1
|
Ma X, Lao Y, Bai Y, Guan X, Jiang J, Cui M, Dong Z. Study progress of etiologic mechanisms of chronic prostatitis/chronic pelvic pain syndrome. Int Immunopharmacol 2025; 148:114128. [PMID: 39864227 DOI: 10.1016/j.intimp.2025.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) represents a prevalent condition within the male genitourinary system. CP/CPPS occurs in men of varying ages, with an increasing recurrence rate associated with advancing age. The pathogenesis of CP/CPPS remains unclear, and clinical treatment typically focuses on symptom management with limited efficacy, resulting in significant economic and psychological burdens for patients. Research has increasingly identified several factors potentially associated with the development of CP/CPPS, including lifestyle, psychosocial influences, neuroendocrine elements, and other variables. This paper reviews recent studies on the risk factors and etiological mechanisms of CP/CPPS to enhance understanding of its mechanisms, providing a reference framework for future basic research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiyue Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanan Bai
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jingyi Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minglu Cui
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Peng X, Li F, Xia L, Lu M. Macrophage heterogeneity regulation by small extracellular vesicles from adipose-derived stem cells: A promising approach for treating chronic prostatitis/pelvic pain syndrome. BIOMATERIALS ADVANCES 2025; 166:214066. [PMID: 39413706 DOI: 10.1016/j.bioadv.2024.214066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an intractable aseptic disease. Modulating the transition of macrophages from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype offers an attractive therapeutic approach. Recently, small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) reportedly have potent modulatory abilities, however, their applications are limited by suboptimal targeting. Our group hypothesized that surface modification of sEVs derived from ADSCs are useful for the management of CP/CPPS by promoting M1/M2 macrophage phenotypic transformation. In this study, a novel nanomaterial (CD86-sEVs) is designed for CP/CPPS treatment using click chemistry, a bioconjugation technique enabling robust covalent linkages. The results of immunofluorescence staining, western blot and ELISA confirmed that azide-modified CD86 antibody was successfully conjugated onto the sEVs surface. In vitro, CD86-sEVs significantly accelerated M1 macrophage polarization to M2 and upregulated anti-inflammatory factors. In vivo, CD86-sEVs targeted the prostatic lesion region, alleviated chronic pelvic pain, and inhibited inflammation by promoting M1/M2 phenotype shift. Furthermore, miRNA array analysis identified specific miRNAs (miR-26a, miR-147, miR-17, miR-21, miR-182, miR-451a) within CD86-sEVs that likely contributed to these observed effects. In sum, this study presents a novel paradigm for the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Xufeng Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Fangzhou Li
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lei Xia
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mujun Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
3
|
Ding C, Gong Q, Wan S. Mediation effect of plasma metabolites on the relationship between immune cells and the risk of prostatitis: A study by bidirectional 2-sample and Bayesian-weighted Mendelian randomization. Medicine (Baltimore) 2024; 103:e40024. [PMID: 39465812 PMCID: PMC11479442 DOI: 10.1097/md.0000000000040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
According to the findings of multiple observational studies, immune disorder was a risk factor for prostatitis. However, it remained unknown whether there was a direct causal relationship between immune cells and prostatitis or whether this relationship was mediated by plasma metabolites. Based on the pooled data of a genome-wide association study (GWAS), a genetic variant was used to predict the effects of 731 immunophenotypes on the risk of prostatitis and determine whether the effects were mediated by 1400 metabolites. The bidirectional 2-sample Mendelian randomization (MR) method was adopted to uncover the causal relationship between immunophenotypes and prostatitis. Subsequently, a 2-step MR method was employed to evaluate whether the metabolites mediated this causal relationship and quantify the mediating effects and the corresponding ratios. In addition, the Bayesian-weighted Mendelian randomization (BWMR) method was employed to verify the results. Among the 731 immunophenotypes analyzed, 16 had causal relationships with the risk of prostatitis, including 11 with positive correlations (P < .05, beta > 0) and 5 with negative correlations (P < .05, beta < 0). The MR analysis screened out 9 metabolites related to the risk of prostatitis. The X - 24344 levels mediated the causal relationship between CD3 on CD39+ activated Treg and prostatitis (mediation effect: 0.01; ratio: 9.82%). Both histidine betaine (hercynine) levels and the proline-to-glutamate ratio mediated the causal relationship between CD14-CD16+ monocyte absolute count and prostatitis, with the mediation effects of -0.016 (14.20%) and -0.008 (7.24%), respectively. The glutamine degradant levels mediated the causal relationship between HLA DR+ CD4+ %T cells and prostatitis, with a mediation effect of -0.012, accounting for 8.07% of the total. The present study indicated that the immune cell subsets predicted based on gene expression profiles were potentially beneficial or harmful risk factors of prostatitis, and plasma metabolites may serve as the mediating factors of the relationship. The study thus shed light on deciphering the immunologic mechanism of prostatitis.
Collapse
Affiliation(s)
- Chao Ding
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Quanhua Gong
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Shui Wan
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| |
Collapse
|
4
|
Zhang SY, Zhang LY, Wen R, Yang N, Zhang TN. Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother 2024; 179:117295. [PMID: 39146765 DOI: 10.1016/j.biopha.2024.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Ding X, Liu X, Qiu T, Zhou Y, Michał N, Roman S, Liu Q, Liu Y, Peng N. Modulation of macrophage polarity with carboxymethyl chitin gated hollow mesoporous silica nanoparticles for elevating anti-tumor chemotherapy. Int J Biol Macromol 2024; 261:129761. [PMID: 38290634 DOI: 10.1016/j.ijbiomac.2024.129761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The weak immunity of tumors after chemotherapy could cause tumor metastasis and progression. Therefore, to overcome the dilemma of obvious immune deficiency caused by chemotherapy, a nanosystem (N-IL-12/DOX/α-TOS) consisted of thioketal (TK) bonds linked-hollow mesoporous silica nanoparticles (HMSNs) coated with carboxymethyl chitin (CMCH) by electrostatic interaction, and surface-functionalized glucose-regulated protein 78 binding peptide was prepared for loading doxorubicin (DOX), IL-12 and α-tocopheryl succinate (α-TOS). N-IL-12/DOX/α-TOS displayed a mean size of 275 nm after encapsulated DOX, IL-12 and α-TOS with loading contents of 2.04 × 10-4, 4.01 × 10-2 and 7.12 × 10-2, respectively. The drug-free nanoparticles (NPs) showed good biocompatibility to both 4 T1 cells and RAW264.7 macrophages. N-IL-12/DOX/α-TOS could achieve localized release of IL-12, DOX and α-TOS by pH and H2O2 trigger in the tumor microenvironment (TME). Moreover, the combined therapy by N-IL-12/DOX/α-TOS remarkably elevated the anti-tumor therapeutic efficacy, enhanced immune responses via promoting tumor-associated macrophage (TAM) polarization into tumoricidal M1 phenotypes, and decreased lung metastasis with reduced side effects. N-IL-12/DOX/α-TOS exhibited as a promising strategy for combining chemotherapy and local macrophage modulation-immunotherapy for anti-tumor therapy.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiyu Liu
- The Ninth Hospital of Wuhan City, Wuhan, Hubei 430081, PR China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yu Zhou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China
| | - Nowicki Michał
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Szewczyk Roman
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Qingtao Liu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, Hubei 430200, PR China.
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
6
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
7
|
Hua X, Zhang J, Ge S, Liu H, Du H, Niu Q, Chen X, Yang C, Zhang L, Liang C. CXCR3 antagonist AMG487 ameliorates experimental autoimmune prostatitis by diminishing Th1 cell differentiation and inhibiting macrophage M1 phenotypic activation. Prostate 2022; 82:1223-1236. [PMID: 35700340 DOI: 10.1002/pros.24395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is an inflammatory immune disease that is characterized by infiltrating inflammatory cells in the prostate and pelvic or by perineal pain. Receptor CXCR3modulates immune and inflammatory responses; however, the effects of CXCR3 antagonist AMG487 in the context of CP/CPPS are unknown. Therefore, we investigated the effect of AMG487 in experimental autoimmune prostatitis (EAP) mice and explored the potential functional mechanisms. METHODS The EAP model was induced by intradermally injecting a mixture of prostate antigens and complete Freund's adjuvant on Days 0 and 28. To evaluate the effect of AMG487 on EAP mice, treatment with AMG487 and vehicle solution was conducted for the indicated period. Then, procedures were performed, including behavioral test, to evaluate the pain response to stimulation before the mice were killed and a histological assessment to evaluate the inflammation after the mice were killed. Immunofluorescence, flow cytometry, and Western blot assay were used to analyze the functional phenotype and regulation mechanism of AMG487 on T helper type 1 (Th1) cells and macrophages. RESULTS We found high expression of CXCR3 in human benign prostate tissues with inflammation and EAP mice. The elevated CXCR3 in prostate tissues correlates with the severity of inflammation. CXCR3 antagonist AMG487 treatment ameliorated the inflammatory changes and the pelvic pain of EAP mice. AMG487 inhibits Th1 cell differentiation through the IL-12/STAT4pathway and inhibits pro-inflammatory M1 macrophages through the lipopolysaccharide/NF-κB p65signaling. AMG487 could inhibit the secretion of inflammatory mediators in EAP mice. CONCLUSION CXCR3 antagonist AMG487 could ameliorate the inflammatory changes and the pelvic pain of EAP mice by diminishing Th1 cell differentiation and inhibiting macrophage M1 phenotypic activation. Thus, the results imply that AMG487 has the potential as an effective therapeutic agent in the prevention and treatment of EAP.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jiong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Hexi Du
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Qingsong Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
8
|
Min KY, Lee MB, Hong SH, Lee D, Jo MG, Lee JE, Choi MY, You JS, Kim YM, Park YM, Kim HS, Choi WS. Entinostat, a histone deacetylase inhibitor, increases the population of IL-10+ regulatory B cells to suppress contact hypersensitivity. BMB Rep 2021. [PMID: 34488930 PMCID: PMC8560462 DOI: 10.5483/bmbrep.2021.54.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several sti-mulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Min Bum Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Seong Hwi Hong
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Ji Eon Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Min Yeong Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Young Mi Kim
- Department of Preventive Pharmacy, College of Pharmacy, Duksung Women's University, Seoul 01369, Korea
| | - Yeong Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
9
|
Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSDM, Dórea RSDM, Dantas ACS, Morbeck LLB, Lima IS, de Almeida AA, Dias MRDJ, de Melo FF. Relationship between Th17 immune response and cancer. World J Clin Oncol 2021; 12:845-867. [PMID: 34733609 PMCID: PMC8546660 DOI: 10.5306/wjco.v12.i10.845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and epidemiological projections predict growing cancer mortality rates in the next decades. Cancer has a close relationship with the immune system and, although Th17 cells are known to play roles in the immune response against microorganisms and in autoimmunity, studies have emphasized their roles in cancer pathogenesis. The Th17 immune response profile is involved in several types of cancer including urogenital, respiratory, gastrointestinal, and skin cancers. This type of immune response exerts pro and antitumor functions through several mechanisms, depending on the context of each tumor, including the protumor angiogenesis and exhaustion of T cells and the antitumor recruitment of T cells and neutrophils to the tumor microenvironment. Among other factors, the paradoxical behavior of Th17 cells in this setting has been attributed to its plasticity potential, which makes possible their conversion into other types of T cells such as Th17/Treg and Th17/Th1 cells. Interleukin (IL)-17 stands out among Th17-related cytokines since it modulates pathways and interacts with other cell profiles in the tumor microenvironment, which allow Th17 cells to prevail in tumors. Moreover, the IL-17 is able to mediate pro and antitumor processes that influence the development and progression of various cancers, being associated with variable clinical outcomes. The understanding of the relationship between the Th17 immune response and cancer as well as the singularities of carcinogenic processes in each type of tumor is crucial for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Júlio César Braga de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Thiago Macêdo Lopes Correia
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Nayara Silva de Macêdo Neres
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Anna Carolina Saúde Dantas
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Lôbo Brito Morbeck
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Iasmin Souza Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Amanda Alves de Almeida
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maiara Raulina de Jesus Dias
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
10
|
Yao Y, Hao F, Tang LC, Xu XH, Jin L. Downregulation of HDAC8 expression decreases CD163 levels and promotes the apoptosis of macrophages by activating the ERK signaling pathway in recurrent spontaneous miscarriage. Mol Hum Reprod 2021; 26:521-531. [PMID: 32433749 DOI: 10.1093/molehr/gaaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous miscarriage (RSM) is a systemic disorder that has been defined as two or more pregnancies lost before the 20th week of gestation. Although the impaired function of macrophages at the maternal-fetal interface has been reported to be associated with RSM, the underlying mechanisms have not been fully elucidated. Here, we revealed that HDAC8 plays a critical role in RSM. Our results show that the mRNA and protein expression of HDAC8 was decreased in decidual macrophages from RSM patients. Moreover, the knockdown of HDAC8 resulted in a significant decrease in CD163 expression and an increase in apoptosis in dTHP-1 macrophages. Mechanistically, the ERK signaling pathway was activated in HDAC8-knockdown macrophages. When HDAC8-knockdown cells were pretreated with the ERK inhibitor U0126, expression levels of CD163, activated caspases 3, 7 and 9, and the apoptosis rate, were rescued. Taken together, our current results suggest that HDAC8 plays an important role in macrophage activation and apoptosis and may contribute to maintaining normal pregnancy by increasing the expression of M2 marker genes and inhibiting the apoptosis of macrophages at the maternal-fetal interface.
Collapse
Affiliation(s)
- Yongli Yao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Fan Hao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Lin-Chen Tang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Xiang-Hong Xu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
11
|
Qian X, Gu Z, Guan W, Qi J, Xu D. Resveratrol could attenuate prostatic inflammation in rats with Oestradiol-induced chronic prostatitis. Andrologia 2021; 53:e14004. [PMID: 33550669 DOI: 10.1111/and.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023] Open
Abstract
To evaluate the effect of resveratrol in rats with chronic prostatitis, 24 rats were randomly divided into the negative control, vehicle-treated and resveratrol groups. The rats in the vehicle-treated group and the resveratrol group were injected subcutaneously with 17-β-oestradiol (0.25 mg/kg) daily for 6 weeks while the rats in the control group were injected with equivalent normal saline. From the 45th day, the rats in the resveratrol group were given resveratrol (10 mg/kg) by gavage per day while the rest rats were given normal saline. After 55 days, all the rats were sacrificed and the prostatic tissue was removed. Morphological changes were examined by light microscope after H&E staining. The expressions of IL-6, IL-8 and TNF-α were determined through ELISA and immunohistochemical staining. As a result, significant inflammatory cell infiltration and fibroblastic hyperplasia were observed in prostatic stroma in the vehicle-treated group compared with the negative control group, as well as the high expression of IL-6, IL-8 and TNF-α. After resveratrol treatment, inflammatory cell infiltration and fibroblastic hyperplasia were shown prominently reduced. Meanwhile, the expression of IL-6, IL-8 and TNF-α was significantly suppressed. For conclusion, resveratrol could attenuate the prostatic inflammation and downregulate the expression of IL-6, IL-8 and TNF-α in rat with oestradiol-induced chronic prostatitis.
Collapse
Affiliation(s)
- Xiaoqiang Qian
- Reproductive Medical Centre, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengqin Gu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Liu Y, Zhang Y, Zhang M, Meng J, Ma Q, Hao Z, Zheng M, Zhang L, Chen X, Liang C. Activated autophagy restored the impaired frequency and function of regulatory T cells in chronic prostatitis. Prostate 2021; 81:29-40. [PMID: 33085775 DOI: 10.1002/pros.24073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic prostatitis or chronic pelvic pain syndrome (CP/CPPS) is a disease with an unclear pathogenesis. Recent studies have reported that regulatory T (Treg) cells might be involved in the development of CP/CPPS. In this study we aimed to examine the functional role of Treg cells and explore the possible regulatory mechanism of Treg cells in CP/CPPS. METHODS An experimental autoimmune prostatitis (EAP) mouse model was constructed; the numbers and functions of Treg cells in the EAP and control groups were tested. Then, cell differentiation experiments were conducted to evaluate the regulatory effect of autophagy on Treg cell differentiation. Furthermore, autologous CD4+ CD25- cells and CD4+ CD25+ cells from the two groups were magnetically sorted and cocultured to observe differences in cellular inhibitory functions. Finally, in an in vivo experiment, rapamycin was intraperitoneally injected into EAP mice for 4 weeks to observe the therapeutic effects. RESULTS We found that the number and function of Treg cells in the EAP group were diminished compared to those in the control group. Meanwhile, the tolerance of pain in EAP mice had also decreased. Moreover, after using the autophagy activator rapamycin, the expression of the inflammatory cytokines interleukin-1β was decreased and the pain symptoms were alleviated. A mechanistic study found that autophagy activation promoted the differentiation of Treg and increased the suppressive functions of Treg cells, along with the elevated expression of GATA-3 and cytotoxic T lymphocyte antigen 4 (CTLA-4). Furthermore, in vivo administration of the autophagy activator rapamycin had similar effects on recovering the frequency and function of Treg cells as well as the expression of GATA-3 and CTLA-4. CONCLUSION The impaired frequency and function of Treg cells may contribute to the progression of CP/CPPS, and autophagy is a protective mechanism that promotes the differentiation of Treg cells and restores the suppressive functions of Treg cells. Autophagy may be a novel therapeutic option for patients with CP/CPPS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Yong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Qingqing Ma
- Department of Urology, Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Urology, Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Li C, Chen Y, Zhu H, Zhang X, Han L, Zhao Z, Wang J, Ning L, Zhou W, Lu C, Xu L, Sang J, Feng Z, Zhang Y, Lou X, Bo X, Zhu B, Yu C, Zheng M, Li Y, Sun J, Shen Z. Inhibition of Histone Deacetylation by MS-275 Alleviates Colitis by Activating the Vitamin D Receptor. J Crohns Colitis 2020; 14:1103-1118. [PMID: 32030401 DOI: 10.1093/ecco-jcc/jjaa016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ulcerative colitis [UC] is a common chronic inflammatory bowel disease without curative treatment. METHODS We conducted gene set enrichment analysis to explore potential therapeutic agents for UC. Human colon tissue samples were collected to test H3 acetylation in UC. Both in vivo and in vitro colitis models were constructed to verify the role and mechanism of H3 acetylation modification in UC. Intestine-specific vitamin D receptor [VDR]-/- mice and VD [vitamin D]-deficient diet-fed mice were used to explore downstream molecular mechanisms accordingly. RESULTS According to the Connectivity Map database, MS-275 [class I histone deacetylase inhibitor] was the top-ranked agent, indicating the potential importance of histone acetylation in the pathogenesis of UC. We then found that histone H3 acetylation was significantly lower in the colon epithelium of UC patients and negatively associated with disease severity. MS-275 treatment inhibited histone H3 deacetylation, subsequently attenuating nuclear factor kappa B [NF-κB]-induced inflammation, reducing cellular apoptosis, maintaining epithelial barrier function, and thereby reducing colitis activity in a mouse model of colitis. We also identified VDR as be a downstream effector of MS-275. The curative effect of MS-275 on colitis was abolished in VDR-/- mice and in VD-deficient diet-fed mice and VDR directly targeted p65. In UC patients, histone H3 acetylation, VDR and zonulin-1 expression showed similar downregulation patterns and were negatively associated with disease severity. CONCLUSIONS We demonstrate that MS-275 inhibits histone deacetylation and alleviates colitis by ameliorating inflammation, reducing apoptosis, and maintaining intestinal epithelial barrier via VDR, providing new strategies for UC treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Yi Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huatuo Zhu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Han
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Department of Neuroimmunopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zuodong Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Wang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longgui Ning
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Zhou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Jianzhong Sang
- Department of Gastroenterology, Yuyao People's Hospital of Zhejiang Province, Ningbo, China
| | - Zemin Feng
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Zhang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhe Lou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Shen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
15
|
Chen J, Zhan C, Zhang L, Zhang L, Liu Y, Zhang Y, Du H, Liang C, Chen X. The Hypermethylation of Foxp3 Promoter Impairs the Function of Treg Cells in EAP. Inflammation 2020; 42:1705-1718. [PMID: 31209730 DOI: 10.1007/s10753-019-01030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treg cells are crucial for maintaining immune homeostasis in CP/CPPS, but the molecular mechanisms underlying the modulation of the function of Treg in CP/CPPS remain unclear. The main purpose of this study is to investigate the relationship between immunosuppressive function of Treg and the methylation level of Foxp3 promoter in experimental autoimmune prostatitis (EAP) mouse model. EAP model was induced by subcutaneous injecting prostate-steroid-binding protein (PSBP) and complete Freund's adjuvant with NOD mice. Histological analysis revealed that EAP model was successfully induced. The expression of IFN-γ was increased, and TGF-β was decreased in the serum of EAP, respectively. The percentage of Tregs in splenic lymphocyte was increased in EAP. The suppressive ability of Tregs on Teffs was impaired in EAP. The methylation level of Foxp3 promoter was increased, and the expression of Foxp3 was decreased in EAP. By injection AZA which was DNA-methylation inhibitor into EAP mice, prostate inflammation was alleviated, expressions of TGF-β and Foxp3 were increased, and the suppressive function of Tregs was improved in vitro and in vivo. Thus, we concluded that aberrant increased methylation of Foxp3 promoter in Treg cells leads to the impaired suppressive function of Treg cells, exacerbating autoimmune inflammatory injury in EAP.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Changsheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Hexi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China. .,Institute of Urology, Anhui Medical University, Hefei, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China. .,Institute of Urology, Anhui Medical University, Hefei, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Moreira JD, Koch BEV, van Veen S, Walburg KV, Vrieling F, Mara Pinto Dabés Guimarães T, Meijer AH, Spaink HP, Ottenhoff THM, Haks MC, Heemskerk MT. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Front Immunol 2020; 11:36. [PMID: 32117228 PMCID: PMC7008710 DOI: 10.3389/fimmu.2020.00036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
The rapid and persistent increase of drug-resistant Mycobacterium tuberculosis (Mtb) infections poses increasing global problems in combatting tuberculosis (TB), prompting for the development of alternative strategies including host-directed therapy (HDT). Since Mtb is an intracellular pathogen with a remarkable ability to manipulate host intracellular signaling pathways to escape from host defense, pharmacological reprogramming of the immune system represents a novel, potentially powerful therapeutic strategy that should be effective also against drug-resistant Mtb. Here, we found that host-pathogen interactions in Mtb-infected primary human macrophages affected host epigenetic features by modifying histone deacetylase (HDAC) transcriptomic levels. In addition, broad spectrum inhibition of HDACs enhanced the antimicrobial response of both pro-inflammatory macrophages (Mϕ1) and anti-inflammatory macrophages (Mϕ2), while selective inhibition of class IIa HDACs mainly decreased bacterial outgrowth in Mϕ2. Moreover, chemical inhibition of HDAC activity during differentiation polarized macrophages into a more bactericidal phenotype with a concomitant decrease in the secretion levels of inflammatory cytokines. Importantly, in vivo chemical inhibition of HDAC activity in Mycobacterium marinum-infected zebrafish embryos, a well-characterized animal model for tuberculosis, significantly reduced mycobacterial burden, validating our in vitro findings in primary human macrophages. Collectively, these data identify HDACs as druggable host targets for HDT against intracellular Mtb.
Collapse
Affiliation(s)
- Jôsimar D Moreira
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Vrieling
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tânia Mara Pinto Dabés Guimarães
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias T Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Sosanya NM, Kumar R, Clifford JL, Chavez R, Dimitrov G, Srinivasan S, Gautam A, Trevino AV, Williams M, Hammamieh R, Cheppudira BP, Christy RJ, Crimmins SL. Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:82-96. [DOI: 10.1016/j.jpain.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
|
18
|
Liu Y, Mikrani R, Xie D, Wazir J, Shrestha S, Ullah R, Baig MMFA, Ahmed A, Srivastava PK, Thapa KB, Zhou X. Chronic prostatitis/chronic pelvic pain syndrome and prostate cancer: study of immune cells and cytokines. Fundam Clin Pharmacol 2019; 34:160-172. [DOI: 10.1111/fcp.12517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Dianyou Xie
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Junaid Wazir
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Sajan Shrestha
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Rahat Ullah
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Abrar Ahmed
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 China
| | | | - Kedar Bahadur Thapa
- Institute of Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
- Department of Surgery Zhongda Hospital Affiliated to Southeast University Nanjing Jiangsu 210017 China
- Department of Surgery Nanjing Shuiximen Hospital Nanjing Jiangsu 210017 China
| |
Collapse
|
19
|
Haage V, Elmadany N, Roll L, Faissner A, Gutmann DH, Semtner M, Kettenmann H. Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain Behav Immun 2019; 81:470-483. [PMID: 31271872 DOI: 10.1016/j.bbi.2019.06.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we demonstrate that Tnc regulates microglial phagocytic activity at an early postnatal age (P4), and that this process is partially dependent on microglial TLR4 expression. We further show that Tnc regulates proinflammatory cytokine/chemokine production, chemotaxis and phagocytosis in primary microglia in a TLR4-dependent fashion. Moreover, Tnc induces histone-deacetylase 1 (HDAC1) expression in microglia, such that HDAC1 inhibition by MS-275 decreases Tnc-induced microglial IL-6 and TNF-α production. Finally, Tnc-/- cortical microglia have reduced HDAC1 expression levels at P4. Taken together, these findings establish Tnc as a regulator of microglia function during early postnatal development.
Collapse
Affiliation(s)
- Verena Haage
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Lars Roll
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - Andreas Faissner
- Zellmorphologie und Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Nordrhein-Wastfalen 44801, Germany
| | - David H Gutmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| |
Collapse
|
20
|
Danaher RJ, Zhang L, Donley CJ, Laungani NA, Hui SE, Miller CS, Westlund KN. Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol Pain 2019; 14:1744806918796763. [PMID: 30178698 PMCID: PMC6124181 DOI: 10.1177/1744806918796763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chronic orofacial pain is a significant health problem requiring identification
of regulating processes. Involvement of epigenetic modifications that is
reported for hindlimb neuropathic pain experimental models, however, is less
well studied in cranial nerve pain models. Three independent observations
reported here are the (1) epigenetic profile in mouse trigeminal ganglia (TG)
after trigeminal inflammatory compression (TIC) nerve injury mouse model
determined by gene expression microarray, (2) H3K9 acetylation pattern in TG by
immunohistochemistry, and (3) efficacy of histone deacetylase (HDAC) inhibitors
to attenuate development of hypersensitivity. After TIC injury, ipsilateral
whisker pad mechanical sensitization develops by day 3 and persists well beyond
day 21 in contrast to sham surgery. Global acetylation of H3K9 decreases at day
21 in ipsilateral TG . Thirty-four genes are significantly
(p < 0.05) overexpressed in the ipsilateral TG by at least
two-fold at either 3 or 21 days post-trigeminal inflammatory compression injury.
The three genes most overexpressed three days post-trigeminal inflammatory
compression nerve injury are nerve regeneration-associated gene ATF3, up
6.8-fold, and two of its regeneration-associated gene effector genes, Sprr1a and
Gal, up 174- and 25-fold, respectively. Although transcription levels of 25 of
32 genes significantly overexpressed three days post-trigeminal inflammatory
compression return to constitutive levels by day 21, these three
regeneration-associated genes remain significantly overexpressed at the later
time point. On day 21, when tissues are healed, other differentially expressed
genes include 39 of the top 50 upregulated and downregulated genes. Remarkably,
preemptive manipulation of gene expression with two HDAC inhibitors (HDACi's),
suberanilohydroxamic acid (SAHA) and MS-275, reduces the magnitude and duration
of whisker pad mechanical hypersensitivity and prevents the development of a
persistent pain state. These findings suggest that trigeminal nerve injury leads
to epigenetic modifications favoring overexpression of genes involved in nerve
regeneration and that maintaining transcriptional homeostasis with epigenetic
modifying drugs could help prevent the development of persistent pain.
Collapse
Affiliation(s)
- Robert J Danaher
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Liping Zhang
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA.,2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Connor J Donley
- 2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nashwin A Laungani
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - S Elise Hui
- 3 Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Craig S Miller
- 1 Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Karin N Westlund
- 2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA.,3 Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
21
|
Chang F, Wang Y, Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019; 14:1335. [DOI: https:/doi.org/10.4103/1673-5374.253510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
|
22
|
Yang Q, Ali M, El Andaloussi A, Al-Hendy A. The emerging spectrum of early life exposure-related inflammation and epigenetic therapy. CANCER STUDIES AND MOLECULAR MEDICINE : OPEN JOURNAL 2018; 4:13-23. [PMID: 30474062 PMCID: PMC6247815 DOI: 10.17140/csmmoj-4-125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early life exposure to a variety of insults during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life. During this process, Inflammation triggered by a variety of adverse exposures plays an important role in the initiation and development of many types of diseases including tumorigenesis. This review article summaries the current knowledge about the role and mechanism of inflammation in development of diseases. In addition, epigenome alteration related to inflammation and treatment options using epigenetic modifiers are highlighted and discussed.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain
Shams University, Cairo, Egypt
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Nesheim N, Ellem S, Dansranjavin T, Hagenkötter C, Berg E, Schambeck R, Schuppe HC, Pilatz A, Risbridger G, Weidner W, Wagenlehner F, Schagdarsurengin U. Elevated seminal plasma estradiol and epigenetic inactivation of ESR1 and ESR2 is associated with CP/CPPS. Oncotarget 2018; 9:19623-19639. [PMID: 29731970 PMCID: PMC5929413 DOI: 10.18632/oncotarget.24714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/24/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III (n= 50; median age 39.8, range 23-65) and age-matched controls (n= 61; median age 36.8, range 20-69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes (ESR1 and ESR2) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E2) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E2 -treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E2 -treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy.
Collapse
Affiliation(s)
- Nils Nesheim
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stuart Ellem
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Temuujin Dansranjavin
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Christina Hagenkötter
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Elena Berg
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Rupert Schambeck
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Gail Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Wolfgang Weidner
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
24
|
de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 2018; 9:20908-20927. [PMID: 29755698 PMCID: PMC5945509 DOI: 10.18632/oncotarget.24556] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
The progression of cancer is a result of not only the growth of the malignant cells but also the behavior of other components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are key components of the TME that influence tumor growth and disease progression. TAMs can either inhibit or support tumor growth depending on their polarization to classically-activated macrophages (M1s) or alternatively-activated macrophages (M2s), respectively. Epigenetic regulation plays a significant role in determining this polarization and manipulating the epigenetic regulation in macrophages would provide a means for selectively targeting M2s thereby eliminating tumor-supporting TAMs while sparing tumor-inhibiting M1 TAMs. Many pharmacologic modulators of epigenetic enzymes are currently used clinically and could be repurposed for treating tumors with high TAM infiltrate. While much research involving epigenetic enzymes and their modulators has been performed in M1s, significantly less is known about the epigenetic regulation of M2s. This review highlights the field’s current knowledge of key epigenetic enzymes and their pharmacologic modulators known to influence macrophage polarization.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Liao YH, Wang J, Wei YY, Zhang T, Zhang Y, Zuo ZF, Teng XY, Li YQ. Histone deacetylase 2 is involved in µ‑opioid receptor suppression in the spinal dorsal horn in a rat model of chronic pancreatitis pain. Mol Med Rep 2017; 17:2803-2810. [PMID: 29257262 PMCID: PMC5783494 DOI: 10.3892/mmr.2017.8245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic pain occurs in ~85–90% of chronic pancreatitis (CP) patients. However, as the pathogenesis of CP pain remains to be fully understood, the current therapies for CP pain remain inadequate. Emerging evidence has suggested that the epigenetic modulations of genes are involved in chronic pain. In the present study, intrapancreatic trinitrobenzene sulfonic acid infusions were used to establish a CP model in rats. Mechanical allodynia was measured with von Frey filaments. Immunofluorescent staining analysis was used to observe the expression changes of histone deacetylase 2 (HDAC2) and µ-opioid receptor (MOR), and intrathecal administration of the selective HDAC2 inhibitor AR-42 was used to assess the underlying mechanisms. The expression levels of c-Jun N-terminal kinase (JNK) in the thoracic spinal cord were detected by western blotting, and the mRNA expression levels of interleukin (IL)1-β, IL-6 and tumor necrosis factor (TNF)-α were detected by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that HDAC2 expression was upregulated during the course of CP induction, while MOR activity in the thoracic spinal dorsal horn was significantly suppressed. Intrathecal infusion of AR-42 significantly attenuated CP-induced mechanical allodynia, with rescued MOR activity. Additionally, HDAC2 facilitated the release of inflammatory cytokines, including IL-1β, IL-6 and TNF-α. These results suggested that the underlying mechanisms of HDAC2 regulating MOR activity under CP induction may occur via promoting the release of inflammatory cytokines, thus activating the JNK signaling pathway. The present study suggested that the epigenetic-regulated disturbance of MOR is dependent on the endogenous analgesia system in CP, which may a provide novel therapeutic strategy for treating pain in CP.
Collapse
Affiliation(s)
- Yong-Hui Liao
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiao-Yu Teng
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
26
|
Bombardo M, Saponara E, Malagola E, Chen R, Seleznik GM, Haumaitre C, Quilichini E, Zabel A, Reding T, Graf R, Sonda S. Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia. Br J Pharmacol 2017; 174:3865-3880. [PMID: 28832971 DOI: 10.1111/bph.13984] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease. EXPERIMENTAL APPROACH We analysed HDAC regulation during cerulein-induced acute, chronic and autoimmune pancreatitis using different transgenic mouse models. The functional relevance of class I HDACs was tested with the selective inhibitor MS-275 in vivo upon pancreatitis induction and in vitro in activated macrophages and primary acinar cell explants. KEY RESULTS HDAC expression and activity were up-regulated in a time-dependent manner following induction of pancreatitis, with the highest abundance observed for class I HDACs. Class I HDAC inhibition did not prevent the initial acinar cell damage. However, it effectively reduced the infiltration of inflammatory cells, including macrophages and T cells, in both acute and chronic phases of the disease, and directly disrupted macrophage activation. In addition, MS-275 treatment reduced DNA damage in acinar cells and limited acinar de-differentiation into acinar-to-ductal metaplasia in a cell-autonomous manner by impeding the EGF receptor signalling axis. CONCLUSIONS AND IMPLICATIONS These results demonstrate that class I HDACs are critically involved in the development of acute and chronic forms of pancreatitis and suggest that blockade of class I HDAC isoforms is a promising target to improve the outcome of the disease.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Enrica Saponara
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Cecile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Evans Quilichini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, France INSERM U969, Paris, France
| | - Anja Zabel
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
van den Bosch T, Kwiatkowski M, Bischoff R, Dekker FJ. Targeting transcription factor lysine acetylation in inflammatory airway diseases. Epigenomics 2017; 9:1013-1028. [PMID: 28617138 DOI: 10.2217/epi-2017-0027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory airway diseases for which alternative therapeutic strategies are urgently needed. Interestingly, HDAC inhibitors show anti-inflammatory effects in mouse models for these diseases. Here we explore underlying mechanisms that may explain these effects. In previous studies, effects of HDAC inhibitors on histone acetylation are often correlated with their effects on gene expression. However, effects of HDAC inhibitors on transcription factors and their acetylation status may be particularly important in explaining these effects. These effects are also cell type-specific. Recent developments (including chemoproteomics and acetylomics) allow for a more detailed understanding of the selectivity of HDAC inhibitors, which will drive their further development into applications in inflammatory airway diseases.
Collapse
Affiliation(s)
- Thea van den Bosch
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Chemical & Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Marcel Kwiatkowski
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases & Tuberculosis, Hanzeplein 1, 9713 AV, Groningen, The Netherlands
| | - Rainer Bischoff
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Analytical Biochemistry, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Department of Chemical & Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
28
|
Liu X, Fan S, Zheng M, Chen J, Zhang J, Li H. The mediation of interleukin-17 and chemokine ligand 2 in pelvic pain of experimental autoimmune prostatitis. Exp Ther Med 2017; 14:51-58. [PMID: 28672892 PMCID: PMC5488646 DOI: 10.3892/etm.2017.4448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to determine the expression and mediation of interleukin-17 (IL-17) and chemokine ligand 2 (CCL2) in a rat model with experimental autoimmune prostatitis (EAP). A total of 44 Sprague Dawley (SD) rats were used in the present study. Of these, a total of 20 two-month-old SD rats were randomly divided into a normal control (n=10) and a model group (EAP group, n=10). The remaining 24 two-month old SD rats were treated in the same way as EAP rats and subsequently randomly divided into a tacrolimus group (n=8), a celecoxib group (n=8) and a normal saline (NS) control group (n=8). Rats in the EAP and normal control groups underwent the Von Frey filaments behavioral test; rats in the tacrolimus, celecoxib and normal saline groups received a pain test following intervention treatment. Prostate tissues of SD rats in each group were harvested for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis to observe the expression of IL-17 and CCL2. In the pain-reaction test, the occurrence of abnormal pain in the EAP group was significantly higher compared with the control group (P<0.001). The celecoxib group experienced a significant decrease in pain at day 10 compared with the NS group (P<0.01), while the decrease in pain experienced by the tacrolimus group was only significant at day 30 (P<0.001) and the pain experienced by the NS group decreased slightly over this same period. Results of RT-qPCR and western blot analysis indicated that, compared with the control group, the expression of IL-17 and CCL2 in the prostate tissue of EAP rats was significantly upregulated 50 days following modeling (P<0.05). On day 30 following intervention, the expression of IL-17 and CCL2 in the prostate of rats in the tacrolimus and celecoxib groups was significantly downregulated compared with the NS group (P<0.05). Therefore, the results of the current study demonstrate that IL-17 and CCL2 serve a vital role in the morbidity of the experimental autoimmune prostatitis and may also have a mediation effect on pelvic pain associated with chronic prostatitis.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shicheng Fan
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mingxing Zheng
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jianheng Chen
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jianhua Zhang
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
29
|
HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Sci Rep 2017; 7:45047. [PMID: 28344354 PMCID: PMC5366870 DOI: 10.1038/srep45047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD.
Collapse
|
30
|
Tomita Y, Lee MJ, Lee S, Tomita S, Chumsri S, Cruickshank S, Ordentlich P, Trepel JB. The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 2016; 5:e1219008. [PMID: 27999738 PMCID: PMC5139687 DOI: 10.1080/2162402x.2016.1219008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
Entinostat, a class I-selective histone deacetylase inhibitor, has shown promising activity in ENCORE 301, a randomized, placebo-controlled, phase II trial of exemestane with or without entinostat in women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on a nonsteroidal aromatase inhibitor. ENCORE 301 showed an 8.3-mo improvement in median overall survival among patients who received entinostat. We investigated the impact of entinostat on immune subsets with CD40, HLA-DR, and immune checkpoint receptor expression analyses in 34 patient blood samples from ENCORE 301. We found that entinostat significantly decreased granulocytic and monocytic MDSCs at cycle 1 day 15. MDSC CD40 was significantly downregulated by entinostat. A significant increase in HLA-DR expression on CD14+ monocytes by entinostat was observed. Entinostat did not impact T-cell subsets or T-cell immune checkpoint receptor expression. Our findings suggest that a significant interplay between this epigenetic regimen and host immune homeostatic mechanisms may impact therapeutic outcome.
Collapse
Affiliation(s)
- Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Saori Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | | | | | | | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
31
|
Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33:160-8. [PMID: 27371876 DOI: 10.1016/j.cbpa.2016.06.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022]
Abstract
Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications is lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed.
Collapse
|
32
|
Abstract
Our understanding of epigenetics in complex diseases is rapidly advancing and increasingly influencing the practice of medicine. Much is known about disruption of chromatin-modifying enzymes in malignant disease, but knowledge of irregular epigenetics in immune-driven disorders is just emerging. Epigenetic factors, such as DNA or histone modifications, are indispensable for precise gene expression in diverse immune cell types. Thus a disruption of epigenetic landscapes likely has a large impact on immune homeostasis. Moreover, the low concordance rates for most autoimmune diseases suggest that epigenetics contribute to immune tolerance disturbance. Here we review the important role of epigenetics for initiation, maintenance, tolerance, and training of immune responses. We discuss evolving evidence that DNA/histone modifications and chromatin-modifying enzymes are altered in immune-based diseases. Furthermore, we explore the potential of small molecules targeting epigenetic machinery, some of which are already used in oncology, as a way to reset the immune response in disease.
Collapse
|
33
|
Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 2015; 5:6558-72. [PMID: 25115382 PMCID: PMC4196144 DOI: 10.18632/oncotarget.2289] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paul Gielen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Ingrid C Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Inna Armandari
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Princes Máxima Center for Pediatric Oncology, The Bilt, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol 2015; 93:233-44. [PMID: 25559622 PMCID: PMC4885213 DOI: 10.1038/icb.2014.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022]
Abstract
The interaction of innate immune cells with pathogens leads to changes in gene expression that elicit our body's first line of defense against infection. Although signaling pathways and transcription factors have a central role, it is becoming increasingly clear that epigenetic factors, in the form of DNA or histone modifications, as well as noncoding RNAs, are critical for generating the necessary cell lineage as well as context‐specific gene expression in diverse innate immune cell types. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental triggers also induce changes in histone modifications that can either promote tolerance or ‘train’ innate immune cells for a more robust antigen‐independent secondary response. Here we review the important contribution of epigenetic factors to the initiation, maintenance and training of innate immune responses. In addition, we explore how pathogens have hijacked these mechanisms for their benefit and the potential of small molecules targeting chromatin machinery as a way to boost or subdue the innate immune response in disease. The March 2015 issue contains a Special Feature on the epigenetic mechanisms underlying health and disease. Epigenetic modifications to chromatin influence the transcriptional status of our genes. Thus, understanding the epigenetic mechanisms that regulate immune cell fate are of great importance as they will provide insight into not only how to boost immune responses but also alter harmful ones such as autoimmunity and cancer. Immunology and Cell Biology thanks the coordinators of this Special Feature ‐ Rhys Allan ‐ for his planning and input.
Collapse
|
35
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
36
|
Wang X, Zhong S, Xu T, Xia L, Zhang X, Zhu Z, Zhang M, Shen Z. Histopathological classification criteria of rat model of chronic prostatitis/chronic pelvic pain syndrome. Int Urol Nephrol 2014; 47:307-16. [PMID: 25409932 DOI: 10.1007/s11255-014-0868-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A variety of murine models of experimental prostatitis that mimic the phenotype of human chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been developed. However, there is still a lack of explicit diagnosis criteria about those animal model. Our study is to establish histopathological classification criteria, which will be conducive to evaluate the animal models. METHODS We firstly established a rat model of experimental autoimmune prostatitis that is considered a valid model for CP/CPPS. For modelling, male Sprague-Dawley rats were immunized with autologous prostate tissue homogenate supernatant emulsified with complete Freund's adjuvant by subcutaneous injection into abdominal flank and simultaneously immunized with pertussis-diphtheria-tetanus vaccine by intraperitoneal injection. Three immunizations were administered semimonthly. At the 45th day, animals were killed, and prostate tissues were examined for morphology. RESULTS Histologically, the prostate tissues were characterized by lymphoproliferation, atrophy of acini, and chronic inflammatory cells infiltration in the stromal connective tissue around the acini or ducts. Finally, we built histopathological classification criteria incorporating inflammation locations (mesenchyme, glands, periglandular tissues), ranges (focal, multifocal, diffuse), and grades (grade I-IV). To verify the effectiveness and practicability of the histopathological classification criteria, we conducted the treatment study with one of the alpha blockers, tamsulosin. CONCLUSION The histopathological classification criteria of rat model of CP/CPPS will serve for further research of the pathogenesis and treatment strategies of the disease.
Collapse
Affiliation(s)
- Xianjin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Er Road, Shanghai, 200025, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van den Elsen PJ, van Eggermond MCJA, Puentes F, van der Valk P, Baker D, Amor S. The epigenetics of multiple sclerosis and other related disorders. Mult Scler Relat Disord 2013; 3:163-75. [PMID: 25878004 DOI: 10.1016/j.msard.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/19/2013] [Accepted: 08/30/2013] [Indexed: 02/05/2023]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system (CNS) gray and white matter. Although the cause of MS is unknown, it is widely appreciated that innate and adaptive immune processes contribute to its pathogenesis. These include microglia/macrophage activation, pro-inflammatory T-cell (Th1) responses and humoral responses. Additionally, there is evidence indicating that MS has a neurodegenerative component since neuronal and axonal loss occurs even in the absence of overt inflammation. These aspects also form the rationale for clinical management of the disease. However, the currently available therapies to control the disease are only partially effective at best indicating that more effective therapeutic solutions are urgently needed. It is appreciated that in the immune-driven and neurodegenerative processes MS-specific deregulation of gene expressions and resulting protein dysfunction are thought to play a central role. These deviations in gene expression patterns contribute to the inflammatory response in the CNS, and to neuronal or axonal loss. Epigenetic mechanisms control transcription of most, if not all genes, in nucleated cells including cells of the CNS and in haematopoietic cells. MS-specific alterations in epigenetic regulation of gene expression may therefore lie at the heart of the deregulation of gene expression in MS. As such, epigenetic mechanisms most likely play an important role in disease pathogenesis. In this review we discuss a role for MS-specific deregulation of epigenetic features that control gene expression in the CNS and in the periphery. Furthermore, we discuss the application of small molecule inhibitors that target the epigenetic machinery to ameliorate disease in experimental animal models, indicating that such approaches may be applicable to MS patients.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabiola Puentes
- Neuroscience and Trauma Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, QJ;Queen Mary University of London, London, United Kingdom
| | - Paul van der Valk
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - David Baker
- Neuroscience and Trauma Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, QJ;Queen Mary University of London, London, United Kingdom
| | - Sandra Amor
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Neuroscience and Trauma Centre, Blizard Institute, Barts and the London School of Medicine and Dentistry, QJ;Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Abstract
SUMMARY The treatment of chronic pelvic pain in both females and males is a challenge for pain clinicians. Standard therapies are multimodal in nature with use of behavioral, medical and procedural therapeutics. In recent years, our understanding of the neurobiology of this disorder has improved and novel approaches have focused on neuromodulatory options, novel pharmacology and complementary/alternative medicine options. This review briefly examines newly employed therapeutic options, while restating currently utilized options. The current state-of-the-art treatment includes focal therapies for identified pathologies and empiric trials of other options for care when precise sources of the chronic pelvic pain are ill defined.
Collapse
Affiliation(s)
- Mercy A Udoji
- Department of Anesthesiology, University of Alabama at Birmingham, AL, USA
| | - Timothy J Ness
- Department of Anesthesiology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
39
|
Xia X, Liang C, Liu H, Xue F, Hu Q, Chen W, Ma T, Zhang Y, Bai X, Liang T. Effects of trichostatin A in a rat model of acute graft-versus-host disease after liver transplantation. Transplantation 2013; 96:25-33. [PMID: 23694951 DOI: 10.1097/tp.0b013e318295c04d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a rare but serious and life-threatening complication of liver transplantation (LTx). Previously, we have demonstrated that the development of aGVHD after LTx (LTx-aGVHD) is associated with a decreased percentage of regulatory T cells (Tregs) in the peripheral blood of recipients. Histone deacetylase inhibitors promote the production of Tregs and some, such as suberoylanilide hydroxamic acid and trichostatin A (TSA), are used to treat autoimmune diseases, including GVHD after bone marrow transplantation. METHODS In this study, LTx-aGVHD rats were treated with TSA continuously for 7 days from day 8 to 14 after LTx. Subsequently, splenic T cells were used for in vitro investigations of the mechanism of action of transplantation. RESULTS All LTx-aGVHD rats developed typical LTx-aGVHD symptoms after TSA treatment and died from LTx-aGVHD. The percentage frequency of Tregs in peripheral blood mononuclear cells was slightly up-regulated after TSA treatment, whereas TSA dramatically down-regulated Foxp3 protein and mRNA levels both in vivo and in vitro. Furthermore, TSA impaired T-cell proliferation and production of proinflammatory and anti-inflammatory cytokines in vitro. CONCLUSION TSA does not abrogate LTx-aGVHD in rats due to down-regulation of Tregs.
Collapse
Affiliation(s)
- Xuefeng Xia
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol 2013; 72:178-85. [PMID: 23399896 DOI: 10.1097/nen.0b013e318283114a] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease is the most common neurodegenerative disease and the major cause of dementia. In addition to β-amyloid aggregation and hyperphosphorylated tau, neuroinflammation also plays important roles in the pathophysiology of this multifactorial disorder. Histone deacetylase catalyzes deacetylation of histones and has important roles in the regulation of gene expression. Histone deacetylase inhibitors have been reported to exhibit neuroprotective and anti-neuroinflammatory activities and have therapeutic effects in several animal models of neurodegenerative diseases. Here, an efficient benzamide histone deacetylase inhibitor, MS-275, was orally administered by gavage to transgenic APP/PS1 mice, an animal model of cerebral amyloidosis for Alzheimer disease. After 10 days of treatment, MS-275 significantly ameliorated microglial activation and β-amyloid deposition in cerebral cortex and/or hippocampus. This was associated with improved nesting behavior, an important affiliative/social behavior. MS-275 also attenuated inflammatory activation of a mouse macrophage cell line in vitro. These results suggest that MS-275 may be a therapeutic option for Alzheimer disease and other neuroinflammatory diseases.
Collapse
|
41
|
Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology 2013; 21:301-7. [PMID: 23341163 DOI: 10.1007/s10787-012-0166-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 01/14/2023]
Abstract
Inhibition of histone deacetylases (HDAC) is emerging as a novel approach to treat a variety of diseases. Recently, broad acting inhibitors of HDAC have been shown to have anti-inflammatory effects both in vitro and in vivo. It is significant that these anti-inflammatory effects are observed at 10-100 fold lower concentrations than their anti-cancer effects. The broad action of these compounds makes it difficult to determine which HDAC enzymes are important in inflammation. Although showing promise it is unlikely that these drugs will progress to the clinic for treating inflammatory diseases due to number of HDACs they affect and the widespread activity of the enzymes throughout the body. Accordingly, research is now progressing to targeting specific HDAC enzymes to improve efficacy of treatment as well as reduce the risk of any unwanted side effects. Understanding the role specific HDACs play in inflammatory disease will help us to identify novel anti-inflammatory treatments. This manuscript is designed to review our limited knowledge in this field.
Collapse
|
42
|
Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Inhibition of eosinophils degranulation by Ketotifen in a patient with milk allergy, manifested as bronchial asthma--an electron microscopic study. Neural Regen Res 1984; 15:177-181. [PMID: 6524518 PMCID: PMC6524518 DOI: 10.4103/1673-5374.253510] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Electron microscopic studies provided evidence that a patient with cow's milk allergy, manifested as bronchial asthma, has prominent eosinophil granule discharge, attributable to the release of cytotoxic major basic protein (MBP). This finding illustrates a critical role of eosinophil MBP in anaphylactic injury induced by food allergen. Patient white blood cells pretreated with Ketotifen revealed intact ultrastructure of eosinophils granules and cytoplasm. Inhibition of eosinophils degranulation by Ketotifen demonstrates a new pharmacologic mode of action of this anti-allergic, anti-anaphylactic agent.
Collapse
Affiliation(s)
- Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Gang Gao
- Department of Orthopaedic Surgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kun Huang
- Anhui Medical University Air Force Clinical College, Hefei, Anhui Province, China
| | - Feng Chang
- Department of Orthopaedic Surgery, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|