treatment triggers autophagy-induction by FOXO3-mediated DEPP expression. Importantly, knockdown of DEPP was sufficient to efficiently inhibit autophagy-induction under different stress conditions such as serum starvation and genotoxic stress, suggesting that DEPP expression is critical for the initiation of autophagy in neuroblastoma. FOXO3-triggered autophagy partially protects neuroblastoma cells from cell death. Consistent with this concept, we demonstrate that inhibition of autophagy by LC3-knockdown significantly increased etoposide- and doxorubicin-induced apoptosis. These results were also confirmed by the use of the autophagy-inhibitor chloroquine that significantly enhanced the chemotherapeutic effect of etoposide and doxorubicin in neuronal tumor cells. Conclusion Targeting FOXO3/DEPP-triggered autophagy is a promising strategy to sensitize neuroblastoma cells to chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0661-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Salcher
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria
| | - M Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - U Kiechl-Kohlendorfer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria
| | - M J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria.
| | - P Obexer
- Department of Pediatrics II, Medical University Innsbruck, Innrain 66, A-6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
16
|
Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2. Sci Rep 2016; 6:39091. [PMID: 27982046 PMCID: PMC5159814 DOI: 10.1038/srep39091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B'γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan-Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer.
Collapse
|
17
|
Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E, Goudarzi PK. Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme. J Neurol Sci 2016; 366:202-206. [PMID: 27288807 DOI: 10.1016/j.jns.2016.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Identification of genetic copy number changes in glial tumors is of importance in the context of improved/refined diagnostic, prognostic procedures and therapeutic decision-making. Blood-derived biomarkers, therefore, would be useful as minimally invasive markers that could support diagnosis and enable monitoring of tumour growth and response to treatment. OBJECTIVE The aim of this study was to evaluate the clinical significance of IGFBP-2/3 in glioblastoma multiforme (GBM) and their value as predictors of survival. METHODS We examined the plasma levels of IGFBP-2 and IGFBP-3 using ELISA in patient suffering from GBM and controls groups. Furthermore, immunohistochemistry method was used to evaluate the expression levels of these markers. RESULTS Preoperative plasma levels of IGFBP-2 and IGFBP-3 were markedly higher in glioblastoma patients (mean±SD: 521.5±164.2ng/ml; 402.4±126ng/ml) when compared with healthy controls (301.28±73.12; 244±89.5ng/ml; p<0.001). Immunohistochemical results indicated that the median H score for glioblastoma tissues was higher when compared with normal tissues. The mean scores for IGFBP-2 expression in glioblastoma was higher than normal tissues (p<0.001). Our result showed that the median H score for glioblastoma tissues was higher when compared with normal tissue for IGFBP-3 expression. The mean scores for glioblastoma tissues was higher than normal tissues (p<0.001). We also evaluated whether plasma IGFBP-2 and IGFBP-3 levels were related to clinical features. The plasma IGFBP-2 level was strongly linked to the patient's age (R=0.769, P=0.001) that were strongly increased in patients with older age (>65), (mean±SD: 594.36±33.3ng/ml). On the other hand, plasma IGFBP-3 level was not correlated with age (P=0.462), sex (P=0.532), and tumor size (P=0.245). Our findings indicated that the tissue IGFBP-2 level was also markedly correlated with the patient's age (R=0.612, P=0.015). On the other hand, tissue IGFBP-3 expression level was not correlated with age (P=0.472), sex (P=0.512), and tumor size (P=0.241). Kaplan-Meier survival and log-rank analysis suggested that patients with high plasma level of IGFBP-2 and tissue expression of IGFBP-2 had shorter overall survival than those with low levels (log-rank test P=0.027; P<0.001). Kaplan-Meier survival and log-rank analysis suggested that patients with high plasma level of IGFBP-3 and tissue expression of IGFBP-3 had shorter overall survival than those with low levels groups (log-rank test P=0.018; P<0.001). CONCLUSION These data suggest that plasma levels and tissue levels of IGFBP-2 and IGFBP-3 may be as potential biomarkers for predicting the progression and survival in patients with GBM.
Collapse
Affiliation(s)
- Hesam Abdolhoseinpour
- Department of Neurosurgery, Bou Ali Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Mehrabi
- Department of Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Jalili Khoshnood
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Masoumi
- Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Ohno S, Naito Y, Mukai S, Yabuta N, Nojima H. ELAS1-mediated inhibition of the cyclin G1-B'γ interaction promotes cancer cell apoptosis via stabilization and activation of p53. Oncogene 2015; 34:5983-96. [PMID: 25915850 DOI: 10.1038/onc.2015.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/27/2015] [Indexed: 12/16/2022]
Abstract
Radiation therapy (RT) is useful for selectively killing cancer cells. However, because high levels of ionizing radiation (IR) are toxic to normal cells, RT cannot be applied repeatedly to cancer patients. Therefore, novel chemicals that enhance the efficacy of chemoradiotherapy (CRT) would be valuable. Here, we report that ELAS1, a peptide corresponding to the protein phosphatase 2A (PP2A) association domain of cyclin G1 (CycG1), can enhance the efficacy of CRT. ELAS1 interacts with the PP2A B'γ-subunit and competitively inhibits association with CycG1, thereby preventing the PP2A holoenzyme from dephosphorylating target proteins, Mdm2 (pT218) and p53 (pS46), following DNA double-strand break (DSB) insults. Doxycycline (Dox)-induced overexpression of Myc-ELAS1 caused γ-irradiation to induce apoptosis in human osteosarcoma (U2OS) cells, at 1/10th the effective dosage of γ-irradiation required for apoptosis in Myc-vector-expressing cells; ELAS1 peptide incorporation into U2OS cells also showed similar apoptotic effects. Moreover, administration of DSB-inducing chemicals, camptothecin (CPT) or irinotecan, to Myc-ELAS1-expressing U2OS cells also induced efficient apoptosis with only 1/100th (CPT) or 1/5th (irinotecan) of the amounts of drugs required for this effect in Myc-vector-expressing cells. Taken together, ELAS1 may be important for the design of ELAS1-mimetic compounds to improve CRT efficacy.
Collapse
Affiliation(s)
- S Ohno
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - N Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - H Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
19
|
Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 2014; 13:224. [PMID: 25261981 PMCID: PMC4197242 DOI: 10.1186/1476-4598-13-224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background FOXO transcription factors control cellular levels of reactive oxygen species (ROS) which critically contribute to cell survival and cell death in neuroblastoma. In the present study we investigated the regulation of C10orf10/DEPP by the transcription factor FOXO3. As a physiological function of C10orf10/DEPP has not been described so far we analyzed its effects on cellular ROS detoxification and death sensitization in human neuroblastoma cells. Methods The effect of DEPP on cellular ROS was measured by catalase activity assay and live cell fluorescence microscopy using the ROS-sensitive dye reduced MitoTracker Red CM-H2XROS. The cellular localization of DEPP was determined by confocal microscopy of EYFP-tagged DEPP, fluorescent peroxisomal- and mitochondrial probes and co-immunoprecipitation of the PEX7 receptor. Results We report for the first time that DEPP regulates ROS detoxification and localizes to peroxisomes and mitochondria in neuroblastoma cells. FOXO3-mediated apoptosis involves a biphasic ROS accumulation. Knockdown of DEPP prevented the primary and secondary ROS wave during FOXO3 activation and attenuated FOXO3- and H2O2-induced apoptosis. Conditional overexpression of DEPP elevates cellular ROS levels and sensitizes to H2O2 and etoposide-induced cell death. In neuronal cells, cellular ROS are mainly detoxified in peroxisomes by the enzyme CAT/catalase. As DEPP contains a peroxisomal-targeting-signal-type-2 (PTS2) sequence at its N-terminus that allows binding to the PEX7 receptor and import into peroxisomes, we analyzed the effect of DEPP on cellular detoxification by measuring enzyme activity of catalase. Catalase activity was reduced in DEPP-overexpressing cells and significantly increased in DEPP-knockdown cells. DEPP directly interacts with the PEX7 receptor and localizes to the peroxisomal compartment. In parallel, the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARG), a critical regulator of catalase enzyme activity, was strongly upregulated in DEPP-knockdown cells. Conclusion The combined data indicate that in neuroblastoma DEPP localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification, which sensitizes tumor cells to ROS-induced cell death. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-224) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
20
|
Cyclin G2 promotes hypoxia-driven local invasion of glioblastoma by orchestrating cytoskeletal dynamics. Neoplasia 2014; 15:1272-81. [PMID: 24339739 DOI: 10.1593/neo.131440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023] Open
Abstract
Microenvironmental conditions such as hypoxia potentiate the local invasion of malignant tumors including glioblastomas by modulating signal transduction and protein modification, yet the mechanism by which hypoxia controls cytoskeletal dynamics to promote the local invasion is not well defined. Here, we show that cyclin G2 plays pivotal roles in the cytoskeletal dynamics in hypoxia-driven invasion by glioblastoma cells. Cyclin G2 is a hypoxia-induced and cytoskeleton-associated protein and is required for glioblastoma expansion. Mechanistically, cyclin G2 recruits cortactin to the juxtamembrane through its SH3 domain-binding motif and consequently promotes the restricted tyrosine phosphorylation of cortactin in concert with src. Moreover, cyclin G2 interacts with filamentous actin to facilitate the formation of membrane ruffles. In primary glioblastoma, cyclin G2 is abundantly expressed in severely hypoxic regions such as pseudopalisades, which consist of actively migrating glioma cells. Furthermore, we show the effectiveness of dasatinib against hypoxia-driven, cyclin G2-involved invasion in vitro and in vivo. Our findings elucidate the mechanism of cytoskeletal regulation by which severe hypoxia promotes the local invasion and may provide a therapeutic target in glioblastoma.
Collapse
|
21
|
Deng J, Dong Y, Li C, Zuo W, Meng G, Xu C, Li J. Decreased expression of C10orf10 and its prognostic significance in human breast cancer. PLoS One 2014; 9:e99730. [PMID: 24936657 PMCID: PMC4061027 DOI: 10.1371/journal.pone.0099730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is a common malignant tumor, which severely threatens the health of women with an increasing incidence in many countries. Here, we identified C10orf10 as a novel differentially expression gene using expression microarray screening. The expression analysis indicated that C10orf10 was frequently decreased in human breast cancers compared to noncancerous breast tissues (81/95, P = 0.0063). Kaplan-Meier analysis indicated that patients with low C10orf10 expression showed a poorer prognosis both in mRNA (n = 1115, P = 0.0013) and protein (n = 100, P = 0.003) levels. Univariate and multivariate analysis showed that the C10orf10 expression was an independent prognostic factor for overall survival of breast cancer patients. Further analysis revealed that low expression of C10orf10 was an unfavorable factor for the prognosis of the patients who were luminal A, luminal B, Her2+ subtypes, at histological grade 2, lymph node negative and ER positive. Our data provided the first evidence that C10orf10 expression was frequently decreased in breast cancer tissues, and low expression of C10orf10 may be an important prognostic factor for poorer survival time of breast cancer patients.
Collapse
Affiliation(s)
- Junjiang Deng
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Cadre’s Sanatorium, Third Military Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chong Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenwei Zuo
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengping Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
22
|
The c10orf10 gene product is a new link between oxidative stress and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1076-88. [DOI: 10.1016/j.bbamcr.2014.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/12/2023]
|
23
|
Thota B, Arimappamagan A, Kandavel T, Shastry AH, Pandey P, Chandramouli BA, Hegde AS, Kondaiah P, Santosh V. STAT-1 expression is regulated by IGFBP-3 in malignant glioma cells and is a strong predictor of poor survival in patients with glioblastoma. J Neurosurg 2014; 121:374-83. [PMID: 24878287 DOI: 10.3171/2014.4.jns131198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECT Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. METHODS The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. RESULTS IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. CONCLUSIONS IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Collapse
|
24
|
Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013; 8:e77859. [PMID: 24205000 PMCID: PMC3808424 DOI: 10.1371/journal.pone.0077859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC) was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.
Collapse
|
25
|
Towner RA, Jensen RL, Vaillant B, Colman H, Saunders D, Giles CB, Wren JD. Experimental validation of 5 in-silico predicted glioma biomarkers. Neuro Oncol 2013; 15:1625-34. [PMID: 24158112 DOI: 10.1093/neuonc/not124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a high-grade glioma with poor prognosis. Identification of new biomarkers specific to GBM could help in disease diagnosis. We have developed and validated a bioinformatics method to predict proteins likely to be suitable as glioma biomarkers via a global microarray meta-analysis to identify uncharacterized genes consistently coexpressed with known glioma-associated genes. METHODS A novel bioinformatics method was implemented called global microarray meta-analysis, using approximately 16,000 microarray experiments to identify uncharacterized genes consistently coexpressed with known glioma-associated genes. These novel biomarkers were validated as proteins highly expressed in human gliomas varying in tumor grades using immunohistochemistry. Glioma gene databases were used to assess delineation of expression of these markers in varying glioma grades and subtypes of GBM. RESULTS We have identified 5 potential biomarkers-spondin1, Plexin-B2, SLIT3, fibulin-1, and LINGO1-that were validated as proteins highly expressed on the surface of human gliomas using immunohistochemistry. Expression of spondin1, Plexin-B2, and SLIT3 was significantly higher (P < .01) in high-grade gliomas than in low-grade gliomas. These biomarkers were significant discriminators in grade IV gliomas compared with either grade III or II tumors and also distinguished between GBM subclasses. CONCLUSIONS This study strongly suggests that this type of bioinformatics approach has high translational potential to rapidly discern which poorly characterized proteins may be of clinical relevance.
Collapse
Affiliation(s)
- Rheal A Towner
- Corresponding Author: Rheal A. Towner, PhD, Director, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104 USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Towner RA, Jensen RL, Colman H, Vaillant B, Smith N, Casteel R, Saunders D, Gillespie DL, Silasi-Mansat R, Lupu F, Giles CB, Wren JD. ELTD1, a potential new biomarker for gliomas. Neurosurgery 2013; 72:77-90; discussion 91. [PMID: 23096411 DOI: 10.1227/neu.0b013e318276b29d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM), a high-grade glioma, is characterized by being diffuse, invasive, and highly angiogenic and has a very poor prognosis. Identification of new biomarkers could help in the further diagnosis of GBM. OBJECTIVE To identify ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1) as a putative glioma-associated marker via a bioinformatic method. METHODS We used advanced data mining and a novel bioinformatics method to predict ELTD1 as a potential novel biomarker that is associated with gliomas. Validation was done with immunohistochemistry, which was used to detect levels of ELTD1 in human high-grade gliomas and rat F98 glioma tumors. In vivo levels of ELTD1 in rat F98 gliomas were assessed using molecular magnetic resonance imaging. RESULTS ELTD1 was found to be significantly higher (P = .03) in high-grade gliomas (50 patients) compared with low-grade gliomas (21 patients) and compared well with traditional immunohistochemistry markers including vascular endothelial growth factor, glucose transporter 1, carbonic anhydrase IX, and hypoxia-inducible factor 1α. ELTD1 gene expression indicates an association with grade, survival across grade, and an increase in the mesenchymal subtype. Significantly high (P < .001) in vivo levels of ELTD1 were additionally found in F98 tumors compared with normal brain tissue. CONCLUSION Results of this study strongly suggests that associative analysis was able to accurately identify ELTD1 as a putative glioma-associated biomarker. The detection of ELTD1 was also validated in both rodent and human gliomas and may serve as an additional biomarker for gliomas in preclinical and clinical diagnosis of gliomas.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Naito Y, Yabuta N, Sato J, Ohno S, Sakata M, Kasama T, Ikawa M, Nojima H. Recruitment of cyclin G2 to promyelocytic leukemia nuclear bodies promotes dephosphorylation of γH2AX following treatment with ionizing radiation. Cell Cycle 2013; 12:1773-84. [PMID: 23656780 DOI: 10.4161/cc.24878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclin G2 (CycG2) and Cyclin G1 (CycG1), two members of the Cyclin G subfamily, share high amino acid homology in their Cyclin G boxes. Functionally, they play a common role as association partners of the B'γ subunit of protein phosphatase 2A (PP2A) and regulate PP2A function, and their expression is increased following DNA damage. However, whether or not CycG1 and CycG2 have distinct roles during the cellular DNA damage response has remained unclear. Here, we report that CycG2, but not CycG1, co-localized with promyelocytic leukemia (PML) and γH2AX, forming foci following ionizing radiation (IR), suggesting that CycG2 is recruited to sites of DNA repair and that CycG1 and CycG2 have distinct functions. PML failed to localize to nuclear foci when CycG2 was depleted, and vice versa. This suggests that PML and CycG2 mutually influence each other's functions following IR. Furthermore, we generated CycG2-knockout (Ccng2 (-/-) ) mice to investigate the functions of CycG2. These mice were born healthy and developed normally. However, CycG2-deficient mouse embryonic fibroblasts displayed an abnormal response to IR. Dephosphorylation of γH2AX and checkpoint kinase 2 following IR was delayed in Ccng2 (-/-) cells, suggesting that DNA damage repair may be perturbed in the absence of CycG2. Although knockdown of B'γ in wild-type cells also delayed dephosphorylation of γH2AX, knockdown of B'γ in Ccng2 (-/-) cells prolonged this delay, suggesting that CycG2 cooperates with B'γ to dephosphorylate γH2AX. Taken together, we conclude that CycG2 is localized at DNA repair foci following DNA damage, and that CycG2 regulates the dephosphorylation of several factors necessary for DNA repair.
Collapse
Affiliation(s)
- Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Engström PG, Tommei D, Stricker SH, Ender C, Pollard SM, Bertone P. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome Med 2012; 4:76. [PMID: 23046790 PMCID: PMC3556652 DOI: 10.1186/gm377] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/20/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors.
Collapse
Affiliation(s)
- Pär G Engström
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Diva Tommei
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stefan H Stricker
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Christine Ender
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Steven M Pollard
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Paul Bertone
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK ; Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany ; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
29
|
Said HM, Polat B, Stein S, Guckenberger M, Hagemann C, Staab A, Katzer A, Anacker J, Flentje M, Vordermark D. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells. World J Clin Oncol 2012; 3:104-10. [PMID: 22787578 PMCID: PMC3394081 DOI: 10.5306/wjco.v3.i7.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/10/2011] [Accepted: 06/30/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation.
METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant).
RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results.
CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.
Collapse
Affiliation(s)
- Harun M Said
- Department of Radiation Oncology, University of Wuerzburg, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Natsuizaka M, Naganuma S, Kagawa S, Ohashi S, Ahmadi A, Subramanian H, Chang S, Nakagawa KJ, Ji X, Liebhaber SA, Klein-Szanto AJ, Nakagawa H. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. FASEB J 2012; 26:2620-30. [PMID: 22415309 DOI: 10.1096/fj.11-198598] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor binding protein (IGFBP)-3 regulates cell proliferation and apoptosis in esophageal squamous cell carcinoma (ESCC) cells. We have investigated how the hypoxic tumor microenvironment in ESCC fosters the induction of IGFBP3. RNA interference experiments revealed that hypoxia-inducible factor (HIF)-1α, but not HIF-2α, regulates IGFBP3 mRNA induction. By chromatin immunoprecipitation and transfection assays, HIF-1α was found to transactivate IGFBP3 through a novel hypoxia responsive element (HRE) located at 57 kb upstream from the transcription start site. Metabolic labeling experiments demonstrated hypoxia-mediated inhibition of global protein synthesis. 7-Methyl GTP-cap binding assays suggested that hypoxia suppresses cap-dependent translation. Experiments using pharmacological inhibitors for mammalian target of rapamycin (mTOR) suggested that a relatively weak mTOR activity may be sufficient for cap-dependent translation of IGFBP3 under hypoxic conditions. Bicistronic RNA reporter transfection assays did not validate the possibility of an internal ribosome entry site as a potential mechanism for cap-independent translation for IGFBP3 mRNA. Finally, IGFBP3 mRNA was found enriched to the polysomes. In aggregate, our study establishes IGFBP3 as a direct HIF-1α target gene and that polysome enrichment of IGFBP3 mRNA may permit continuous translation under hypoxic conditions.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-2144, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hofstetter CP, Burkhardt JK, Shin BJ, Gürsel DB, Mubita L, Gorrepati R, Brennan C, Holland EC, Boockvar JA. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia. PLoS One 2012; 7:e30059. [PMID: 22253878 PMCID: PMC3256196 DOI: 10.1371/journal.pone.0030059] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 12/13/2011] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The hypoxic microenvironment of glioblastoma multiforme (GBM) is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A), a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied. EXPERIMENTAL DESIGN Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs) were exposed to severe hypoxia produced by either CoCl₂ or 1% O₂. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry. RESULTS In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002). Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002). PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009). In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs. CONCLUSIONS Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Christoph P Hofstetter
- Department of Neurological Surgery, Weill Cornell Brain Tumor Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dmitrenko VV, Kavsan VM, Boyko OI, Rymar VI, Stepanenko AA, Balynska OV, Mausheva TA, Rozumenko VD, Zozulya YP. Expression of genes belonging to the IGF-system in glial tumors. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711050021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Zhao Z, Liu Y, He H, Chen X, Chen J, Lu YC. Candidate genes influencing sensitivity and resistance of human glioblastoma to Semustine. Brain Res Bull 2011; 86:189-94. [PMID: 21807073 DOI: 10.1016/j.brainresbull.2011.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The prognosis of glioblastoma (GBM) is poor. The therapeutic outcome of conventional surgical and adjuvant treatments remains unsatisfactory, and therefore individualized adjuvant chemotherapy has aroused more attention. Microarrays have been applied to study mechanism of GBM development and progression but it has difficulty in determining responsible genes from the plethora of genes on microarrays unrelated to outcome. The present study was attempted to use bioinformatics method to investigate candidate genes that may influence chemosensitivity of GBM to Semustine (Me-CCNU). METHODS Clinical data of 4 GBM patients in Affymetrix microarray were perfected through long-term follow-up study. Differential expression genes between the long- and short-survival groups were picked out, GO-analysis and pathway-analysis of the differential expression genes were performed. Me-CCNU-related signal transduction networks were constructed. The methods combined three steps before were used to screen core genes that influenced Me-CCNU chemosensitivity in GBM. RESULTS In Affymetrix microarray there were altogether 2018 differential expression genes that influenced survival duration of GBM. Of them, 934 genes were up-regulated and 1084 down-regulated. They mainly participated in 94 pathways. Me-CCNU-related signal transduction networks were constructed. The total number of genes in the networks was 466, of which 66 were also found in survival duration-related differential expression genes. Studied key genes through GO-analysis, pathway-analysis and in the Me-CCNU-related signal transduction networks, 25 core genes that influenced chemosensitivity of GBM to Me-CCNU were obtained, including TP53, MAP2K2, EP300, PRKCA, TNF, CCND1, AKT2, RBL1, CDC2, ID2, RAF1, CDKN2C, FGFR1, SP1, CDK6, IGFBP3, MDM4, PDGFD, SOCS2, CCNG2, CDK2, SDC2, STMN1, TCF7L1, TUBB. CONCLUSION Bioinformatics may help excavate and analyze large amounts of data in microarrays by means of rigorous experimental planning, scientific statistical analysis and collection of complete data about survival of GBM patients. In the present study, a novel differential gene expression pattern was constructed and advanced study will provide new targets for chemosensitivity of GBM.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Neurosurgery, ChangZheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Chen S, Gai J, Wang Y, Li H. FoxO regulates expression of decidual protein induced by progesterone (DEPP) in human endothelial cells. FEBS Lett 2011; 585:1796-800. [PMID: 21510935 DOI: 10.1016/j.febslet.2011.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/30/2011] [Accepted: 04/11/2011] [Indexed: 11/17/2022]
Abstract
DEPP was initially cloned from the human endometrial stromal cell cDNA library, but the transcriptional regulation of DEPP remains largely unknown. We demonstrate here that expression of DEPP is FoxO-dependent in human endothelial cells. Two functional FoxO-responsive elements are identified in the DEPP promoter. Hypoxia stimulates DEPP expression in the endothelial cell line EA.hy926. Hypoxia-induced upregulation of DEPP is dependent on FoxO expression. We conclude that DEPP is regulated at the level of transcription by FoxO in human vascular endothelial cells.
Collapse
Affiliation(s)
- Simin Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
35
|
Xu XZ, Li ZQ, Wen ZH. Glioma-conditioned medium blocks endothelial cells’ apoptosis Induced by hypoxia and promotes its angiogenesis via up-regulation of u-PA/u-PAR. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
36
|
Santosh V, Arivazhagan A, Sreekanthreddy P, Srinivasan H, Thota B, Srividya MR, Vrinda M, Sridevi S, Shailaja BC, Samuel C, Prasanna KV, Thennarasu K, Balasubramaniam A, Chandramouli BA, Hegde AS, Somasundaram K, Kondaiah P, Rao MR. Grade-Specific Expression of Insulin-like Growth Factor–Binding Proteins-2, -3, and -5 in Astrocytomas: IGFBP-3 Emerges as a Strong Predictor of Survival in Patients with Newly Diagnosed Glioblastoma. Cancer Epidemiol Biomarkers Prev 2010; 19:1399-408. [DOI: 10.1158/1055-9965.epi-09-1213] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Riolfi M, Ferla R, Del Valle L, Piña-Oviedo S, Scolaro L, Micciolo R, Guidi M, Terrasi M, Cetto GL, Surmacz E. Leptin and its receptor are overexpressed in brain tumors and correlate with the degree of malignancy. Brain Pathol 2009; 20:481-9. [PMID: 19775291 DOI: 10.1111/j.1750-3639.2009.00323.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although leptin and its receptor (ObR) have emerged as important cancer biomarkers, the role of the leptin system in brain tumor development remains unknown. We screened 87 human brain tumor biopsies using immunohistochemistry and detected leptin and ObR in 55.2% and 60.9% cases, respectively. In contrast, leptin and ObR were absent in 14 samples of normal brain tissue. The presence of leptin correlated with ObR with overall concordance 80.5%. The leptin/ObR system was highly expressed in glioblastomas and anaplastic astrocytomas, while lower expression of both markers was noted in low-grade astrocytomas and gangliogliomas. The association between leptin/ObR and the degree of tumor malignancy was highly significant (P < 0.001). Using double immunofluorescence of glioblastoma tissues, we found co-expression of leptin with ObR and with the proliferation marker Ki-67 in 87% and 64% of cells, respectively. The leptin/ObR-positive tissues also expressed activated forms of STAT3 and Akt. In line with this finding, ObR-positive glioblastoma cells responded to leptin with cell growth and induction of the STAT3 and Akt pathways as well as inactivation of the cell cycle suppressor Rb. In summary, our data demonstrate that the leptin/ObR system is expressed in malignant brain tumors and might be involved in tumor progression.
Collapse
Affiliation(s)
- Mirko Riolfi
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pistollato F, Chen HL, Rood BR, Zhang HZ, D'Avella D, Denaro L, Gardiman M, te Kronnie G, Schwartz PH, Favaro E, Indraccolo S, Basso G, Panchision DM. Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 2009; 27:7-17. [PMID: 18832593 DOI: 10.1634/stemcells.2008-0402] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxia commonly occurs in solid tumors of the central nervous system (CNS) and often interferes with therapies designed to stop their growth. We found that pediatric high-grade glioma (HGG)-derived precursors showed greater expansion under lower oxygen tension, typical of solid tumors, than normal CNS precursors. Hypoxia inhibited p53 activation and subsequent astroglial differentiation of HGG precursors. Surprisingly, although HGG precursors generated endogenous bone morphogenetic protein (BMP) signaling that promoted mitotic arrest under high oxygen tension, this signaling was actively repressed by hypoxia. An acute increase in oxygen tension led to Smad activation within 30 minutes, even in the absence of exogenous BMP treatment. Treatment with BMPs further promoted astroglial differentiation or death of HGG precursors under high oxygen tension, but this effect was inhibited under hypoxic conditions. Silencing of hypoxia-inducible factor 1alpha (HIF1alpha) led to Smad activation even under hypoxic conditions, indicating that HIF1alpha is required for BMP repression. Conversely, BMP activation at high oxygen tension led to reciprocal degradation of HIF1alpha; this BMP-induced degradation was inhibited in low oxygen. These results show a novel, mutually antagonistic interaction of hypoxia-response and neural differentiation signals in HGG proliferation, and suggest differences between normal and HGG precursors that may be exploited for pediatric brain cancer therapy.
Collapse
|
39
|
Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284:16767-16775. [PMID: 19386601 PMCID: PMC2719312 DOI: 10.1074/jbc.m901790200] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-α subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1α or HIF-2α at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1α and HIF-2α (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1α- versus HIF-2α-binding sites revealed that whereas some loci bound HIF-1α in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2α contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1α versus HIF-2α understanding the mechanisms restricting HIF-2α activity will be of interest.
Collapse
Affiliation(s)
- David R Mole
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom.
| | - Christine Blancher
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Richard R Copley
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Patrick J Pollard
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom
| | - Jonathan M Gleadle
- Renal Unit, Level 6, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Peter J Ratcliffe
- From the Henry Wellcome Building of Molecular Physiology, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
40
|
Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92:317-35. [PMID: 19357959 DOI: 10.1007/s11060-009-9827-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Hypoxia is implicated in many aspects of tumor development, angiogenesis, and growth in many different tumors. Brain tumors, particularly the highly aggressive glioblastoma multiforme (GBM) with its necrotic tissues, are likely affected similarly by hypoxia, although this involvement has not been closely studied. Invasion, apoptosis, chemoresistance, resistance to antiangiogenic therapy, and radiation resistance may all have hypoxic mechanisms. The extent of the influence of hypoxia in these processes makes it an attractive therapeutic target for GBM. Because of their relationship to glioma and meningioma growth and angiogenesis, hypoxia-regulated molecules, including hypoxia inducible factor-1, carbonic anhydrase IX, glucose transporter 1, and vascular endothelial growth factor, may be suitable subjects for therapies. Furthermore, other novel hypoxia-regulated molecules that may play a role in GBM may provide further options. Emerging imaging techniques may allow for improved determination of hypoxia in human brain tumors to better focus therapeutic treatments; however, tumor pseudoprogression, which may be prompted by hypoxia, poses further challenges. An understanding of the role of hypoxia in tumor development and growth is important for physicians involved in the care of patients with brain tumors.
Collapse
|
41
|
Yeh WL, Lin CJ, Fu WM. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 2008; 73:170-7. [PMID: 17942749 DOI: 10.1124/mol.107.038851] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased need for glycolysis and glucose uptake for ATP production is observed in tumor cells, particularly in cells lacking of oxygen supply. Because glucose is transported from blood to tumor, glucose molecules must be delivered across glucose transporters of the vascular endothelium and tumor cells. Here we found that glioma suffered from hypoxic insults can secrete factor(s) to regulate glucose transporter expression in brain endothelium. It was found that conditioned medium from rat C6 glioma cells under hypoxia up-regulated glucose transporter type 1 (GLUT1) expression in rat brain endothelial cells, whereas conditioned medium from C6 cells under normoxia caused no significant effect. We further investigated whether the observed potentiating effect was caused by vascular endothelial growth factor (VEGF) production from C6 cells, because secreted VEGF was markedly increased under hypoxic condition. By transfection of C6 cells with VEGF small interfering RNA, it was found that conditioned medium from transfected cells under hypoxia no longer up-regulated GLUT1 expression of endothelial cells. Moreover, the addition of VEGF-neutralizing antibody to the hypoxic conditioned medium could also exert similar inhibitory effects. Furthermore, it was found that the VEGF-induced increase of GLUT1 expression in endothelial cells was mediated by the phosphoinositide-3 kinase/Akt pathway. Our results indicate that hypoxic brain glioma may secrete VEGF to increase glucose transport across blood-brain barrier.
Collapse
Affiliation(s)
- Wei-Lan Yeh
- Department of pharmacology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | | | | |
Collapse
|