1
|
Doi T, Takahashi S, Aoki D, Yonemori K, Hara H, Hasegawa K, Takehara K, Harano K, Yunokawa M, Nomura H, Shimoi T, Horie K, Ogasawara A, Okame S. A first-in-human phase I study of TAS-117, an allosteric AKT inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:605-616. [PMID: 38411735 PMCID: PMC11129975 DOI: 10.1007/s00280-023-04631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE TAS-117 is a highly potent and selective, oral, allosteric pan-AKT inhibitor under development for advanced/metastatic solid tumors. The safety, clinical pharmacology, pharmacogenomics and efficacy were investigated. METHODS This phase I, open-label, non-randomized, dose-escalating, first-in-human study enrolled patients with advanced/metastatic solid tumors and comprised three phases (dose escalation phase [DEP], regimen modification phase [RMP], and safety assessment phase [SAP]). The SAP dose and regimen were determined in the DEP and RMP. Once-daily and intermittent dosing (4 days on/3 days off, 21-day cycles) were investigated. The primary endpoints were dose-limiting toxicities (DLTs) in Cycle 1 of the DEP and RMP and incidences of adverse events (AEs) and adverse drug reactions (ADRs) in the SAP. Secondary endpoints included pharmacokinetics, pharmacodynamics, pharmacogenomics, and antitumor activity. RESULTS Of 66 enrolled patients, 65 received TAS-117 (DEP, n = 12; RMP, n = 10; SAP, n = 43). No DLTs were reported with 24-mg/day intermittent dosing, which was selected as a recommended dose in SAP. In the SAP, 98.5% of patients experienced both AEs and ADRs (grade ≥ 3, 67.7% and 60.0%, respectively). In the dose range tested (8 to 32 mg/day), TAS-117 pharmacokinetics were dose proportional, and pharmacodynamic analysis showed a reduction of phosphorylated PRAS40, a direct substrate of AKT. Four patients in the SAP had confirmed partial response. CONCLUSION Oral doses of TAS-117 once daily up to 16 mg/day and intermittent dosing of 24 mg/day were well tolerated. TAS-117 pharmacokinetics were dose proportional at the doses evaluated. Antitumor activity may occur through AKT inhibition. TRIAL REGISTRATION jRCT2080222728 (January 29, 2015).
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan.
| | - Shunji Takahashi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Aoki
- Keio University School of Medicine, Tokyo, Japan
- Akasaka Sannou Medical Center, Tokyo, Japan
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | | | | | - Kosei Hasegawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | | | | - Mayu Yunokawa
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Nomura
- Keio University School of Medicine, Tokyo, Japan
- Fujita Health University, Toyoake, Japan
| | | | - Koji Horie
- Saitama Cancer Center, Kita-Adachi, Japan
| | - Aiko Ogasawara
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | |
Collapse
|
2
|
Fan YL, Jin JX, Zhu J, Ruan HB, Huang JQ. Extracellular vesicles of Bifidobacterium longum reverse the acquired carboplatin resistance in ovarian cancer cells via p53 phosphorylation on Ser15. Kaohsiung J Med Sci 2024; 40:530-541. [PMID: 38647095 DOI: 10.1002/kjm2.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
We previously found that the relative abundance of Bifidobacterium was increased after chemotherapy; however, the role of Bifidobacterium longum in chemotherapeutic drug resistance in ovarian cancer (OVC) remains unclear. This study aimed to understand the potential effects and mechanism of B. longum extracellular vesicles (B. longum-EVs) on carboplatin (CBP) resistance in OVC. Eight normal and 11 ovarian tissues were collected and the expression of B. longum genomic DNA and its association with acquired CBP resistance in OVC patients was determined. After isolating EVs by ultracentrifugation from B. longum (ATCC 15707), CBP-resistant A2780 cells were treated with PBS, CBP, B. longum-EVs, or CBP + B. longum-EVs, and subsequently analyzed by CCK-8, Edu staining, Annexin V/PI double staining, wound healing, and Transwell assays to detect cell viability, proliferation, apoptosis, migration, and invasion, respectively. MRP1, ATP7A, ATP7B, and p53 expression as well as p53 phosphorylation were measured by western blot analysis. S15A mutation of p53 was assessed to examine the potential role of p53 Ser15 phosphorylation in CBP-resistant OVC. B. longum levels were elevated and positively associated with CBP resistance in OVC patients. Only high concentrations of B. longum-EVs attenuated A2780 cell proliferation, apoptosis, migration, and invasion. B. longum-EVs exposure significantly enhanced the sensitivity of CBP-resistant A2780 cells to CBP and decreased the expression of drug resistance-related proteins. The effect of B. longum-EVs on reversing CBP resistance was completely inhibited by S15A mutation of p53. B. longum-EVs enhanced the sensitivity of OVC cells to CBP through p53 phosphorylation on Ser15.
Collapse
Affiliation(s)
- Yun-Long Fan
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jia-Xi Jin
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jun Zhu
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Hai-Bo Ruan
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jin-Qun Huang
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
3
|
Zhu Y, Liang L, Zhao Y, Li J, Zeng J, Yuan Y, Li N, Wu L. CircNUP50 is a novel therapeutic target that promotes cisplatin resistance in ovarian cancer by modulating p53 ubiquitination. J Nanobiotechnology 2024; 22:35. [PMID: 38243224 PMCID: PMC10799427 DOI: 10.1186/s12951-024-02295-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Most patients with ovarian cancer (OC) treated with platinum-based chemotherapy have a dismal prognosis owing to drug resistance. However, the regulatory mechanisms of circular RNA (circRNA) and p53 ubiquitination are unknown in platinum-resistant OC. We aimed to identify circRNAs associated with platinum-resistant OC to develop a novel treatment strategy. METHODS Platinum-resistant circRNAs were screened through circRNA sequencing and validated using quantitative reverse-transcription PCR in OC cells and tissues. The characteristics of circNUP50 were analysed using Sanger sequencing, oligo (dT) primers, ribonuclease R and fluorescence in situ hybridisation assays. Functional experimental studies were performed in vitro and in vivo. The mechanism underlying circNUP50-mediated P53 ubiquitination was investigated through circRNA pull-down analysis and mass spectrometry, luciferase reporters, RNA binding protein immunoprecipitation, immunofluorescence assays, cycloheximide chase assays, and ubiquitination experiments. Finally, a platinum and si-circNUP50 co-delivery nanosystem (Psc@DPP) was constructed to treat platinum-resistant OC in an orthotopic animal model. RESULTS We found that circNUP50 contributes to platinum-resistant conditions in OC by promoting cell proliferation, affecting the cell cycle, and reducing apoptosis. The si-circNUP50 mRNA sequencing and circRNA pull-down analysis showed that circNUP50 mediates platinum resistance in OC by binding p53 and UBE2T, accelerating p53 ubiquitination. By contrast, miRNA sequencing and circRNA pull-down experiments indicated that circNUP50 could serve as a sponge for miR-197-3p, thereby upregulating G3BP1 to mediate p53 ubiquitination, promoting OC platinum resistance. Psc@DPP effectively overcame platinum resistance in an OC tumour model and provided a novel idea for treating platinum-resistant OC using si-circNUP50. CONCLUSIONS This study reveals a novel molecular mechanism by which circNUP50 mediates platinum resistance in OC by modulating p53 ubiquitination and provides new insights for developing effective therapeutic strategies for platinum resistance in OC.
Collapse
Affiliation(s)
- Yunshu Zhu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yihang Yuan
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen M, Marrs B, Qi L, Knifley T, Weiss HL, D’Orazio JA, O’Connor KL. Integrin α6β4 signals through DNA damage response pathway to sensitize breast cancer cells to cisplatin. Front Oncol 2022; 12:1043538. [PMID: 36439467 PMCID: PMC9686853 DOI: 10.3389/fonc.2022.1043538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Integrin α6β4 is highly expressed in triple negative breast cancer (TNBC) and drives its most aggressive traits; however, its impact on chemotherapeutic efficacy remains untested. We found that integrin α6β4 signaling promoted sensitivity to cisplatin and carboplatin but not to other chemotherapies tested. Mechanistic investigations revealed that integrin α6β4 stimulated the activation of ATM, p53, and 53BP1, which required the integrin β4 signaling domain. Genetic manipulation of gene expression demonstrated that mutant p53 cooperated with integrin α6β4 for cisplatin sensitivity and was necessary for downstream phosphorylation of 53BP1 and enhanced ATM activation. Additionally, we found that in response to cisplatin-induced DNA double strand break (DSB), integrin α6β4 suppressed the homologous recombination (HR) activity and enhanced non-homologous end joining (NHEJ) repair activity. Finally, we discovered that integrin α6β4 preferentially activated DNA-PK, facilitated DNA-PK-p53 and p53-53BP1 complex formation in response to cisplatin and required DNA-PK to enhance ATM, 53BP1 and p53 activation as well as cisplatin sensitivity. In summary, we discovered a novel function of integrin α6β4 in promoting cisplatin sensitivity in TNBC through DNA damage response pathway.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Brock Marrs
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - John A. D’Orazio
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Pediatrics, University of Kentucky, Lexington, KY, United States
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Tondo-Steele K, McLean K. The “Sweet Spot” of Targeting Tumor Metabolism in Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194696. [PMID: 36230617 PMCID: PMC9562887 DOI: 10.3390/cancers14194696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this review is to explore the metabolomic environment of epithelial ovarian cancer that contributes to chemoresistance and to use this knowledge to identify possible targets for therapeutic intervention. The Warburg effect describes increased glucose uptake and lactate production in cancer cells. In ovarian cancer, we require a better understanding of how cancer cells reprogram their glycogen metabolism to overcome their nutrient deficient environment and become chemoresistant. Glucose metabolism in ovarian cancer cells has been proposed to be influenced by altered fatty acid metabolism, oxidative phosphorylation, and acidification of the tumor microenvironment. We investigate several markers of altered metabolism in ovarian cancer including hypoxia-induced factor 1, VEGF, leptin, insulin-like growth factors, and glucose transporters. We also discuss the signaling pathways involved with these biomarkers including PI3K/AKT/mTOR, JAK/STAT and OXPHOS. This review outlines potential metabolic targets to overcome chemoresistance in ovarian cancer. Continued research of the metabolic changes in ovarian cancer is needed to identify and target these alterations to improve treatment approaches.
Collapse
|
6
|
Wu YH, Chou CY. Collagen XI Alpha 1 Chain, a Novel Therapeutic Target for Cancer Treatment. Front Oncol 2022; 12:925165. [PMID: 35847935 PMCID: PMC9277861 DOI: 10.3389/fonc.2022.925165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
The extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) expression has been found to be upregulated in a variety of human cancers including colorectal, esophagus, glioma, gastric, head and neck, lung, ovarian, pancreatic, salivary gland, and renal cancers. High levels of COL11A1 usually predict poor prognosis, owing to its association with angiogenesis, invasion, and drug resistance in cancer. However, little is known about the specific mechanism through which COL11A1 regulates tumor progression. Here, we have organized and summarized recent developments regarding the interactions between COL11A1 and intracellular signaling pathways and selected therapeutic agents targeting COL11A1, as these indicate its potential as a target for treatment of cancers, especially epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can Cisplatin Therapy Be Improved? Pathways That Can Be Targeted. Int J Mol Sci 2022; 23:ijms23137241. [PMID: 35806243 PMCID: PMC9266583 DOI: 10.3390/ijms23137241] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II)) is the oldest known chemotherapeutic agent. Since the identification of its anti-tumour activity, it earned a remarkable place as a treatment of choice for several cancer types. It remains effective against testicular, bladder, lung, head and neck, ovarian, and other cancers. Cisplatin treatment triggers different cellular responses. However, it exerts its cytotoxic effects by generating inter-strand and intra-strand crosslinks in DNA. Tumour cells often develop tolerance mechanisms by effectively repairing cisplatin-induced DNA lesions or tolerate the damage by adopting translesion DNA synthesis. Cisplatin-associated nephrotoxicity is also a huge challenge for effective therapy. Several preclinical and clinical studies attempted to understand the major limitations associated with cisplatin therapy, and so far, there is no definitive solution. As such, a more comprehensive molecular and genetic profiling of patients is needed to identify those individuals that can benefit from platinum therapy. Additionally, the treatment regimen can be improved by combining cisplatin with certain molecular targeted therapies to achieve a balance between tumour toxicity and tolerance mechanisms. In this review, we discuss the importance of various biological processes that contribute to the resistance of cisplatin and its derivatives. We aim to highlight the processes that can be modulated to suppress cisplatin resistance and provide an insight into the role of uptake transporters in enhancing drug efficacy.
Collapse
Affiliation(s)
- Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Srinivasan Madhusudan
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK;
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| |
Collapse
|
8
|
Kong B, Han CY, Kim SI, Patten DA, Han Y, Carmona E, Shieh DB, Cheung AC, Mes-Masson AM, Harper ME, Song YS, Tsang BK. Prohibitin 1 interacts with p53 in the regulation of mitochondrial dynamics and chemoresistance in gynecologic cancers. J Ovarian Res 2022; 15:70. [PMID: 35668443 PMCID: PMC9172162 DOI: 10.1186/s13048-022-00999-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondrial dynamics (e.g. fission/fusion) play an important role in controlling chemoresistance in representative gynecologic malignancies, ovarian and cervical cancer. Processing the long form of Optic atrophy (L-Opa)1 is a distinctive character of mitochondrial fragmentation, associated with chemosensitivity. Here, we examined the role of prohibitin (Phb)1 in increasing L-Opa1 processing via the regulating mitochondrial protease, Oma1 and its direct interaction with p-p53 (ser15) and pro-apoptotic Bcl-2 antagonist/killer (Bak) 1 in the signaling axis and if this phenomenon is associated with prognosis of patients. Methods We compared Cisplatin (CDDP)-induced response of mitochondrial dynamics, molecular interaction among p-p53 (ser15)-Phb1-Bak, and chemoresponsiveness in paired chemosensitive and chemoresistant gynecologic cancer cells (ovarian and cervical cancer cell lines) using western blot, immunoprecipitation, sea horse, and immunofluorescence. Translational strategy with proximity ligation assessment in phb1-p-p53 (ser15) in human ovarian tumor sections further confirmed in vitro finding, associated with clinical outcome. Results We report that: (1) Knock-down of Phb1 prevents Cisplatin (cis-diamine-dichloroplatinum; CDDP) -induced changes in mitochondrial fragmentation and Oma1 mediated cleavage, and Opa1 processing; (2) In response to CDDP, Phb1 facilitates the p-p53 (ser15)-Phb1-Bak interaction in mitochondria in chemosensitive gynecologic cancer cells but not in chemoresistant cells; (3) Akt overexpression results in suppressed p-p53(Ser15)-Phb1 interaction and dysregulated mitochondrial dynamics, and (4) Consistent with in vitro findings, proximity ligation assessment (PLA) in human ovarian tumor sections demonstrated that p-p53(ser15)-Phb1-Bak interaction in mitochondria is associated with better chemoresponsiveness and clinical outcome of patients. Determining the molecular mechanisms by which Phb1 facilitates mitochondrial fragmentation and interacts with p53 may advance the current understanding of chemoresistance and pathogenesis of gynecologic cancer. Conclusion Determining the key molecular mechanisms by which Phb1 facilitates the formation of p-p53 (ser15)-Bak-Phb1 and its involvement in the regulation of mitochondrial dynamics and apoptosis may ultimately contribute to the current understanding of molecular and cellular basis of chemoresistance in this gynecologic cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00999-x.
Collapse
Affiliation(s)
- Bao Kong
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, Interdisciplinary School of Health Sciences University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Road, Mail Box #511, ON, K1H 8L6, Ottawa, Canada
| | - Chae Young Han
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, Interdisciplinary School of Health Sciences University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Road, Mail Box #511, ON, K1H 8L6, Ottawa, Canada
| | - Se Ik Kim
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Youngjin Han
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Euridice Carmona
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Canada
| | - Dar-Bin Shieh
- Institute of Basic Medical Science, Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Annie C Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, China
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yong Sang Song
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Benjamin K Tsang
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, Interdisciplinary School of Health Sciences University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Road, Mail Box #511, ON, K1H 8L6, Ottawa, Canada.
| |
Collapse
|
9
|
Jing X, Xie M, Ding K, Xu T, Fang Y, Ma P, Shu Y. Exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53. Clin Transl Med 2022; 12:e780. [PMID: 35522909 PMCID: PMC9076018 DOI: 10.1002/ctm2.780] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Cisplatin resistance is the main cause of poor clinical prognosis in patients with gastric cancer (GC). Yet, the exact mechanism underlying cisplatin resistance remains unclear. Recent studies have suggested that exocrine miRNAs found in the tumor microenvironment participate in tumor metastasis and drug resistance. Methods Exosomes isolated from BGC823 and BGC823/DDP culture medium were characterized by transmission electron microscopy and differential ultracentrifugation, and miRNA expression profiles of BGC823 and BGC823/DDP cells derived exosomes were analyzed using miRNA microarray. In vivo and in vitro assays were used to identify roles of exosomal miR‐769‐5p and clarify the mechanism of exosomal miR‐769‐5p regulated the crosstalk between sensitive and resistant GC cells. Results In this study, we found that cisplatin‐resistant GC cells communicated with the tumor microenvironment by secreting microvesicles. MiR‐769‐5p was upregulated in GC tissues and enriched in the serum exosomes of cisplatin‐resistant patients. The biologically active miR‐769‐5p could be integrated into exosomes and delivered to sensitive cells, spreading cisplatin resistance. Underlying cellular and molecular mechanism was miR‐769‐5p targeting CASP9, thus inhibiting the downstream caspase pathway and promoting the degradation of the apoptosis‐related protein p53 through the ubiquitin‐proteasome pathway. Targeting miR‐769‐5p with its antagonist to treat cisplatin‐resistant GC cells can restore the cisplatin response, confirming that exosomal miR‐769‐5p can act as a key regulator of cisplatin resistance in GC. Conclusions These findings indicate that exosome‐transmitted miR‐769‐5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53. These findings reveal exosomal miR‐769‐5p derived from drug‐resistant cells can be used as a potential therapeutic predictor of anti‐tumor chemotherapy to enhance the effect of anti‐cancer chemotherapy, which provides a new treatment option for GC.
Collapse
Affiliation(s)
- Xinming Jing
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengyan Xie
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kun Ding
- Department of Molecular Cell Biology & ToxicologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Tingting Xu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuan Fang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Pei Ma
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Fan Y, Sun Q, Li X, Feng J, Ao Z, Li X, Wang J. Substrate Stiffness Modulates the Growth, Phenotype, and Chemoresistance of Ovarian Cancer Cells. Front Cell Dev Biol 2021; 9:718834. [PMID: 34504843 PMCID: PMC8421636 DOI: 10.3389/fcell.2021.718834] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
Mechanical factors in the tumor microenvironment play an important role in response to a variety of cellular activities in cancer cells. Here, we utilized polyacrylamide hydrogels with varying physical parameters simulating tumor and metastatic target tissues to investigate the effect of substrate stiffness on the growth, phenotype, and chemotherapeutic response of ovarian cancer cells (OCCs). We found that increasing the substrate stiffness promoted the proliferation of SKOV-3 cells, an OCC cell line. This proliferation coincided with the nuclear translocation of the oncogene Yes-associated protein. Additionally, we found that substrate softening promoted elements of epithelial-mesenchymal transition (EMT), including mesenchymal cell shape changes, increase in vimentin expression, and decrease in E-cadherin and β-catenin expression. Growing evidence demonstrates that apart from contributing to cancer initiation and progression, EMT can promote chemotherapy resistance in ovarian cancer cells. Furthermore, we evaluated tumor response to standard chemotherapeutic drugs (cisplatin and paclitaxel) and found antiproliferation effects to be directly proportional to the stiffness of the substrate. Nanomechanical studies based on atomic force microscopy (AFM) have revealed that chemosensitivity and chemoresistance are related to cellular mechanical properties. The results of cellular elastic modulus measurements determined by AFM demonstrated that Young's modulus of SKOV-3 cells grown on soft substrates was less than that of cells grown on stiff substrates. Gene expression analysis of SKOV-3 cells showed that mRNA expression can be greatly affected by substrate stiffness. Finally, immunocytochemistry analyses revealed an increase in multidrug resistance proteins, namely, ATP binding cassette subfamily B member 1 and member 4 (ABCB1 and ABCB4), in the cells grown on the soft gel resulting in resistance to chemotherapeutic drugs. In conclusion, our study may help in identification of effective targets for cancer therapy and improve our understanding of the mechanisms of cancer progression and chemoresistance.
Collapse
Affiliation(s)
- Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Quanmei Sun
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Xia Li
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,Hospital of Beijing Forestry University, Beijing Forestry University, Beijing, China
| | - Jiantao Feng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuo Ao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Xiang Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, China
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Colombo I, Genta S, Martorana F, Guidi M, Frattini M, Samartzis EP, Brandt S, Gaggetta S, Moser L, Pascale M, Terrot T, Sessa C, Stathis A. Phase I Dose-Escalation Study of the Dual PI3K-mTORC1/2 Inhibitor Gedatolisib in Combination with Paclitaxel and Carboplatin in Patients with Advanced Solid Tumors. Clin Cancer Res 2021; 27:5012-5019. [PMID: 34266890 DOI: 10.1158/1078-0432.ccr-21-1402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study evaluated safety, tolerability, pharmacokinetics, and preliminary activity of the PI3K/mTORC1/2 dual inhibitor gedatolisib combined with carboplatin and paclitaxel. PATIENTS AND METHODS Patients with advanced solid tumors treated with ≤ 2 prior chemotherapies received intravenous gedatolisib on days 1, 8, 15, and 22 (95, 110, or 130 mg according to dose level); carboplatin (AUC5) on day 8 (day 1 following protocol amendment); and paclitaxel at 80 mg/m2 on days 8, 15, and 22 (1, 8, and 15 after amendment), every 28 days. Patients without progressive disease after cycle 6 received maintenance gedatolisib until progression. RESULTS Seventeen patients were enrolled [11 ovarian (10 clear cell ovarian cancer, CCOC), 4 endometrial, 2 lung cancers]. Median number of prior chemotherapies was 1 (range, 0-2). Median number of administered cycles was 6 (range, 2-16). Dose-limiting toxicities occurred in 4 patients: 2 (cycle 2 delay due to G2-G3 neutropenia) at 110 mg leading to a change in the treatment schedule, 2 at 130 mg (G2 mucositis causing failure to deliver ≥ 75% of gedatolisib at cycle 1). The recommended phase II dose is gedatolisib 110 mg on days 1, 8, 15, and 22 with carboplatin AUC5 on day 1 and paclitaxel 80 mg/m2 on days 1, 8, and 15. The most frequent ≥G3 treatment-related adverse events were neutropenia (35%), anemia (18%), and mucositis (12%). The overall response rate was 65% (80% in CCOC). Pharmacokinetic parameters of gedatolisib were consistent with single-agent results. CONCLUSIONS Gedatolisib combined with carboplatin and paclitaxel is tolerable, and preliminary efficacy was observed especially in CCOC.
Collapse
Affiliation(s)
- Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Sofia Genta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Federica Martorana
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milo Frattini
- Molecular Pathology Laboratory, Cantonal Institute of Pathology, Locarno, Switzerland
| | | | - Simone Brandt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sheila Gaggetta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Laura Moser
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
13
|
Han CY, Patten DA, Kim SI, Lim JJ, Chan DW, Siu MKY, Han Y, Carmona E, Parks RJ, Lee C, Di LJ, Lu Z, Chan KKL, Ku JL, Macdonald EA, Vanderhyden BC, Mes-Masson AM, Ngan HYS, Cheung ANY, Song YS, Bast RC, Harper ME, Tsang BK. Nuclear HKII-P-p53 (Ser15) Interaction is a Prognostic Biomarker for Chemoresponsiveness and Glycolytic Regulation in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13143399. [PMID: 34298618 PMCID: PMC8306240 DOI: 10.3390/cancers13143399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Hexokinase II (HKII) is a key glycolysis enzyme associated with tumorigenesis, but its molecular mechanism and pathophysiological role in chemoresistant ovarian cancer remain elusive. In this study, we delineate the novel mechanism showing that activated phosphorylated-p53 (P-p53 Ser15) is required for the regulation of HKII intracellular trafficking and metabolic regulation in chemosensitive ovarian cancer, but not in chemoresistant ovarian cancer harboring p53 mutation. We have observed that increased nuclear HKII-P-p53 (Ser15) interaction is likely associated with chemosensitivity and better survival outcomes in epithelial ovarian cell lines, human primary epithelial ovarian cancer cells, and tumor sections. Nuclear HKII-P-p53 (Ser15) interaction may function as a promising prognostic biomarker, enabling prediction of patients with poor prognosis for deciding better clinical strategies. Abstract In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.
Collapse
Affiliation(s)
- Chae Young Han
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Se Ik Kim
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jung Jin Lim
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle K. Y. Siu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Youngjin Han
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Li-Jun Di
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen K. L. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ja-Lok Ku
- Korean Cell Line Bank, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Elizabeth A. Macdonald
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Barbara C. Vanderhyden
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yong Sang Song
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Benjamin K. Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +613-737-8899 (ext. 72926)
| |
Collapse
|
14
|
Aldo-Keto Reductase 1C3 Mediates Chemotherapy Resistance in Esophageal Adenocarcinoma via ROS Detoxification. Cancers (Basel) 2021; 13:cancers13102403. [PMID: 34065695 PMCID: PMC8156851 DOI: 10.3390/cancers13102403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The multidrug resistance of EAC is one of the major obstacles to chemotherapeutic efficiency. Our study aims to explore the molecular mechanism of AKR1C3 as a novel therapeutic target to overcome chemotherapy resistance for EAC patients. We demonstrate that AKR1C3 renders chemotherapy resistance through controlling cellular ROS levels via AKT signaling in EAC cells. Modulation of intracellular GSH levels by AKR1C3 could scavenge the intracellular ROS, thus regulating apoptosis. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy treatment and benefit the overall survival of patients diagnosed with EAC. Abstract Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3 overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3 attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production. Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.
Collapse
|
15
|
The Role of microRNAs in the Cisplatin- and Radio-Resistance of Cervical Cancer. Cancers (Basel) 2021; 13:cancers13051168. [PMID: 33803151 PMCID: PMC7963155 DOI: 10.3390/cancers13051168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Cervical cancer is the fourth leading cause of cancer-related death among women worldwide. The chemotherapeutical agent cisplatin, a small platinum-based compound, is considered as the standard therapy for locally advanced cervical cancer or recurrent cancers, sometimes in combination with radiotherapy or other drugs. However, drug resistance and radio-resistance phenomena could reduce the life expectancy of cervical cancer patients. Resistance mechanisms are complex and often involve multiple cellular pathways in which microRNAs (miRNAs) play a fundamental role. miRNAs are a class of endogenous non-coding small RNAs responsible for post-transcriptional gene regulation. Convincing evidence demonstrates that several deregulated miRNAs are important regulators in the onset of drug and radioresistance in cervical cancer, thus underlying their potential applications in a clinical setting. In this review, we summarized the mechanisms by which miRNAs affect both cisplatin and radioresistance in cervical cancer. We also described the regulatory loops between miRNAs and lncRNAs promoting drug resistance. Besides, we reported evidence for the role of miRNAs in sensitizing cancer cells to cisplatin-based chemotherapy, and provided some suggestions for the development of new combined therapies for cervical cancer.
Collapse
|
16
|
Hong TH, Jeena MT, Kim OH, Kim KH, Choi HJ, Lee KH, Hong HE, Ryu JH, Kim SJ. Application of self-assembly peptides targeting the mitochondria as a novel treatment for sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2021; 11:874. [PMID: 33441650 PMCID: PMC7806888 DOI: 10.1038/s41598-020-79536-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no appropriate treatment option for patients with sorafenib-resistant hepatocellular carcinoma (HCC). Meanwhile, pronounced anticancer activities of newly-developed mitochondria-accumulating self-assembly peptides (Mito-FF) have been demonstrated. This study intended to determine the anticancer effects of Mito-FF against sorafenib-resistant Huh7 (Huh7-R) cells. Compared to sorafenib, Mito-FF led to the generation of relatively higher amounts of mitochondrial reactive oxygen species (ROS) as well as the greater reduction in the expression of antioxidant enzymes (P < 0.05). Mito-FF was found to significantly promote cell apoptosis while inhibiting cell proliferation of Huh7-R cells. Mito-FF also reduces the expression of antioxidant enzymes while significantly increasing mitochondrial ROS in Huh7-R cells. The pro-apoptotic effect of Mito-FFs for Huh7-R cells is possibly caused by their up-regulation of mitochondrial ROS, which is caused by the destruction of the mitochondria of HCC cells.
Collapse
Affiliation(s)
- Tae Ho Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - M T Jeena
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kee-Hwan Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Hee Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ha-Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Wang Y, Chiou YS, Chong QY, Zhang M, Rangappa KS, Ma L, Zhu T, Kumar AP, Huang RYJ, Pandey V, Basappa, Lobie PE. Pharmacological Inhibition of BAD Ser99 Phosphorylation Enhances the Efficacy of Cisplatin in Ovarian Cancer by Inhibition of Cancer Stem Cell-like Behavior. ACS Pharmacol Transl Sci 2020; 3:1083-1099. [PMID: 33344891 DOI: 10.1021/acsptsci.0c00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Platinum-based chemotherapy has been the standard treatment for ovarian cancer patients for approximately four decades. However, the prognosis of patients with advanced ovarian carcinoma remains dismal, mainly attributed to both dose-limiting toxicities of cisplatin and the high rate of chemo-resistant disease recurrence. Herein, both patient-derived and experimentally generated cisplatin-sensitive and -resistant ovarian cancer cell line models were used to delineate BADSer99 phosphorylation as an actionable target in ovarian cancer. BADSer99 phosphorylation was negatively associated with cisplatin sensitivity in ovarian cancer, and the inhibition of BADSer99 phosphorylation by point mutation induced apoptosis and reduced cisplatin IC50. In addition, BAD phosphorylation was also shown to be associated with cancer stem cell-like properties. Henceforth, a novel small molecule which inhibits BAD phosphorylation specifically at Ser99 (NPB) was utilized. NPB promoted apoptosis and reduced 3D growth of bulk cancer cells and inhibited cancer stem cell-like properties in both cisplatin-sensitive and -resistant ovarian cancer cells. The combination of cisplatin with NPB exhibited synergistic effects in vitro. NPB in combination with cisplatin also achieved an improved outcome compared to either monotreatment in vivo, including suppression of the cancer stem cell population, an effect not observed with cisplatin treatment. Furthermore, NPB exhibited strong synergistic effects with the AKT inhibitor AZD5363, and significantly reduced its IC50 in cells resistant to cisplatin treatment. These findings identify BADSer99 phosphorylation as an actionable and pharmacologically relevant target to improve outcomes of cisplatin treated ovarian cancer.
Collapse
Affiliation(s)
- Yanxin Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Yi-Shiou Chiou
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore
| | - Mengyi Zhang
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | | | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China.,Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, 119074, Singapore.,School of Medicine, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570006, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China.,Shenzhen Bay Laboratory, Shenzhen, 518000, China
| |
Collapse
|
18
|
El-Kott AF, Shati AA, Al-Kahtani MA, Alharbi SA. Kaempferol Induces Cell Death in A2780 Ovarian Cancer Cells and Increases Their Sensitivity to Cisplatin by Activation of Cytotoxic Endoplasmic Reticulum-Mediated Autophagy and Inhibition of Protein Kinase B. Folia Biol (Praha) 2020; 66:36-46. [PMID: 32512657 DOI: 10.14712/fb2020066010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study investigated whether kaempferol could inhibit ovarian cancer (OC) by activation of endoplasmic reticulum (ER) stress and autophagy, and tested its effect on the sensitivity of OC cells to cisplatin (cis-diamminedichloroplatinum, DPP). To study the effect of kaempferol on activation of ER stress and autophagy and find out whether its mechanism of action involves calcium (Ca2+), A2780 OC cells were cultured in DMEM/F12 for 24 h with or without kaempferol (40 μmol/l) in the presence or absence of autophagy or ER stress inhibitors or a calcium chelator. To study the effect of kaempferol on the sensitivity of OC cells to DPP and the potential involvement of modulation of protein kinase B (Akt) expression, A2780 OC were incubated with kaempferol and increasing concentrations of DPP (0-20 μmol/l) and then with kaempferol at its predetermined IC50 (6.8 μmol/l). Compared to control cells, kaempferol increased cell apoptosis (158 %) and decreased viability (53.17 %) and proliferation (49.17 %) of A2780 OC cells. Concomitantly, it increased the protein levels of GRP78, PERK, ATF6, IRE-1, LC3II, beclin 1, and caspase 4, thus suggesting activation of cytotoxic autophagy. This was mediated by increasing intracellular Ca+2 levels. In addition, kaempferol increased the sensitivity of A2780 cells to DPP (IC50 from 6.867 ± 0.99 to 3.73 ± 0.59 μmol/l) by decreasing the protein levels of p-Akt (0.31 ± 0.09 vs 0.12 ± 0.005). In conclusion, the findings of this study encourage the use of kaempferol alone or in combination with DPP to inhibit tumorigenesis of ovarian cells.
Collapse
Affiliation(s)
- A F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - A A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - M A Al-Kahtani
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - S A Alharbi
- Department of Physiology, College of Medicine, Umm Al-Qura University, Mekkah, Saudi Arabia
| |
Collapse
|
19
|
Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci Rep 2019; 9:16913. [PMID: 31729456 PMCID: PMC6858356 DOI: 10.1038/s41598-019-53134-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional chemotherapeutic regimens are unable to prevent metastasis of non-small cell lung carcinoma (NSCLC) thereby leaving cancer incurable. Cancer stem cells (CSCs) are considered to be the origin of this therapeutic limitation. In the present study we report that the migration potential of NSCLCs is linked to its CSC content. While cisplatin alone fails to inhibit the migration of CSC-enriched NSCLC spheroids, in a combination with non-steroidal anti inflammatory drug (NSAID) aspirin retards the same. A search for the underlying mechanism revealed that aspirin pre-treatment abrogates p300 binding both at TATA-box and initiator (INR) regions of mTOR promoter of CSCs, thereby impeding RNA polymerase II binding at those sites and repressing mTOR gene transcription. As a consequence of mTOR down-regulation, Akt is deactivated via dephosphorylation at Ser473 residue thereby activating Gsk3β that in turn causes destabilization of Snail and β-catenin, thus reverting epithelial to mesenchymal transition (EMT). However, alone aspirin fails to hinder migration since it does not inhibit the Integrin/Fak pathway, which is highly activated in NSCLC stem cells. On the other hand, in aspirin pre-treated CSCs, cisplatin stalls migration by hindering the integrin pathway. These results signify the efficacy of aspirin in sensitizing NSCLC stem cells towards the anti-migration effect of cisplatin. Cumulatively, our findings raise the possibility that aspirin might emerge as a promising drug in combinatorial therapy with the existing chemotherapeutic agents that fail to impede migration of NSCLC stem cells otherwise. This may consequently lead to the advancement of remedial outcome for the metastatic NSCLCs.
Collapse
|
20
|
Han CY, Patten DA, Lee SG, Parks RJ, Chan DW, Harper M, Tsang BK. p53 Promotes chemoresponsiveness by regulating hexokinase II gene transcription and metabolic reprogramming in epithelial ovarian cancer. Mol Carcinog 2019; 58:2161-2174. [DOI: 10.1002/mc.23106] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Chae Young Han
- Department of Obstetrics & Gynecology and Cellular & Molecular MedicineUniversity of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - David A. Patten
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa, Institute of Systems Biology Ottawa Ontario Canada
| | - Seung Gee Lee
- Department of Obstetrics & Gynecology and Cellular & Molecular MedicineUniversity of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - Robin J. Parks
- Department of Biochemistry, Microbiology & ImmunologyUniversity of Ottawa and Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - David W. Chan
- Department of Obstetrics and GynecologyThe University of Hong Kong Hong Kong SAR P.R. China
| | - Mary‐Ellen Harper
- Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa, Institute of Systems Biology Ottawa Ontario Canada
| | - Benjamin K. Tsang
- Department of Obstetrics & Gynecology and Cellular & Molecular MedicineUniversity of Ottawa; Chronic Disease Program, Ottawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|
21
|
Nam KH, Yi SA, Nam G, Noh JS, Park JW, Lee MG, Park JH, Oh H, Lee J, Lee KR, Park HJ, Lee J, Han JW. Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer. BMC Cancer 2019; 19:773. [PMID: 31387554 PMCID: PMC6683399 DOI: 10.1186/s12885-019-5997-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background The mTOR/S6K1 signaling pathway is often activated in cervical cancer, and thus considered a molecular target for cervical cancer therapies. Inhibiting mTOR is cytotoxic to cervical cancer cells and creates a synergistic anti-tumor effect with conventional chemotherapy agents. In this study, we identified a novel S6K1 inhibitor, rosmarinic acid methyl ester (RAME) for the use of therapeutic agent against cervical cancer. Methods Combined structure- and ligand-based virtual screening was employed to identify novel S6K1 inhibitors among the in house natural product library. In vitro kinase assay and immunoblot assay was used to examine the effects of RAME on S6K1 signaling pathway. Lipidation of LC3 and mRNA levels of ATG genes were observed to investigate RAME-mediated autophagy. PARP cleavage, mRNA levels of apoptotic genes, and cell survival was measured to examine RAME-mediated apoptosis. Results RAME was identified as a novel S6K1 inhibitor through the virtual screening. RAME, not rosmarinic acid, effectively reduced mTOR-mediated S6K1 activation and the kinase activity of S6K1 by blocking the interaction between S6K1 and mTOR. Treatment of cervical cancer cells with RAME promoted autophagy and apoptosis, decreasing cell survival rate. Furthermore, we observed that combination treatment with RAME and cisplatin greatly enhanced the anti-tumor effect in cisplatin-resistant cervical cancer cells, which was likely due to mTOR/S6K1 inhibition-mediated autophagy and apoptosis. Conclusions Our findings suggest that inhibition of S6K1 by RAME can induce autophagy and apoptosis in cervical cancer cells, and provide a potential option for cervical cancer treatment, particularly when combined with cisplatin. Electronic supplementary material The online version of this article (10.1186/s12885-019-5997-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Sung Noh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
22
|
p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int 2019; 19:188. [PMID: 31360122 PMCID: PMC6642601 DOI: 10.1186/s12935-019-0910-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths primarily due to chemoresistance. Somatic mutation of TP53 (36%) and epidermal growth factor receptor (EGFR; > 30%) are major contributors to cisplatin (CDDP) resistance. Substantial evidence suggests the elevated levels of reactive oxygen species (ROS) is a key determinant in cancer. The elevated ROS can affect the cellular responses to chemotherapeutic treatments. Although the role of EGFR in PI3K/Akt signaling cascade in NSCLC is extensively studied, the molecular link between EGFR and p53 and the role of ROS in pathogenesis of NSCLC are limitedly addressed. In this study, we investigated the role of p53 in regulation of ROS production and EGFR signaling, and the chemosensitivity of NSCLC. Methods In multiple NSCLC cell lines with varied p53 and EGFR status, we compared and examined the protein contents involved in EGFR-Akt-P53 signaling loop (EGFR, P-EGFR, Akt, P-Akt, p53, P-p53) by Western blot. Apoptosis was determined based on nuclear morphological assessment using Hoechst 33258 staining. Cellular ROS levels were measured by dichlorofluorescin diacetate (DCFDA) staining followed by flow cytometry analysis. Results We have demonstrated for the first time that activation of p53 sensitizes chemoresistant NSCLC cells to CDDP by down-regulating EGFR signaling pathway and promoting intracellular ROS production. Likewise, blocking EGFR/PI3K/AKT signaling with PI3K inhibitor elicited a similar response. Our findings suggest that CDDP-induced apoptosis in chemosensitive NSCLC cells involves p53 activation, leading to suppressed EGFR signaling and ROS production. In contrast, in chemoresistant NSCLC, activated Akt promotes EGFR signaling by the positive feedback loop and suppresses CDDP-induced ROS production and apoptosis. Conclusion Collectively, our study reveals that the interaction of the p53 and Akt feedback loops determine the fate of NSCLC cells and their CDDP sensitivity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0910-2) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst) 2019; 2019:9627810. [PMID: 31360627 PMCID: PMC6644235 DOI: 10.1155/2019/9627810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the effect of acylated synthetic ghrelin (AG) on the survival and proliferation of human chemosensitive ovarian cancer cells (A2780) and explored some mechanisms of action with a focus on the p53 apoptotic pathway and PI3K/Akt and NF-κB survival pathways. Human A2780 ovarian cancer cells were cultured with or without AG treatment in the presence or absence of cisplatin. In some cases, cisplatin+AG-treated cells were pre-incubated either with [D-Lys3]-GHRP-6, a ghrelin receptor antagonist, or with LY294002, a PI3K inhibitor. mRNA of ghrelin receptors(GHS-R1a and GHS-R1b), as well as, protein levels of GHS-R1a, were expressed abundantly in A2780 cells. AG treatment did not affect the mRNA and protein levels of GHS-R1a and GHS-R1b in both control and Cis-treated cells. However, while AG treatment had no effect on control cell viability, it significantly increased cell viability and proliferation and inhibited cell death in Cis-treated cells. In both control and Cis-treated cells, AG treatment significantly increased PI3K/Akt/mTOR signaling and enhanced the nuclear accumulation of NF-κB. Concomitantly, in both control and Cis-treated cells, AG significantly lowered the protein levels of p53, p-p53 (Ser16), PUMA, cytochrome C, and cleaved caspase-3. Interestingly, pre-incubating the cells with either [D-Lys3]-GHRP-6 or LY294002 completely abolished the above-mentioned effect of AG in both control and Cis-treated cells. In conclusion, the findings of this study show that AG promotes cell survival of the OC cells and renders them resistat to Cis therapy, an effect that is mediated by the activation of PI3K/Akt/mTOR and activation of NF-κB, and requires GHS-R1a.
Collapse
|
24
|
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy Resistance in Advanced Ovarian Cancer Patients. BIOMARKERS IN CANCER 2019; 11:1179299X19860815. [PMID: 31308780 PMCID: PMC6613062 DOI: 10.1177/1179299x19860815] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Collapse
Affiliation(s)
- Ruchika Pokhriyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers (Basel) 2019; 11:cancers11060838. [PMID: 31213009 PMCID: PMC6628067 DOI: 10.3390/cancers11060838] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal of all gynecologic malignancies and the eighth leading cause of cancer-related deaths among women worldwide. The main reasons for this poor prognosis are late diagnosis; when the disease is already in an advanced stage, and the frequent development of resistance to current chemotherapeutic regimens. Growing evidence demonstrates that apart from its role in ovarian cancer progression, epithelial-to-mesenchymal transition (EMT) can promote chemotherapy resistance. In this review, we will highlight the contribution of EMT to the distinct steps of ovarian cancer progression. In addition, we will review the different types of ovarian cancer resistance to therapy with particular attention to EMT-mediated mechanisms such as cell fate transitions, enhancement of cancer cell survival, and upregulation of genes related to drug resistance. Preclinical studies of anti-EMT therapies have yielded promising results. However, before anti-EMT therapies can be effectively implemented in clinical trials, more research is needed to elucidate the mechanisms leading to EMT-induced therapy resistance.
Collapse
|
26
|
Gong S, Chen Y, Meng F, Zhang Y, Wu H, Li C, Zhang G. RCC2, a regulator of the RalA signaling pathway, is identified as a novel therapeutic target in cisplatin-resistant ovarian cancer. FASEB J 2019; 33:5350-5365. [PMID: 30768358 DOI: 10.1096/fj.201801529rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, cisplatin (DDP) is the first-line chemotherapeutic agent used for treatment of ovarian cancer, but gradually acquired drug resistance minimizes its therapeutic outcomes. We aimed to identify crucial genes associated with DDP resistance in ovarian cancer and uncover potential mechanisms. Two sets of gene expression data were downloaded from Gene Expression Omnibus, and bioinformatics analysis was conducted. In our study, the differentially expressed genes between DDP-sensitive and DDP-resistant ovarian cancer were screened in GSE15709 and GSE51373 database, and chromosome condensation 2 regulator (RCC2) and nucleoporin 160 were identified as 2 genes that significantly up-regulated in DDP-resistant ovarian cancer cell lines compared with DDP-sensitive cell lines. Moreover, RCC2, Ral small GTPase (RalA), and Ral binding protein-1 (RalBP1) expression was found to be significantly higher in DDP-resistant ovarian cancer tissues than in DDP-sensitive tissues. RCC2 plays a positive role in cell proliferation, apoptosis, and migration in DDP-resistant ovarian cancer cell lines in vitro and in vivo. Furthermore, RCC2 could interact with RalA, thus promoting its downstream effector RalBP1. RalA knockdown could reverse the effects of RCC2 overexpression on DDP-resistant ovarian cancer cell proliferation, apoptosis, and migration. Similarly, RalA overexpression could alleviate the effects of RCC2 knockdown in DDP-resistant ovarian cancer cells. Taken together, RCC2 may function as an oncogene, regulating the RalA signaling pathway, and intervention of RCC2 expression might be a promising therapeutic strategy for DDP-resistant ovarian cancer.-Gong, S., Chen, Y., Meng, F., Zhang, Y., Wu, H., Li, C., Zhang, G. RCC2, a regulator of the RalA signaling pathway, is identified as a novel therapeutic target in cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Shipeng Gong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongning Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fanliang Meng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Chanyuan Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangping Zhang
- Department of Gynecology, People's Hospital of Huadu District, Guangzhou, China
| |
Collapse
|
27
|
Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Am J Cancer Res 2019; 9:1096-1114. [PMID: 30867818 PMCID: PMC6401400 DOI: 10.7150/thno.29673] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
The interplay between p53 and RAS signaling regulates cancer chemoresistance, but the detailed mechanism is unclear. In this study, we investigated the interactive effects of p53 and RAS on ovarian cancer cisplatin resistance to explore the potential therapeutic targets. Methods: An inducible p53 and RAS mutants active in either MAPK/ERK (S35 and E38) or PI3K/AKT (C40) or both (V12) were sequentially introduced into a p53-null ovarian cancer cell line-SKOV3. Comparative microarray analysis was performed using Gene Chip Prime View Human Gene Expression arrays (Affymetrix). In vitro assays of autophagy and apoptosis and in vivo animal experiments were performed by p53 induction and/or cisplatin treatment using the established cell lines. The correlation between HDAC4 and HIF-1α or CREBZF and the association of HDAC4, HIF-1α, CREBZF, ERK, AKT, and p53 mRNA levels with patient survival in 523 serous ovarian cancer cases from TCGA was assessed. Results: We show that p53 and RAS mutants differentially control cellular apoptosis and autophagy to inhibit or to promote chemoresistance through dysregulation of Bax, Bcl2, ATG3, and ATG12. ERK and AKT active RAS mutants are mutually suppressive to confer or to deprive cisplatin resistance. Further studies demonstrate that p53 induces HIF-1α degradation and HDAC4 cytoplasmic translocation and phosphorylation. S35, E38, and V12 but not C40 promote HDAC4 phosphorylation and its cytoplasmic translocation along with HIF-1α. Wild-type p53 expression in RAS mutant cells enhances HIF-1α turnover in ovarian and lung cancer cells. Autophagy and anti-apoptotic processes can be promoted by the overexpression and cytoplasmic translocation of HDAC4 and HIF1-α. Moreover, the phosphorylation and cytoplasmic translocation of HDAC4 activate the transcription factor CREBZF to promote ATG3 transcription. High HDAC4 or CREBZF expression predicted poor overall survival (OS) and/or progression-free survival (PFS) in ovarian cancer patients, whereas high HIF-1α expression was statistically correlated with poor or good OS depending on p53 status. Conclusion: HIF-1α and HDAC4 may mediate the interaction between p53 and RAS signaling to actively control ovarian cancer cisplatin resistance through dysregulation of apoptosis and autophagy. Targeting HDAC4, HIF-1α and CREBZF may be considered in treatment of ovarian cancer with p53 and RAS mutations.
Collapse
|
28
|
Lv X, Song J, Xue K, Li Z, Li M, Zahid D, Cao H, Wang L, Song W, Ma T, Gu J, Li W. Core fucosylation of copper transporter 1 plays a crucial role in cisplatin-resistance of epithelial ovarian cancer by regulating drug uptake. Mol Carcinog 2019; 58:794-807. [PMID: 30614075 DOI: 10.1002/mc.22971] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
Core fucosylation catalyzed by core fucosyltransferase (Fut8) contributes to the progressions of epithelial ovarian cancer (EOC). Copper transporter 1 (CTR1), which contains one N-glycan on Asn15 , mediates cellular transport of cisplatin (cDDP), and plays an important role in the process of cDDP-resistance in EOC. In the present study, we found that the core fucosylation level elevated significantly in the sera of cDDP-treated EOC patients. The in vitro assays also indicate that core fucosylation of CTR1 was significantly upregulated in cDDP-resistant A2780CP cells compared to the cDDP-sensitive A2780S cells. Intriguingly, the hyper core fucosylation suppressed the CTR1-cDDP interactions and cDDP-uptake into A2780CP cells. Conversely, contrast to the Fut8+/+ mouse ovarian epithelial cells, the Fut8-deleted (Fut8-/- ) cells obviously showed higher cDDP-uptake. Furthermore, the recovered core fucosylation induced the suppression of cDDP-uptake in Fut8-restored ovarian epithelial cells. In addition, the core fucosylation could regulate the phosphorylation of cDDP-resistance-associated molecules, such as AKT, ERK, JNK, and mTOR. Our findings suggest that the core fucosylation of CTR1 plays an important role in the cellular cDDP-uptake and thus provide new strategies for improving the outcome of cDDP based chemotherapy of EOC.
Collapse
Affiliation(s)
- Xiaoxue Lv
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Danishi Zahid
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Hongyu Cao
- College of Life Science and Technology, Dalian University, Liaoning, China
| | - Lu Wang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wanli Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| |
Collapse
|
29
|
The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death Dis 2018; 9:1103. [PMID: 30375398 PMCID: PMC6207559 DOI: 10.1038/s41419-018-1148-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
Abstract
As a component of p53-dependent lncRNA (long non-coding RNA), PANDAR (the promoter of CDKN1A antisense DNA damage activated RNA) participates in the epigenetic regulation in human cancer. However, the involvement of PANDAR in cancer chemoresistance is unknown. In this study, we report that PANDAR serves as a negative regulator of cisplatin sensitivity in human ovarian cancer via PANDAR-SRFS2-p53 feedback regulation in nuclear. Our data showed that among the drugs commonly used in ovarian cancer therapy, cisplatin induces higher levels of PANDAR compared with doxorubicin and paclitaxel. We also proved that PANDAR exhibited higher expression in cisplatin-resistant ovarian cancer tissues and cells, compared with cisplatin-sensitive ones, and this expression pattern depends on wild-type p53 (wt-p53), not mutant-p53 (mt-p53). In vitro and in vivo, PANDAR overexpression improved cell survival rate and tumor growth in response to cisplatin, while depletion of PANDAR leads to a reduced tumor growth. Further investigation revealed that PANDAR-reduced cisplatin sensitivity was likely or partly due to the PANDAR-binding protein SFRS2 (arginine/serine-rich 2), a splicing factor with the ability to negative regulate p53 and its phosphorylation at Serine 15 (Ser15). This feedback regulation of PANDAR–SFRS2–p53 leads to a reduced transactivation of p53-related pro-apoptotic genes, such as PUMA (p53-upregulated modulator of apoptosis). In addition, in platinum-treated patients with relapsed ovarian cancer, resistant period was positively correlated with the expression of PANDAR and SFRS2, and inversely associated with expression of p53-Ser15 and PUMA in these clinical tissues. Last but not least, the role of PANDAR in chemoresistance was confirmed in patients with ovarian cancer. These findings reveal a novel regulatory maneuver of cancer cells in response to chemostress, and might shed light on overcoming cisplatin resistance in ovarian cancer.
Collapse
|
30
|
Wang SF, Wung CH, Chen MS, Chen CF, Yin PH, Yeh TS, Chang YL, Chou YC, Hung HH, Lee HC. Activated Integrated Stress Response Induced by Salubrinal Promotes Cisplatin Resistance in Human Gastric Cancer Cells via Enhanced xCT Expression and Glutathione Biosynthesis. Int J Mol Sci 2018; 19:3389. [PMID: 30380689 PMCID: PMC6275069 DOI: 10.3390/ijms19113389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
The integrated stress response (ISR) pathway is essential for adaption of various stresses and is related to mitochondrion-to-nucleus communication. Mitochondrial dysfunction-induced reactive oxygen species (ROS) was demonstrated to activate general control nonderepressible 2 (GCN2)⁻eukaryotic translation initiation factor 2α (eIF2α)⁻activating transcription factor-4 (ATF4) pathway-mediated cisplatin resistance of human gastric cancer cells. However, whether or how ISR activation per se could enhance chemoresistance remains unclear. In this study, we used eIF2α phosphatase inhibitor salubrinal to activate the ISR pathway and found that salubrinal reduced susceptibility to cisplatin. Moreover, salubrinal up-regulated ATF4-modulated gene expression, and knockdown of ATF4 attenuated salubrinal-induced drug resistance, suggesting that ATF4-modulated genes contribute to the process. The ATF4-modulated genes, xCT (a cystine/glutamate anti-transporter), tribbles-related protein 3 (TRB3), heme oxygenase 1 (HO-1), and phosphoenolpyruvate carboxykinase 2 (PCK2), were associated with a poorer prognosis for gastric cancer patients. By silencing individual genes, we found that xCT, but not TRB3, HO-1, or PCK2, is responsible for salubrinal-induced cisplatin resistance. In addition, salubrinal increased intracellular glutathione (GSH) and decreased cisplatin-induced lipid peroxidation. Salubrinal-induced cisplatin resistance was attenuated by inhibition of xCT and GSH biosynthesis. In conclusion, our results suggest that ISR activation by salubrinal up-regulates ATF4-modulated gene expression, increases GSH synthesis, and decreases cisplatin-induced oxidative damage, which contribute to cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chih-Hsuan Wung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Meng-Shian Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Pen-Hui Yin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yueh-Ching Chou
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Hung-Hsu Hung
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan.
- Faculty of Medicine, School of Medicine, Institute of Clinical Medicine and Genomic Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
31
|
Hernandez-Valencia J, Garcia-Villa E, Arenas-Hernandez A, Garcia-Mena J, Diaz-Chavez J, Gariglio P. Induction of p53 Phosphorylation at Serine 20 by Resveratrol Is Required to Activate p53 Target Genes, Restoring Apoptosis in MCF-7 Cells Resistant to Cisplatin. Nutrients 2018; 10:nu10091148. [PMID: 30142917 PMCID: PMC6163170 DOI: 10.3390/nu10091148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Resistance to cisplatin (CDDP) is a major cause of cancer treatment failure, including human breast cancer. The tumor suppressor protein p53 is a key factor in the induction of cell cycle arrest, DNA repair, and apoptosis in response to cellular stimuli. This protein is phosphorylated in serine 15 and serine 20 during DNA damage repair or in serine 46 to induce apoptosis. Resveratrol (Resv) is a natural compound representing a promising chemosensitizer for cancer treatment that has been shown to sensitize tumor cells through upregulation and phosphorylation of p53 and inhibition of RAD51. We developed a CDDP-resistant MCF-7 cell line variant (MCF-7R) to investigate the effect of Resv in vitro in combination with CDDP over the role of p53 in overcoming CDDP resistance in MCF-7R cells. We have shown that Resv induces sensitivity to CDDP in MCF-7 and MCF-7R cells and that the downregulation of p53 protein expression and inhibition of p53 protein activity enhances resistance to CDDP in both cell lines. On the other hand, we found that Resv induces serine 20 (S20) phosphorylation in chemoresistant cells to activate p53 target genes such as PUMA and BAX, restoring apoptosis. It also changed the ratio between BCL-2 and BAX, where BCL-2 protein expression was decreased and at the same time BAX protein was increased. Interestingly, Resv attenuates CDDP-induced p53 phosphorylation in serine 15 (S15) and serine 46 (S46) probably through dephosphorylation and deactivation of ATM. It also activates different kinases, such as CK1, CHK2, and AMPK to induce phosphorylation of p53 in S20, suggesting a novel mechanism of p53 activation and chemosensitization to CDDP.
Collapse
Affiliation(s)
- Jorge Hernandez-Valencia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Enrique Garcia-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Aquetzalli Arenas-Hernandez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jaime Garcia-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jose Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, Ciudad de México 14080, Mexico.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| |
Collapse
|
32
|
Ohara K, Ohkuri T, Kumai T, Nagato T, Nozaki Y, Ishibashi K, Kosaka A, Nagata M, Harabuchi S, Ohara M, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncoimmunology 2018; 7:e1466771. [PMID: 30510853 DOI: 10.1080/2162402x.2018.1466771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The human T cell receptor is capable of distinguishing between normal and post-translationally modified peptides. Because aberrant phosphorylation of cellular proteins is a hallmark of malignant transformation, the expression of the phosphorylated epitope could be an ideal antigen to combat cancer without damaging normal tissues. p53 activates transcription factors to suppress tumors by upregulating growth arrest and apoptosis-related genes. In response to DNA damage, p53 is phosphorylated at multiple sites including Ser33 and Ser37. Here, we identified phosphorylated peptide epitopes from p53 that could elicit effective T helper responses. These epitope peptides, p5322-41/Phospho-S33 and p5322-41/Phospho-S37, induced T helper responses against tumor cells expressing the phosphorylated p53 protein. Moreover, chemotherapeutic agents augmented the responses of such CD4 T cells via upregulation of phosphorylated p53. The upregulation of phosphorylated p53 expression by chemotherapy was confirmed in in vitro and xenograft models. We evaluated phosphorylated p53 expression in the clinical samples of oropharyngeal squamous cell carcinoma and revealed that 13/24 cases (54%) were positive for phosphorylated p53. Importantly, the lymphocytes specific for the phosphorylated p53 peptide epitopes were observed in the head and neck squamous cell cancer (HNSCC) patients. These results reveal that a combination of phosphorylated p53 peptides and chemotherapy could be a novel immunologic approach to treat HNSCC patients.
Collapse
Affiliation(s)
- Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Nozaki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
33
|
Han X, Chen H, Zhou J, Steed H, Postovit LM, Fu Y. Pharmacological Inhibition of p38 MAPK by SB203580 Increases Resistance to Carboplatin in A2780cp Cells and Promotes Growth in Primary Ovarian Cancer Cells. Int J Mol Sci 2018; 19:ijms19082184. [PMID: 30049957 PMCID: PMC6121386 DOI: 10.3390/ijms19082184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance renders current chemotherapy regimens ineffective against advanced epithelial ovarian cancer (EOC). Carboplatin (the first-line chemotherapeutic agent to treat EOC) induces cell death by regulating multiple signaling pathways. The objective of this study is to identify the signaling pathways that contribute to carboplatin resistance in EOC. To this end, we performed a proteome profiler human phospho-kinase array experiment and compared the phosphorylation profiles between the cisplatin-sensitive A2780s versus its derivative cisplatin-resistant A2780cp cells. The phospho-kinase array revealed that A2780s and A2780cp cells displayed different profiles in basal and carboplatin-induced phosphorylation. Phosphorylation of p38 MAPK was increased by carboplatin more markedly in A2780s cells compared to A2780cp cells. Inhibition of p38 MAPK activity by its specific inhibitor SB203580 increased resistance to carboplatin in A2780cp cells, but not in A2780s cells or in ascites-derived high-grade serous EOC cells. Interestingly, SB203580 increased the number of viable cells in the primary EOC cells, which was concomitant with an increase in survivin expression. In conclusion, inhibition of p38 MAPK by SB203580 increases resistance to carboplatin in A2780cp cells and the number of viable cells in the primary EOC cells, suggesting that pharmacological inhibition of p38 MAPK might not be an effective therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Xiaolu Han
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Jiesi Zhou
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
| | - Helen Steed
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
34
|
Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK. Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 2018; 9:155-175. [PMID: 30603053 PMCID: PMC6305103 DOI: 10.18632/genesandcancer.176] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.
Collapse
Affiliation(s)
- Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David A. Patten
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Richard B. Richardson
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
35
|
Li S, Yang L, Wang J, Liang F, Chang B, Gu H, Wang H, Yang G, Chen Y. Analysis of the chemotherapeutic effects of a propadiene compound on malignant ovarian cancer cells. Oncotarget 2018; 7:57145-57159. [PMID: 27494891 PMCID: PMC5302979 DOI: 10.18632/oncotarget.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian cancer is most lethal in female reproductive carcinomas owing to the high chemoresistance and metastasis, so more efficient therapeutic agents are terribly needed. A propadiene compound: 1-phenylpropadienyl phosphine oxide (PHPO), was employed to test the chemotherapeutic efficacy against ovarian cancer cell lines. MTT assay showed that PHPO displayed a much lower IC50 than cisplatin and paclitaxel, while combination treatment of cells with PHPO + cisplatin induced more apoptosis than with PHPO + paclitaxel or with cisplatin + paclitaxel (p < 0.05). Animal assays demonstrated that subcutaneous tumor growth was highly inhibited by PHPO + cisplatin, compared with that inhibited by PHPO or by cisplatin treatment alone, indicating PHPO and cisplatin may have synergistic effects against ovarian cancer growth. We also found that PHPO induced few side effects on animals, compared with cisplatin. Mechanistic studies suggested that treatment of cells with PHPO or with PHPO + cisplatin differentially inhibited the PI3K/Akt, MAPK and ATM/Chk2 pathways, which consequently suppressed the anti-apoptotic factors Bcl-xL, Bcl-2 and XIAP, but activated the pro-apoptotic factors Bad, Bax, p53, caspase 9, caspase 8, caspase 7 and PARP. Taken together, PHPO may induce cell apoptosis through multiple signal pathways, especially when used along with cisplatin. Therefore, PHPO may be explored as a prospective agent to effectively treat ovarian cancer.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Lina Yang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Jingshu Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Fan Liang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huafen Gu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Honglin Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Central laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yaping Chen
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| |
Collapse
|
36
|
Long Noncoding RNA GAS5, Which Acts as a Tumor Suppressor via microRNA 21, Regulates Cisplatin Resistance Expression in Cervical Cancer. Int J Gynecol Cancer 2018; 27:1096-1108. [PMID: 28472815 PMCID: PMC5499972 DOI: 10.1097/igc.0000000000001028] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives The aims of this study were to investigate the functions of GAS5 as a tumor suppressor in cervical cancer and explore the mechanism. Methods The expression of GAS5 and microRNA 21 (miR-21) was detected in primary cervical cancer tissue specimens, as well as in cervical cancer cell lines. We identified the interaction of GAS5 and miR-21 by quantitative polymerase chain reaction, Western blot, and dual-luciferase reporter assay. We also studied the functions of GAS5 in proliferation, apoptosis, migration, and invasion in cervical cancer cells in vitro and vivo. Finally, the impact of GAS5 on cisplatin resistance and its mechanism in cervical cancer cells was also identified. Results The expression of GAS5 and miR-21 was detected in primary cervical cancer tissue specimens, as well as in cervical cancer cell lines. GAS5, which is a tumor suppressor playing roles in inhibiting the malignancy of cervical cancer cells, including proliferation in vivo and vitro, migration, and invasion, has a low expression in cervical cancer tissue and cervical cancer cell lines, whereas miR-21 expression is high. GAS5 significantly decreased the expression of miR-21, and there is a reciprocal repression of gene expression between GAS5 and miR-21. Besides, most importantly, we found that high expression of GAS5 and low expression of miR-21 can enhance the sensitivity of SiHa/cDDP cancer cells to cisplatin. A further experiment for identifying the mechanism of cisplatin resistance by GAS5 showed that GAS5 can not only regulate phosphatase and tensin homolog through miR-21 but also influence the phosphorylation of Akt. Conclusions Our results indicate that GAS5 is a direct target of miR-21 and can predict the clinical staging of cervical cancer. Most importantly, GAS5 can also influence cisplatin resistance in cervical cancer via regulating the phosphorylation of Akt. All of these suggest that GAS5 may be a novel therapeutic target for treating cervical cancer.
Collapse
|
37
|
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study. Pharmacol Rep 2017; 70:570-576. [PMID: 29684847 DOI: 10.1016/j.pharep.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The association between p53 protein phosphorylated at serine 15 (Ser15), serine 20 (Ser20) and ovarian tumor cell sensitivity after chemotherapy was analyzed in order to define the influence of p53 activation on tumor cell sensitivity to chemotherapy. METHODS The study was performed on ovarian cancer cell line (OvBH-1), colon adenocarcinoma metastasis to ovary (SW626) and on cells isolated from ascitic fluids from patients with ovarian cancer: with (p53+) or without (p53-) p53 nuclear protein accumulation. p53 protein, Ser15, Ser20, Bax, Noxa and PgP protein expression was evaluated by means of immunocytochemical staining before and after chemotherapy. Cell viability after treatment was estimated using MTT assay. RESULTS Cell lines and tumor cells p53+, p53- revealed a significant decrease in cell survival after camptothecin, paclitaxel, cisplatin treatment, compared to the control group (p < 0.01). In p53+ group, the expression of Ser20 significantly increased after camptothecin and paclitaxel (p < 0.05). Ser15, Ser20, Bax, Noxa expression correlated with MTT and depended on p53+, p53- tumor cell and the drug used (p < 0.05). Expression of Bax and Noxa were dependent on the type of tumor cells and drug used. The correlation between Ser15, Ser20 and Bax, Noxa expression was found in cell lines and tumor cells (p < 0.05). CONCLUSIONS Our study suggests that the relation between Ser15 or Ser20 and tumor cell viability might reflect their role in tumor sensitivity on chemotherapy in dependent p53 protein status. Revealed association between p53 protein phosphorylated at Ser15, Ser20 and Bax, Noxa protein expression determined the apoptotic activity of tumor cells.
Collapse
Affiliation(s)
- Iwona Kamińska
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| | - Julia K Bar
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| |
Collapse
|
38
|
Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget 2017; 8:99825-99840. [PMID: 29245943 PMCID: PMC5725134 DOI: 10.18632/oncotarget.21076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cisplatin (CDDP) and its derivatives are first line anti-cancer drugs for ovarian cancer (OVCA). However, chemoresistance due to high incidence of p53 mutations leads to poor clinical prognosis. Saikosaponin-d (Ssd), a saponin from a herbal plant extract, has been shown to induce cell death and sensitize chemoresistant cells to chemotherapeutic agents. Here, we demonstrated that Ssd sensitized chemoresistant OVCA cells with either p53-wt, -mutant and -null to CDDP. The action of Ssd appears to be through induction of mitochondrial fragmentation and G2/M arrest. Ssd is mediated via calcium signaling, up-regulation of the mitochondrial fission proteins Dynamin-related protein 1 (Drp1) and optic atrophy 1 (Opa1), and loss in mitochondrial membrane potential (MMP). Moreover, in the presence of CDDP, Ssd also down-regulates protein phosphatase magnesium-dependent 1 D (PPM1D) and increases the phosphorylation of checkpoint protein kinases (Chk) 1, cell division cycle 25c (Cdc25c) and Cyclin dependent kinase 1 (Cdk1). Our findings suggest that Ssd could sensitize OVCA to CDDP independent of the p53 status through multiple signaling pathways. They support the notion that Ssd may be a novel adjuvant for the treatment of chemoresistant OVCA.
Collapse
|
39
|
Wan L, Zhang L, Fan K, Wang J. Aloin promotes A549 cell apoptosis via the reactive oxygen species‑mitogen activated protein kinase signaling pathway and p53 phosphorylation. Mol Med Rep 2017; 16:5759-5768. [PMID: 28901386 DOI: 10.3892/mmr.2017.7379] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 03/06/2017] [Indexed: 01/09/2023] Open
Abstract
Aloin has the potential to be a novel anticancer agent in cancer therapies. However, the detailed anticancer effect of Aloin remains to be fully elucidated. The present study analyzed the p53‑dependent mechanisms in response to Aloin treatment. Using the p53‑proficient A549 cells, an Aloin‑induced apoptotic cell model was established, which was used to evaluate the potential underlying molecular mechanisms. The results demonstrated that 200, 300 and 400 µM Aloin induced intrinsic cell apoptosis, which was further confirmed by disruption of the mitochondrial membrane potential, elevation of cytosolic Ca2+ levels, and activation of B‑cell lymphoma 2 (Bcl‑2) homologous antagonist killer, Bcl‑2 X‑associated protein, p53 upregulated modulator of apoptosis and phorbol‑12‑myristate‑13‑acetate‑induced protein 1. Aloin‑induced apoptosis was also accompanied by the induction of p53 phosphorylation on Serine (Ser)15, Threonine 18, Ser20 and Ser392; however, there were no significant differences in the expression of p53 and mouse double minute 2 homolog. Aloin‑induced apoptosis was reactive oxygen species (ROS)‑ and c‑Jun/p38‑dependent, as specific inhibitors for ROS, phosphorylated (p)‑c‑Jun and p‑p38 may attenuate Aloin‑induced A549 cell proliferating inhibition. In conclusion, these results suggested that Aloin may induce apoptosis in A549 cells via the ROS‑mitogen activated protein kinase signaling pathway, with p53 phosphorylation. These results implicate Aloin as a potential therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Li Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kai Fan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
40
|
Ilkovičová L, Trošt N, Szentpéteriová E, Solár P, Komel R, Debeljak N. Overexpression of the erythropoietin receptor in RAMA 37 breast cancer cells alters cell growth and sensitivity to tamoxifen. Int J Oncol 2017; 51:737-746. [PMID: 28714517 DOI: 10.3892/ijo.2017.4061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) is the main regulator of erythropoiesis, and its receptor (EPOR) is expressed in various tissues, including tumors. Expression of EPOR in breast cancer tissue has been shown to correlate with expression of the estrogen receptor (ER). However, EPOR promotes proliferation in an EPO-independent manner. In patients with breast cancer, EPOR is associated with impaired tamoxifen response in ER-positive tumors, but not in ER-negative tumors. Furthermore, a positive correlation between EPOR/ER status and increased local cancer recurrence has been demonstrated, and EPOR expression is associated with G-protein coupled ER (GPER). Herein, we assessed the effects of EPOR on cell physiology and tamoxifen response in the absence of EPO stimulation using two cell lines that differ only in their EPOR expression status: RAMA 37 cells (low EPOR expression) and RAMA 37-28 cells (high EPOR expression). Alterations in cell growth, morphology, response to tamoxifen cytotoxicity, and EPOR-activated signal transduction were observed. RAMA 37 cells showed higher proliferation capacity without tamoxifen treatment, while RAMA 37-28 cells were more resistant to tamoxifen and proliferated more rapidly in the presence of tamoxifen. EPOR overexpression induced cell-morphology changes upon tamoxifen treatment, which resulted in the production of cell protrusions and subsequent cell death. Short-term treatment with tamoxifen (6 h) prompted RAMA 37 cells to acquired longer protrusions than RAMA 37-28 cells, which indicated a pre-apoptotic stage. Furthermore, prolonged treatment with tamoxifen (72 h) caused a greater reduction in RAMA 37 cell numbers, which indicated a higher rate of cell death. RAMA 37-28 cells showed prolonged activation of AKT signaling. We propose sustained AKT phosphorylation in EPOR-overexpressing cells as a mechanism that can lead to EPOR-induced tamoxifen resistance.
Collapse
Affiliation(s)
- Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Nina Trošt
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Lai CC, Huang PH, Yang AH, Chiang SC, Tang CY, Tseng KW, Huang CH. Baicalein Attenuates Lung Injury Induced by Myocardial Ischemia and Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:791-811. [PMID: 28521514 DOI: 10.1142/s0192415x17500422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein is an active component of Scutellaria baicalensis Georgi, which has traditionally been used to treat cardiovascular diseases in China. In this study, we investigated if treatment with baicalein can attenuate the lung injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R, induced by a 40-min occlusion of the left anterior descending coronary artery and a 3-h reperfusion, significantly increased histological damage and the wet-to-dry weight ratio of lungs in rats. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei and caspase-3 activation was significantly increased in the lungs. Serum and bronchoalveolar lavage fluid levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as were TNF-[Formula: see text] levels in the lung. Intravenous administration with baicalein at doses of 3, 10, and 30[Formula: see text]mg/kg for ten minutes before myocardial I/R significantly reduced histological damage, the wet-to-dry weight ratio, and apoptosis in the lung. Baicalein also significantly inhibited the increase in levels of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6. Moreover, baicalein increased Bcl-2 and decreased p53, Bax, and cytochrome [Formula: see text] in lungs. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was increased, while the phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was decreased. In conclusion, treatment with baicalein attenuates the lung injury induced by myocardial I/R. The mechanisms might be related to the limiting of apoptosis, possibly via the inhibition of both the extrinsic and intrinsic pathways of apoptosis, including the inhibition of TNF-[Formula: see text] production and modulation of pro- and anti-apoptotic signaling elements.
Collapse
Affiliation(s)
- Chang-Chi Lai
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,† Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,∥ Department of Physical Education and Health, University of Taipei, Taipei, Taiwan
| | - Po-Hsun Huang
- † Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,‡ Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,** Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - An-Han Yang
- § Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shu-Chiung Chiang
- ¶ Institute of Hospital and Health Care Administration, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Yu Tang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,† Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Wei Tseng
- ∥ Department of Physical Education and Health, University of Taipei, Taipei, Taiwan
| | - Cheng-Hsiung Huang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
42
|
Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2017; 31:15-25. [DOI: 10.1007/s40620-017-0392-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 12/22/2022]
|
43
|
Huang K, Chen J, Yang MS, Tang YJ, Pan F. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells. Cancer Biomark 2017; 18:231-239. [DOI: 10.3233/cbm-160102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
45
|
Solárová Z, Kello M, Varinská L, Budovská M, Solár P. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4′fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells. Biomed Pharmacother 2017; 85:463-471. [DOI: 10.1016/j.biopha.2016.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022] Open
|
46
|
Liu W, Wang S, Zhou S, Yang F, Jiang W, Zhang Q, Wang L. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells. MOLECULAR BIOSYSTEMS 2017; 13:2268-2276. [DOI: 10.1039/c7mb00362e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The dysregulated microRNAs contribute to cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Weisha Liu
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Shunheng Zhou
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Feng Yang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Wei Jiang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin 150081
- China
| | - Qingyuan Zhang
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| | - Lihong Wang
- Institute of Cancer Prevention and Treatment
- Harbin Medical University
- Harbin 150081
- China
- Institute of Cancer Prevention and Treatment
| |
Collapse
|
47
|
Dai Y, Jin S, Li X, Wang D. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget 2016; 8:1354-1368. [PMID: 27935869 PMCID: PMC5352061 DOI: 10.18632/oncotarget.13817] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Many studies involving patients with cisplatin-resistant ovarian cancer have shown that AKT activation leads to inhibition of apoptosis. The aim of this study was to examine the potential involvement of the Bcl-2 family proteins in AKT-regulated cell survival in response to cisplatin treatment. Cisplatin-sensitive (PEO1) and cisplatin-resistant (PEO4) cells were taken from ascites of patients with ovarian cancer before cisplatin treatment and after development of chemoresistance. It was found that cisplatin treatment activated the AKT signaling pathway and promoted cell proliferation in cisplatin-resistant EOC cells. When AKT was transfected into nucleus of cisplatin-resistant ovarian cancer cells, DNA-PK was phosphorylated at S473. The activated AKT (pAKT-S473) in these cells inhibited the death signal induced by cisplatin thereby inhibiting cisplatin-mediated apoptosis. Results from this study showed that the combination of cisplatin, DNA-PK inhibitor NU7441, and AKT inhibitor TCN can overcome drug resistance, increase apoptosis, and re-sensitize PEO4 cells to cisplatin treatment. A decrease in apoptotic activity was seen in PEO4 cells when Bad was downregulated by siRNA, which indicated that Bad promotes apoptosis in PEO4 cells. Use of the Bcl-2 inhibitor ABT-737 showed that ABT-737 binds to Bcl-2 but not Mcl-1 and releases Bax/Bak which leads to cell apoptosis. The combination of ABT-737 and cisplatin leads to a significant increase in the death of PEO1 and PEO4 cells. All together, these results indicate that Bcl-2 family proteins are regulators of drug resistance. The combination of cisplatin and Bcl-2 family protein inhibitor could be a strategy for the treatment of cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Yan Dai
- 1 The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shiguang Jin
- 2 Clinical Medical College, Yangzhou University, Yangzhou, China,3 Medical Research Centre, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xueping Li
- 4 Nanjing Hospital Affiliated to Nanjing Medical University, The First Hospital of Nanjing, Nanjing, China
| | - Daxin Wang
- 2 Clinical Medical College, Yangzhou University, Yangzhou, China,3 Medical Research Centre, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
48
|
Shrestha S, Song YW, Kim H, Lee DS, Cho SK. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1671-1679. [PMID: 27823632 DOI: 10.1016/j.phymed.2016.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/23/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND PURPOSE Chemotherapy resistance is a major obstacle for the effective treatment of cancers. Although several studies have described the anticancer properties of rosemary extract and its components, the detailed mechanisms of action are poorly understood. METHODS Activity-guided fractionation and repeated chromatographic separation of the n-hexane fraction of the aqueous methanol extract over silica gel, RP C18, and Sephadex LH-20 led to the isolation of three compounds. The structures of the compounds were determined using 1H, 13C, and two-dimensional nuclear magnetic resonance spectroscopy, mass spectroscopy, and infrared spectroscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to evaluate the cytotoxicity of these compounds. Cell cycle, apoptotic cell populations, and mitochondrial membrane potential were analyzed by flow cytometry. Western blot analysis was conducted to detect apoptosis-related proteins. RESULTS An abietane diterpenoid, sageone (1), an icetexane diterpenoid, (-)-barbatusol (2), and a monoterpene, (+)-verbenone (3), were identified. Of these compounds, sageone (1) showed cytotoxicity against SNU-1 cells with an IC50 of 9.45 ± 1.33 µM. Sageone reduced the expression of Akt dramatically, as opposed to cisplatin, which increased phosphorylated Akt. Sageone combined with a subtoxic dose of cisplatin had synergistic effects on apoptosis induction in SNU-1 cells, as confirmed by calculating the combination index. Co-treatment was significantly more effective than monotherapy at reducing cell viability and inducing apoptosis, as determined by analyzing DNA fragmentation. The combined treatment of sageone and cisplatin markedly reduced Akt expression and phosphorylation, accompanied by increases in cleaved caspase-3, -9 and PARP. CONCLUSION This is the first time compounds 1 and 2 have been isolated from R. officinalis. Sageone induced apoptosis in SNU-1 human gastric cancer cells and notably enhanced the cytotoxicity of cisplatin in SNU-1 cells, which are known to be resistant to cisplatin. These findings suggest that sageone represents a promising anticancer agent against gastric cancer that warrants further study.
Collapse
Affiliation(s)
- Sabina Shrestha
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yeon Woo Song
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
| | - Hyeonji Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
49
|
Gao W, Wu MH, Wang N, Ying MZ, Zhang YY, Hua J, Chuan L, Wang YJ. Mitochondrial transcription factor A contributes to cisplatin resistance in patients with estrogen receptor-positive breast cancer. Mol Med Rep 2016; 14:5304-5310. [DOI: 10.3892/mmr.2016.5881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/19/2016] [Indexed: 11/05/2022] Open
|
50
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/06/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|