1
|
Luo M, Lu XX, Meng DY, Hu J. Small cell lung cancer with peripheral neuropathy as the first symptom: Two case reports. World J Clin Cases 2025; 13:99421. [PMID: 40144482 PMCID: PMC11670026 DOI: 10.12998/wjcc.v13.i9.99421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most malignant type of lung cancer. Even in the latent period and early stage of the tumor, SCLC is prone to produce distant metastases with complex and diverse clinical manifestations. SCLC is most closely related to paraneoplastic syndrome, and some cases present as paraneoplastic peripheral neuropathy (PPN). PPN in SCLC appears early, lacks specificity, and often occurs before diagnosis of the primary tumor. It is easy to be misdiagnosed as a primary disease of the nervous system, leading to missed diagnosis and delayed diagnosis and treatment. CASE SUMMARY This paper reports two cases of SCLC with limb weakness as the first symptom. The first symptoms of one patient were rash, limb weakness, and abnormal electromyography. The patient was repeatedly referred to the hospital for limb weakness and rash for > 1 year, during which time, treatment with hormones and immunosuppressants did not lead to significant improvement, and the condition gradually aggravated. The patient was later diagnosed with SCLC, and the dyskinesia did not worsen as the dermatomyositis improved after antineoplastic and hormone therapy. The second case presented with limb numbness and weakness as the first symptom, but the patient did not pay attention to it. Later, the patient was diagnosed with SCLC after facial edema caused by tumor thrombus invading the vein. However, he was diagnosed with extensive SCLC and died 1 year after diagnosis. CONCLUSION The two cases had PPN and abnormal electromyography, highlighting its correlation with early clinical indicators of SCLC.
Collapse
Affiliation(s)
- Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Xiao-Xi Lu
- Department of Information Technology, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Dan-Yang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
2
|
Wang H, Ren G, Xu Y, Deng R, Wang R, Zhou L. Novel erbium complex with anticancer activity against radiation resistant lung adenocarcinoma cells. J Inorg Biochem 2025; 269:112902. [PMID: 40132280 DOI: 10.1016/j.jinorgbio.2025.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
In this work, novel erbium complex with anticancer activity against radiation resistant lung adenocarcinoma cells was obtained and demonstrated. Firstly, stronger inhibitory effect of Er3+ on non-small cell lung cancer (NSCLC) cells and NSCLC- radiation resistant (RR) cells was experimentally confirmed. Then, by selecting highly biocompatible porphyrins as ligands, a novel erbium complex tetraphenylporphyrin erbium acetylacetonate (Er(acac)TPP) was synthesized and purified. Compared with Cisplatin, notably, Er(acac)TPP exhibits relatively higher inhibitory efficiency on NSCLC-RR cells. Moreover, the toxicities of Er(acac)TPP to normal cells are much lower than that of cancer cells. Subsequently, cell expansion, increased apoptosis, a decline in mitochondrial membrane potential (MMP), an accumulation of intracellular reactive oxygen species (ROS), increased Caspase-9 protein level and G2/M arrest were seen. These data all pointed to Er(acac)TPP as a possible candidate for more research and development as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Hao Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Guozhu Ren
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yue Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Rui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
3
|
Huang M, Jin Y, Zhao D, Liu X. Potential role of lactylation in intrinsic immune pathways in lung cancer. Front Pharmacol 2025; 16:1533493. [PMID: 40166469 PMCID: PMC11955616 DOI: 10.3389/fphar.2025.1533493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer, one of the most lethal malignancies, has seen its therapeutic strategies become a focal point of significant scientific attention. Intrinsic immune signaling pathways play crucial roles in anti-tumor immunity but face clinical application challenges despite promising preclinical outcomes. Lactylation, an emerging research focus, may influences lung cancer progression by modulating the functions of histones and non-histone proteins. Recent findings have suggested that lactylation regulates key intrinsic immune molecules, including cGAS-STING, TLR, and RIG-I, thereby impacting interferon expression. However, the precise mechanisms by which lactylation governs intrinsic immune signaling in lung cancer remain unclear. This review presents a comprehensive and systematic analysis of the relationship between lactylation and intrinsic immune signaling pathways in lung cancer and emphasizes the innovative perspective of linking lactylation-mediated epigenetic modifications with immune regulation. By thoroughly examining current research findings, this review uncovers potential regulatory mechanisms and highlights the therapeutic implications of targeting lactylation in lung cancer. Future investigations into the intricate interactions between lactylation and intrinsic immunity are anticipated to unveil novel therapeutic targets and strategies, potentially improving patient survival outcomes.
Collapse
Affiliation(s)
- Mengdie Huang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Jin
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Zhao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Zhang W, Sun Y, Li Y. Predictors of febrile neutropenia in small cell lung cancer patients receiving concurrent chemoradiotherapy with etoposide and cisplatin: a focus on nutritional status, inflammation, and performance status. Am J Cancer Res 2025; 15:1020-1035. [PMID: 40226480 PMCID: PMC11982724 DOI: 10.62347/jrmg1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Small cell lung cancer (SCLC) is a rapidly proliferating malignancy with a poor prognosis, commonly treated with concurrent chemoradiotherapy based on the etoposide and cisplatin (EP) regimen; however, this treatment is often complicated by febrile neutropenia (FN), a potentially life-threatening condition that can compromise treatment efficacy and patient safety. The aim of this study was to identify risk factors for FN in SCLC patients undergoing EP-based concurrent chemoradiotherapy to enhance treatment outcomes and improve patient management. In this retrospective case-control study, data from 216 SCLC patients who underwent concurrent chemoradiotherapy with the EP regimen between September 2014 and January 2020 were analyzed. Patients were categorized into FN (n = 106) and non-FN (n = 110) groups. Various clinical factors, including body mass index (BMI), Eastern Cooperative Oncology Group Performance Status (ECOG PS), and pre-treatment laboratory values such as albumin, IL-6, and C-reactive protein (CRP), were examined. Statistical analyses, including univariate and multivariate logistic regression, were performed to identify independent risk factors for FN. Lower BMI (P = 0.016) and poorer ECOG Performance Status (P = 0.001) were associated with an increased risk of FN. Additionally, pre-albumin levels (P = 0.010), inflammatory markers CRP (P = 0.032), and IL-6 (P = 0.001) also showed significant associations, suggesting that nutritional status and systemic inflammation play important roles in the development of FN. Importantly, multivariate logistic regression analysis confirmed pre-albumin levels (P = 0.003), IL-6 level (P = 0.001), MASCC score (P < 0.001), and ECOG PS (P = 0.019) as independent factors for FN risk. These findings highlight the importance of nutritional status, systemic inflammation, and overall health condition in predicting FN occurrence, underscoring the need for integrated risk assessment and management strategies to mitigate FN risk in SCLC patients undergoing EP-based concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Oncology, First People’s Hospital of Shangqiu CityShangqiu 476100, Henan, China
| | - Yongchen Sun
- Department of Radiotherapy, First People’s Hospital of Shangqiu CityShangqiu 476100, Henan, China
| | - Yiming Li
- Imaging Center, First People’s Hospital of Shangqiu CityShangqiu 476100, Henan, China
| |
Collapse
|
5
|
Pérez-Cabello JA, Artero-Castro A, Molina-Pinelo S. Small cell lung cancer unveiled: Exploring the untapped resource of circulating tumor cells-derived organoids. Crit Rev Oncol Hematol 2025; 207:104622. [PMID: 39832682 DOI: 10.1016/j.critrevonc.2025.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Small cell lung cancer (SCLC) remains a challenge in oncology due to its aggressive behavior and dismal prognosis. Despite advances in treatments, novel strategies are urgently needed. Enter liquid biopsy-a game-changer in SCLC management. This revolutionary non-invasive approach allows for the analysis of circulating tumor cells (CTCs), offering insights into tumor behavior and treatment responses. Our review focuses on a groundbreaking frontier: harnessing CTCs to create three-dimensional (3D) organoid models. These models, derived from CTCs that break away from the primary tumor or metastatic locations, hold immense potential for revolutionizing cancer research, especially in SCLC. We explore the essential conditions for successfully establishing CTC-derived organoids-a transformative approach with profound implications for personalized medicine. Our evaluation spans diverse isolation techniques, shedding light on their advantages and limitations. Furthermore, we uncover the critical factors governing the cultivation of 3D organoids from CTCs, meticulously mimicking the tumor microenvironment. This review comprehensively elucidates the molecular characterization of these organoids, showcasing their potential in identifying treatment targets and predicting responses. In essence, our review amalgamates cutting-edge methodologies for isolating CTCs, establishing transformative CTC-derived organoids, and characterizing their molecular landscape. This represents a promising frontier for advancing personalized medicine in the complex realm of SCLC management and holds significant implications for translational research.
Collapse
Affiliation(s)
- Jesús A Pérez-Cabello
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Ana Artero-Castro
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid 28029, Spain.
| |
Collapse
|
6
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
7
|
Ding J, Yeong C. Advances in DLL3-targeted therapies for small cell lung cancer: challenges, opportunities, and future directions. Front Oncol 2024; 14:1504139. [PMID: 39703856 PMCID: PMC11655346 DOI: 10.3389/fonc.2024.1504139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Small cell lung cancer (SCLC) remains one of the most aggressive and challenging malignancies to treat, with limited therapeutic options and poor outcomes. Recent advances in understanding SCLC biology have identified Delta-like ligand 3 (DLL3) as a promising target for novel therapies. This review explores the evolving landscape of DLL3-targeted therapies in SCLC, examining their mechanistic basis, preclinical promise, and clinical development. We discuss various therapeutic modalities, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), chimeric antigen receptor T-cell (CAR-T) therapies, and emerging approaches such as near-infrared photoimmunotherapy (NIR-PIT) and radiopharmaceutical therapy (RPT). The review highlights the challenges encountered in translating these promising approaches into clinical practice, including the setbacks faced by early DLL3-targeted therapies like Rovalpituzumab Tesirine (Rova-T). We also explore potential strategies to overcome these obstacles, emphasizing the need for a more nuanced understanding of DLL3 biology and its role in SCLC pathogenesis. The integration of cutting-edge technologies and interdisciplinary collaboration is proposed as a path forward to optimize DLL3-targeted therapies and improve outcomes for SCLC patients. This comprehensive overview provides insights into the current state and future directions of DLL3-targeted therapies, underscoring their potential to revolutionize SCLC treatment paradigms.
Collapse
Affiliation(s)
- Jianhua Ding
- Taylor’s University, Subang Jaya, Selangor, Malaysia
| | | |
Collapse
|
8
|
Luo Y, Zhang L, Mao D, Yang Z, Zhu B, Miao J, Zhang L. Symptom clusters and impact on quality of life in lung cancer patients undergoing chemotherapy. Qual Life Res 2024; 33:3363-3375. [PMID: 39240422 PMCID: PMC11599356 DOI: 10.1007/s11136-024-03778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE To identify symptom clusters (SCs) in lung cancer patients undergoing chemotherapy and explore their impact on health-related quality of life (HRQoL). METHODS Patients were invited to complete the Chinese version of the M.D. Anderson Symptom Inventory with the Lung Cancer Module and the Quality of Life Questionnaire-core 30. Network analysis was employed to identify SCs. The associations between SCs and each function of HRQoL were examined using the Pearson correlation matrix. Multiple linear regression was applied to analyze the influencing factors of each function of HRQoL. RESULTS A total of 623 lung cancer patients who were receiving chemotherapy were recruited. The global health status of lung cancer patients was 59.71 ± 21.09, and 89.73% of patients developed symptoms. Three SCs (Somato-psychological SC, Respiratory SC, and Gastrointestinal SC) were identified, and Somato-psychological SC and Gastrointestinal SC were identified as influencing factors for HRQoL in lung cancer patients. CONCLUSION Most lung cancer patients who undergo chemotherapy experience a range of symptoms, which can be categorized into three SCs. The Somato-psychological SC and Gastrointestinal SC negatively impacted patients' HRQoL. Health care providers should prioritize monitoring these SCs to identify high-risk patients early and implement targeted preventive and intervention measures for each SC, aiming to alleviate symptom burden and enhance HRQoL.
Collapse
Affiliation(s)
- Yuanyuan Luo
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Le Zhang
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Dongmei Mao
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Zhihui Yang
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Benxiang Zhu
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Jingxia Miao
- Department of Medical Oncology, Nanfang Hospital, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Lili Zhang
- School of Nursing, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Xu Y, Gu X, Shan S, Liu Z, Wang S, Zhang J, Lei Y, Zhong C, Zheng Q, Ren T, Li Z. Isovalerylspiramycin I suppresses small cell lung cancer proliferation via ATR/CHK1 mediated DNA damage response and PERK/eIF2α/ATF4/CHOP mediated ER stress. Biochem Pharmacol 2024; 230:116557. [PMID: 39353535 DOI: 10.1016/j.bcp.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Small cell lung cancer (SCLC) urgently needs new therapeutic approaches. We found that the antibiotic-derived compound Isovalerylspiramycin I (ISP-I) has potent anti-tumor activity against SCLC cell lines H1048 and DMS53 both in vitro and in vivo. ISP-I induced apoptosis, G2/M phase cell cycle arrest, and mitochondrial respiratory chain dysfunction in both cell lines. Comprehensive RNA sequencing revealed that the anti-SCLC effects of ISP-I were primarily attributed to ATR/CHK1-mediated DNA damage response and PERK/eIF2α/ATF4/CHOP-mediated ER stress. Importantly, the induction of DNA damage, ER stress, and apoptosis by ISP-I was mitigated by the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC), underscoring the critical role of ROS in the anti-SCLC mechanism of ISP-I. Moreover, ISP-I treatment induced immunogenic cell death (ICD) in SCLC cells, as evidenced by increased adenosine triphosphate (ATP) secretion, elevated release of high-mobility group box 1 (HMGB1), and enhanced exposure of calreticulin (CRT) on the cell surface. Additionally, network pharmacology analysis, combined with cellular thermal shift assay (CETSA) and cycloheximide (CHX) chase experiments, demonstrated that ISP-I acted as a ligand for apurinic/apyrimidinic endonuclease 1 (APEX1) and promoted its degradation, leading to the accumulation of ROS. In conclusion, our findings elucidate the multifaceted mechanisms underlying the anti-cancer effects of ISP-I, highlighting its potential as a promising therapeutic candidate for SCLC treatment.
Collapse
Affiliation(s)
- Yongle Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xiaohua Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Shan Shan
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zeyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Shaoyang Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Jingyuan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuqiong Lei
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Cheng Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qi Zheng
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tao Ren
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhanxia Li
- Department of Respiratory and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
10
|
Kumar S, Ali I, Abbas F, Shafiq F, Yadav AK, Ghate MD, Kumar D. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Mol Divers 2024; 28:4301-4324. [PMID: 38470555 DOI: 10.1007/s11030-024-10817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Globally, lung cancer is a significant public health concern due to its role as the leading cause of cancer-related mortalities. The promising target of EGFR for lung cancer treatment has been identified, providing a potential avenue for more effective therapies. The purpose of the study was to design a library of 1843 coumarin-1,2,3-triazole hybrids and screen them based on a designed pharmacophore to identify potential inhibitors targeting EGFR in lung cancer with minimum or no side effects. Pharmacophore-based screening was carried out and 60 hits were obtained. To gain a better understanding of the binding interactions between the compounds and the targeted receptor, molecular docking was conducted on the 60 screened compounds. In-silico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results indicated that coumarin-1,2,3-triazole hybrids COUM-0849, COUM-0935, COUM-0414, COUM-1335, COUM-0276, and COUM-0484 exhibit dock score of - 10.2, - 10.2, - 10.1, - 10.1, - 10, - 10 while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, we performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of coumarin-1,2,3-triazole hybrids as promising EGFR inhibitors for the management of lung cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Faiza Shafiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manjunath D Ghate
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
11
|
Safizadeh B, Sadeh M, Robati AK, Riahi T, Tavakoli-Yaraki M. Assessment of the circulating levels of immune system checkpoint selected biomarkers in patients with lung cancer. Mol Biol Rep 2024; 51:1036. [PMID: 39361074 DOI: 10.1007/s11033-024-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Lung cancer is recognized as one of the leading causes of cancer-related deaths globally, with a significant increase in incidence and intricate pathogenic mechanisms. This study examines the expression profiles of Programmed Cell Death Protein 1 (PD-1), PD-1 ligand (PDL-1), β-catenin, CD44, interleukin 6 (IL-6), and interleukin 10 (IL-10), as well as their correlations with the clinic-pathological features and diagnostic significance in lung cancer patients. METHODS AND RESULTS The research involved lung cancer patients exhibiting various pathological characteristics, alongside demographically matched healthy controls. The expression levels of PD-1, PDL-1, β-catenin, and CD44 were analyzed using Real-Time PCR, while circulating levels of IL-6 and IL-10 were assessed through ELISA assays. This investigation focused on peripheral blood mononuclear cells (PBMC) to evaluate these factors non-invasively. Findings indicated that levels of PD-1, PDL-1, and CD44 were significantly elevated in patients compared to controls, which coincided with a decrease in β-catenin levels. Additionally, a concurrent rise in IL-6 and IL-10, both pro-inflammatory cytokines, was observed in patients, suggesting a potential regulatory role for these cytokines on the PD-1/PDL-1 axis, which may help tumors evade immune system checkpoints. The predictive value of these factors concerning lung tumors and metastasis was significant (Regression analysis). Furthermore, these markers demonstrated diagnostic potential in differentiating between patients and healthy controls, as well as between individuals with metastatic and non-metastatic tumors (ROC curve analysis). CONCLUSIONS This study provides insights into the expression profiles of PD-1/PDL-1 immune system checkpoints and their regulatory factors in lung cancer, potentially paving the way for new therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Maryam Sadeh
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
12
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Zhang Y, Huang Y, Yang Y, Zhao Y, Zhou T, Chen G, Zhao S, Zhou H, Ma Y, Hong S, Zhao H, Zhang L, Fang W. Surufatinib plus toripalimab combined with etoposide and cisplatin as first-line treatment in advanced small-cell lung cancer patients: a phase Ib/II trial. Signal Transduct Target Ther 2024; 9:255. [PMID: 39327433 PMCID: PMC11427686 DOI: 10.1038/s41392-024-01974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
There is still room for improvement in first-line treatment of advanced small cell lung cancer (SCLC). This trial firstly investigated efficacy and safety of antiangiogenic therapy (surufatinib) (200 mg, qd, po) plus anti-PD-1 treatment (toripalimab) (240 mg, d1, ivdrip) combined with etoposide (100 mg/m², d1-d3, iv, drip) and cisplatin (25 mg/m², d1-d3, ivdrip) for advanced SCLC as first-line treatment, which has been registered on ClinicalTrials.gov under the identifier NCT04996771. The four-drug regimen was conducted q3w for 4 cycles with maintenance therapy of surufatinib and toripalimab. The primary endpoint was progression-free survival (PFS). The secondary end points included objective response rate (ORR), disease control rate (DCR), overall survival (OS) and safety. All of the 38 patients were enrolled for safety analysis, while only 35 patients were enrolled for efficacy analysis since loss of efficacy evaluation in 3 cases after treatment. After a median follow-up of 21.3 months, the ORR was 97.1% (34/35), and the DCR and the tumor shrinkage rate were both 100% (35/35). The median PFS was 6.9 months (95% CI: 4.6 m-9.2 m) and the median OS was 21.1 months (95% CI: 12.1 m-30.1 m). The 12-month, 18-month, and 24-month OS rates were 66.94%, 51.39% and 38.54%. The occurrence rate of grade ≥3 treatment-emergent adverse events (TEAEs) was 63.2% (24/38), including neutrophil count decreased (31.6%, 12/38), white blood cell count decreased (23.7%, 9/38) and platelet count decreased (10.5%, 4/38). No unexpected adverse events occurred. This novel four-drug regimen (surufatinib, toripalimab, etoposide plus cisplatin) revealed impressive therapeutic efficacy and tolerable toxicities.
Collapse
Affiliation(s)
- Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shen Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaqiang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
14
|
Lyu HX, Ma WH, Zhang YQ, Jin H, Wang YD, Zhao M. Case report: Emerging therapies for transformed small cell lung cancer: efficacy of serplulimab and a comprehensive case report. Front Med (Lausanne) 2024; 11:1406515. [PMID: 39386753 PMCID: PMC11461193 DOI: 10.3389/fmed.2024.1406515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
This research reports a case of histological transformation from non-small cell lung cancer (NSCLC) to transformed small cell lung cancer (T-SCLC) in a patient undergoing EGFR-tyrosine kinase inhibitors (TKIs). The aggressive characteristics of the tumor diverged significantly from those commonly associated with lung adenocarcinomas, leading to further histological analysis. The subsequent histological examination confirmed the transformation to SCLC, consistent with established mechanisms of acquired resistance in NSCLC. Given the limited therapeutic options, the patient was administered a serplulimab-based immunochemotherapy regimen, achieving a progression-free survival (PFS) of 6 months post-transformation. The study underscores the potential of PD-1 inhibitors, particularly serplulimab, in the treatment landscape for T-SCLC and highlights the need for future comprehensive research.
Collapse
Affiliation(s)
- Heng-Xu Lyu
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Hua Ma
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-Qian Zhang
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Jin
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Dong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhao
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
16
|
Guan S, Xu Z, Yang T, Zhang Y, Zheng Y, Chen T, Liu H, Zhou J. Identifying potential targets for preventing cancer progression through the PLA2G1B recombinant protein using bioinformatics and machine learning methods. Int J Biol Macromol 2024; 276:133918. [PMID: 39019365 DOI: 10.1016/j.ijbiomac.2024.133918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Lung cancer is the deadliest and most aggressive malignancy in the world. Preventing cancer is crucial. Therefore, the new molecular targets have laid the foundation for molecular diagnosis and targeted therapy of lung cancer. PLA2G1B plays a key role in lipid metabolism and inflammation. PLA2G1B has selective substrate specificity. In this paper, the recombinant protein molecular structure of PLA2G1B was studied and novel therapeutic interventions were designed to disrupt PLA2G1B activity and impede tumor growth by targeting specific regions or residues in its structure. Construct protein-protein interaction networks and core genes using R's "STRING" program. LASSO, SVM-RFE and RF algorithms identified important genes associated with lung cancer. 282 deg were identified. Enrichment analysis showed that these genes were mainly related to adhesion and neuroactive ligand-receptor interaction pathways. PLA2G1B was subsequently identified as developing a preventative feature. GSEA showed that PLA2G1B is closely related to α-linolenic acid metabolism. Through the analysis of LASSO, SVM-RFE and RF algorithms, we found that PLA2G1B gene may be a preventive gene for lung cancer.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | | | | | | | | | | | - Huimin Liu
- Nanjing Medical University, Nanjing 211166, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China.
| |
Collapse
|
17
|
Jiang W, Cheng Y, Hou L, Huang Y, Wang S, Zhang Y, Jiang T, Yang F, Ma Z. A dual-prodrug nanogel combining Vorinostat and Pyropheophorbide a for a high efficient photochemotherapy. Int J Pharm 2024; 661:124422. [PMID: 38977163 DOI: 10.1016/j.ijpharm.2024.124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The challenges posed by intractable relapse and metastasis in cancer treatment have led to the development of various forms of photodynamic therapy (PDT). However, traditional drug delivery systems, such as virus vectors, liposomes, and polymers, often suffer from issues like desynchronized drug release, carrier instability, and drug leakage during circulation. To address these problems, we have developed a dual-prodrug nanogel (PVBN) consisting of Pyro (Pyropheophorbide a) and SAHA (Vorinostat) bound to BSA (Bovine Serum Albumin), which facilitates synchronous and spontaneous drug release in situ within the lysosome. Detailed results indicate that PVBN-treated tumor cells exhibit elevated levels of ROS and Acetyl-H3, leading to necrosis, apoptosis, and cell cycle arrest, with PDT playing a dominant role in the synergistic therapeutic effect. Furthermore, the anti-tumor efficacy of PVBN was validated in melanoma-bearing mice, where it significantly inhibited tumor growth and pulmonary metastasis. Overall, our dual-prodrug nanogel, formed by the binding of SAHA and Pyro to BSA and releasing drugs within the lysosome, represents a novel and promising strategy for enhancing the clinical efficacy of photochemotherapy.
Collapse
Affiliation(s)
- Weiwei Jiang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuwei Cheng
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Lei Hou
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Ying Huang
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China
| | - Sizhen Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tao Jiang
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai, China; Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Ma
- School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
18
|
Li H, Song L, Zhou Y, Ye J, Xie G, Lu Y. The effects of surgical resection in the treatment of limited-stage small cell lung cancer: a multicenter retrospective study. Updates Surg 2024; 76:1483-1492. [PMID: 38043121 DOI: 10.1007/s13304-023-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023]
Abstract
This study aimed to examine the effects of surgical resection on the treatment of limited-stage small cell lung cancer and identify patient characteristics that may indicate a benefit from surgical resection. We retrospectively reviewed medical data from patients diagnosed with small cell lung cancer between January 2013 and December 2020 at three hospitals. A total of 478 patients were included in the study, 153 patients received surgery treatment and 325 patients received non-surgery treatment. Survival differences between the surgical resection group and the nonsurgical resection group were analyzed using the Kaplan-Meier method and the log-rank test. The overall survival in the surgical resection group was significantly improved compared to that in the nonsurgical resection group (HR: 0.58, 95% CI: 0.370-0.876, p = 0.0126). Surgical resection significantly improved overall survival compared to nonsurgical resection in stage I disease (HR: 0.56, 95% CI: 0.34-0.94, p = 0.029) and stage IIA disease (HR: 0.60, 95% CI: 0.40-0.92, p = 0.019). However, no significant differences in overall survival were found between surgical resection and nonsurgical resection in stage IIB disease (HR: 0.86, 95% CI: 0.57-1.29, p = 0.46) and stage III disease (HR: 0.99, 95% CI: 0.71-1.39, p = 0.97). The overall survival of patients who underwent lobectomy was significantly better than that of patients who underwent sublobular resection (HR: 1.85, 95% CI: 1.15-4.16, p = 0.021) and who underwent pneumonectomy (HR: 2.04, 95% CI: 1.29-5.28, p = 0.009). Surgical resection should be recommended for patients diagnosed with stage I-IIA SCLC. When deciding on the surgical type, it is preferable to choose lobectomy over sublobar resection or pneumonectomy.
Collapse
Affiliation(s)
- Hezhi Li
- Department of Medical Administration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingmeng Song
- Department of Medical Administration, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yu Zhou
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Guoping Xie
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Yuhai Lu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| |
Collapse
|
19
|
Chen Y, Han K, Liu Y, Wang Q, Wu Y, Chen S, Yu J, Luo Y, Tan L. Identification of effective diagnostic genes and immune cell infiltration characteristics in small cell lung cancer by integrating bioinformatics analysis and machine learning algorithms. Saudi Med J 2024; 45:771-782. [PMID: 39074893 PMCID: PMC11288485 DOI: 10.15537/smj.2024.45.8.20240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To identify potential diagnostic markers for small cell lung cancer (SCLC) and investigate the correlation with immune cell infiltration. METHODS GSE149507 and GSE6044 were used as the training group, while GSE108055 served as validation group A and GSE73160 served as validation group B. Differentially expressed genes (DEGs) were identified and analyzed for functional enrichment. Machine learning (ML) was used to identify candidate diagnostic genes for SCLC. The area under the receiver operating characteristic curves was applied to assess diagnostic efficacy. Immune cell infiltration analyses were carried out. RESULTS There were 181 DEGs identified. The gene ontology analysis showed that DEGs were enriched in 455 functional annotations, some of which were associated with immunity. The kyoto encyclopedia of genes and genomes analysis revealed that there were 9 signaling pathways enriched. The disease ontology analysis indicated that DEGs were related to 116 diseases. The gene set enrichment analysis results displayed multiple items closely related to immunity. ZWINT and NRCAM were screened using ML and further validated as diagnostic genes. Significant differences were observed in SCLC with normal lung tissue samples among immune cell infiltration characteristics. Strong associations were found between the diagnostic genes and immune cell infiltration. CONCLUSION This study identified 2 diagnostic genes, ZWINT and NRCAM, that were related to immune cell infiltration by integrating bioinformatics analysis and ML algorithms. These genes could serve as potential diagnostic biomarkers and provide possible molecular targets for immunotherapy in SCLC.
Collapse
Affiliation(s)
- Yinyi Chen
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Kexin Han
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Yanzhao Liu
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Qunxia Wang
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Yang Wu
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Simei Chen
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Jianlin Yu
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Yi Luo
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| | - Liming Tan
- From the Department of Clinical Laboratory (Chen, Han, Liu, Wang, Wu, Yu, Tan); from the Department of Blood Transfusion (Chen), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, and from the Department of Clinical Laboratory (Luo), The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China.
| |
Collapse
|
20
|
Mu X, Wang Y, Fan Z, Yi K. Safety and efficacy of Immune checkpoint Inhibitors (ICIs) plus chemotherapy versus chemotherapy plus placebo for small cell lung cancer (SCLC): A systematic review and meta-analysis of randomized controlled trials. Asian J Surg 2024:S1015-9584(24)01527-6. [PMID: 39054121 DOI: 10.1016/j.asjsur.2024.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Xiaohong Mu
- Department of Cardiovascular Medicine, Huanxian People's Hospital, Qingyang, 745700, China
| | - Yunfang Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zhengye Fan
- The First Hospital of Longnan City, Longnan, 742500, China
| | - Kang Yi
- Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
22
|
Wang Y, Qiu Q, Deng X, Wan M. EGFR-TKIs - induced cardiotoxicity in NSCLC: incidence, evaluation, and monitoring. Front Oncol 2024; 14:1426796. [PMID: 38983928 PMCID: PMC11232364 DOI: 10.3389/fonc.2024.1426796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The advent of targeted drug therapy has greatly changed the treatment landscape of advanced non-small cell lung cancer(NSCLC), but the cardioxic side effects of targeted drug anti-cancer therapy seriously affect the prognosis of NSCLC, and it has become the second leading cause of death in cancer patients. Therefore, early identification of the cardiotoxic side effects of targeted drugs is crucial for the prevention and treatment of cardiovascular diseases. The cardiotoxic side effects that may be caused by novel targeted drugs epidermal growth factor receptor inhibitors, including thromboembolic events, heart failure, cardiomyopathy, arrhythmia and hypertension, are discussed, and the mechanisms of their respective adverse cardiovascular reactions are summarized, to provide useful recommendations for cardiac management of patients with advanced lung cancer to maximize treatment outcomes for lung cancer survivors. Clinicians need to balance the risk-benefit ratio between targeted therapy for malignant tumors and drug-induced cardiotoxicity, and evaluate and monitor TKIs-induced cardiotoxicity through electrocardiogram, cardiac imaging, biomarkers, etc., so as to remove the susceptibility risk factors as soon as possible and provide a reference for the clinical use of such drugs in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yunlong Wang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qinggui Qiu
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xuan Deng
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Mengchao Wan
- Department of Outpatient, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Zhang L, Wu R, Ma T, Fu W, Chen J, Li L, He Q. Investigation on the Therapeutic Mechanism of Danbie Capsules for Endometriosis: A Network Pharmacology Approach. Int J Gen Med 2024; 17:2557-2574. [PMID: 38855423 PMCID: PMC11162222 DOI: 10.2147/ijgm.s451119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Objective To explore the active substances and targets of Danbie Capsules in Endometriosis therapy. Methods This study was conducted through TCMSP and published literature screened and obtained 183 active substances of Danbie Capsules, combined and intersected with Endometriosis target genes collected and screened in the GEO database, obtained 24 target genes for Endometriosis treatment, and mapped the target network map of Danbie Capsules active substances against Endometriosis. The network was analyzed with the aid of Cytoscape version 3.9.1. With the aid of the platform of the STRING data analysis, PPI network analysis was conducted on 24 anti-Endometriosis targets of the Danbie Capsules. Results The research results obtained three critical active substances, namely, Quercetin, β-sitosterol, and Luteolin. Seven critical targets were identified, and two representative genes (TP53 and AKT1) have been verified in Macromolecular docking and immunohistochemical verification. Conclusion The active substances of Danbie Capsules in the treatment of Endometriosis are Quercetin, β-sitosterol and Luteolin, and the main targets are TP53 and AKT1.
Collapse
Affiliation(s)
- Lina Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510080, People’s Republic of China
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Ruibin Wu
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Tenghui Ma
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wenwen Fu
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Jiamin Chen
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Lingling Li
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Qing He
- Department of Clinical Nutrition and Microbiome; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People’s Republic of China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| |
Collapse
|
24
|
Bhat AA, Gupta G, Dahiya R, Thapa R, Gahtori A, Shahwan M, Jakhmola V, Tiwari A, Kumar M, Dureja H, Singh SK, Dua K, Kumarasamy V, Subramaniyan V. CircRNAs: Pivotal modulators of TGF-β signalling in cancer pathogenesis. Noncoding RNA Res 2024; 9:277-287. [PMID: 38505309 PMCID: PMC10945146 DOI: 10.1016/j.ncrna.2024.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-β (TGF-β) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-β pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-β signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-β modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-β signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-β is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-β signalling landscape.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Archana Gahtori
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, 248001, Uttarakhand, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, (U.P.), 244102, India
| | - Mahish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Sun Y, Zhang J. HMOX1 regulates ferroptosis via mic14 and its impact on chemotherapy resistance in small-cell lung cancer. Anticancer Drugs 2024; 35:397-411. [PMID: 38527419 DOI: 10.1097/cad.0000000000001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study aimed to investigate the role and molecular mechanism of heme oxygenase-1 (HMOX1) in chemotherapy resistance in small-cell lung cancer (SCLC). Employed bioinformatics, qPCR, and Western Blot to assess HMOX1 levels in SCLC versus normal tissues and its prognostic relevance. CCK-8, flow cytometry, and thiobarbituric acid assays determined HMOX1's impact on SCLC chemosensitivity, ferroptosis markers, lipid peroxidation, and mic14's role in chemoresistance. In the GSE40275 and GSE60052 cohorts, HMOX1 expression was downregulated in SCLC tissues compared to normal tissues. Higher HMOX1 expression was associated with improved prognosis in the Sun Yat-sen University Cancer Hospital cohort and GSE60052 cohort. The RNA and protein levels of HMOX1 were reduced in drug-resistant SCLC cell lines compared to chemosensitive cell lines. Upregulation of HMOX1 increased chemosensitivity and reduced drug resistance in SCLC, while downregulation of HMOX1 decreased chemosensitivity and increased drug resistance. Upregulation of HMOX1 elevated the expression of ferroptosis-related proteins ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while decreasing the expression of GPX4 and xCT. Conversely, downregulation of HMOX1 decreased the expression of ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while increasing the expression of GPX4 and xCT. Upregulation of HMOX1 promoted cellular lipid peroxidation, whereas downregulation of HMOX1 inhibited cellular lipid peroxidation. Upregulation of HMOX1 reduced the RNA level of mic14, while downregulation of HMOX1 increased the RNA level of mic14. mic14 exhibited inhibitory effects on cellular lipid peroxidation in SCLC cells and contributed to reduced chemosensitivity and increased drug resistance in chemoresistant SCLC cell lines. HMOX1 plays a role in ferroptosis by regulating mic14 expression, thereby reversing chemoresistance in SCLC.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
26
|
Han Z, Yang F, Wang F, Zheng H, Chen X, Meng H, Li F. Advances in combined neuroendocrine carcinoma of lung cancer. Pathol Oncol Res 2024; 30:1611693. [PMID: 38807858 PMCID: PMC11130380 DOI: 10.3389/pore.2024.1611693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Lung cancer incidence and mortality rates are increasing worldwide, posing a significant public health challenge and an immense burden to affected families. Lung cancer encompasses distinct subtypes, namely, non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). In clinical investigations, researchers have observed that neuroendocrine tumors can be classified into four types: typical carcinoid, atypical carcinoid, small-cell carcinoma, and large-cell neuroendocrine carcinoma based on their unique features. However, there exist combined forms of neuroendocrine cancer. This study focuses specifically on combined pulmonary carcinomas with a neuroendocrine component. In this comprehensive review article, the authors provide an overview of combined lung cancers and present two pathological images to visually depict these distinctive subtypes.
Collapse
Affiliation(s)
- Zesen Han
- Hua Country People’s Hospital, Anyang, Henan, China
| | - Fujun Yang
- Department of Medical Oncology, Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, China
| | - Fang Wang
- Hua Country People’s Hospital, Anyang, Henan, China
| | - Huayu Zheng
- Hua Country People’s Hospital, Anyang, Henan, China
| | - Xiujian Chen
- Hua Country People’s Hospital, Anyang, Henan, China
| | - Hongyu Meng
- Hua Country People’s Hospital, Anyang, Henan, China
| | - Fenglei Li
- Hua Country People’s Hospital, Anyang, Henan, China
| |
Collapse
|
27
|
Yang W, Fan X, Li W, Chen Y. Causal influence of gut microbiota on small cell lung cancer: a Mendelian randomization study. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13764. [PMID: 38685730 PMCID: PMC11058399 DOI: 10.1111/crj.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have hinted at a significant link between lung cancer and the gut microbiome, yet their causal relationship remains to be elucidated. METHODS GWAS data for small cell lung cancer (SCLC) was extracted from the FinnGen consortium, comprising 179 cases and 218 613 controls. Genetic variation data for 211 gut microbiota were obtained as instrumental variables from MiBioGen. Mendelian randomization (MR) was employed to determine the causal relationship between the two, with inverse variance weighting (IVW) being the primary method for causal analysis. The MR results were validated through several sensitivity analyses. RESULTS The study identified a protective effect against SCLC for the genus Eubacterium ruminantium group (OR = 0.413, 95% CI: 0.223-0.767, p = 0.00513), genus Barnesiella (OR = 0.208, 95% CI: 0.0640-0.678, p = 0.00919), family Lachnospiraceae (OR = 0.319, 95% CI: 0.107-0.948, p = 0.03979), and genus Butyricimonas (OR = 0.376, 95% CI: 0.144-0.984, p = 0.04634). Conversely, genus Intestinibacter (OR = 3.214, 95% CI: 1.303-7.926, p = 0.01125), genus Eubacterium oxidoreducens group (OR = 3.391, 95% CI: 1.215-9.467, p = 0.01973), genus Bilophila (OR = 3.547, 95% CI: 1.106-11.371, p = 0.03315), and order Bacillales (OR = 1.860, 95% CI: 1.034-3.347, p = 0.03842) were found to potentially promote the onset of SCLC. CONCLUSION We identified potential causal relationships between certain gut microbiota and SCLC, offering new insights into microbiome-mediated mechanisms of SCLC pathogenesis, resistance, mutations, and more.
Collapse
Affiliation(s)
- Wenjing Yang
- General Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xinxia Fan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Wangshu Li
- Dalian Women and Children's Medical Center (Group)DalianLiaoningChina
| | - Yan Chen
- Department of Respiratory and Critical Care MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
28
|
Naldi L, Fibbi B, Anceschi C, Nardini P, Guasti D, Peri A, Marroncini G. Effects of Reduced Extracellular Sodium Concentrations on Cisplatin Treatment in Human Tumor Cells: The Role of Autophagy. Int J Mol Sci 2024; 25:4377. [PMID: 38673964 PMCID: PMC11050238 DOI: 10.3390/ijms25084377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Hyponatremia is the prevalent electrolyte imbalance in cancer patients, and it is associated with a worse outcome. Notably, emerging clinical evidence suggests that hyponatremia adversely influences the response to anticancer treatments. Therefore, this study aims to investigate how reduced extracellular [Na+] affects the responsiveness of different cancer cell lines (from human colon adenocarcinoma, neuroblastoma, and small cell lung cancer) to cisplatin and the underlying potential mechanisms. Cisplatin dose-response curves revealed higher IC50 in low [Na+] than normal [Na+]. Accordingly, cisplatin treatment was less effective in counteracting the proliferation and migration of tumor cells when cultured in low [Na+], as demonstrated by colony formation and invasion assays. In addition, the expression analysis of proteins involved in autophagosome-lysosome formation and the visualization of lysosomal areas by electron microscopy revealed that one of the main mechanisms involved in chemoresistance to cisplatin is the promotion of autophagy. In conclusion, our data first demonstrate that the antitumoral effect of cisplatin is markedly reduced in low [Na+] and that autophagy is an important mechanism of drug escape. This study indicates the role of hyponatremia in cisplatin chemoresistance and reinforces the recommendation to correct this electrolyte alteration in cancer patients.
Collapse
Affiliation(s)
- Laura Naldi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| | - Benedetta Fibbi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
- Pituitary Diseases and Sodium Alterations Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Cecilia Anceschi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| | - Patrizia Nardini
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50134 Florence, Italy; (P.N.); (D.G.)
| | - Daniele Guasti
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50134 Florence, Italy; (P.N.); (D.G.)
| | - Alessandro Peri
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
- Pituitary Diseases and Sodium Alterations Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Giada Marroncini
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| |
Collapse
|
29
|
Liu Q, Li Z, Li N, Liu J, Wu H, Chen J. Nucleic acid-sensing-related gene signature in predicting prognosis and treatment efficiency of small cell lung cancer patients. Front Oncol 2024; 14:1394286. [PMID: 38680855 PMCID: PMC11045993 DOI: 10.3389/fonc.2024.1394286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Nucleic acid-sensing (NAS) pathways could induce innate and adaptive immune responses. However, rare evidence exhibited how the core genes of the NAS pathways affected the immune response and prognosis of small cell lung cancer (SCLC) patients. Methods We conducted a comprehensive bioinformatic analysis based on the RNA profiles of 114 SCLC patients, including 79 from cBioPortal, 21 from GSE30219, and 14 from our sequencing data. The multiplex immunohistochemistry (mIHC) was used to characterize the role of NAS related genes in the tumor microenvironment (TME) of SCLC. Results A prognostic model (7NAS risk model) was constructed based on 7 NAS-related genes which was demonstrated as an independent prognostic index. The low-risk group was identified to have a better prognosis and an immune-activated microenvironment in both the public datasets and our dataset. Intriguingly, mIHC data showed that CD45+ immune cells, CD8+ T lymphocytes, and CD68+ macrophages were prevalently enriched in low-risk SCLC patients and positively correlated with IRF1 expression. Additionally, Patients in the low-risk group might have superior responses to chemotherapy and immunotherapy. Conclusion Conclusively, this study created a new risk model based on genes associated with NAS pathways which could predict the prognosis and response of treatment in patients with SCLC.
Collapse
Affiliation(s)
- Qianshi Liu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaoshen Li
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Junjie Liu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Hong Wu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Ciofiac CM, Mămuleanu M, Florescu LM, Gheonea IA. CT Imaging Patterns in Major Histological Types of Lung Cancer. Life (Basel) 2024; 14:462. [PMID: 38672733 PMCID: PMC11051469 DOI: 10.3390/life14040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Lung cancer ranks as the second most prevalent cancer globally and is the primary contributor to neoplastic-related deaths. The approach to its treatment relies on both tumour staging and histological type determination. Data indicate that the prognosis of lung cancer is strongly linked to its clinical stage, underscoring the importance of early diagnosis in enhancing patient outcomes. Consequently, the choice of an appropriate diagnostic method holds significant importance in elevating both the early detection rate and prognosis of lung cancer. This paper aims to assess computer tomography features specific to the most common lung cancer types (adenocarcinoma, squamous cell carcinomas and small cell lung cancer). Data were collected retrospectively from CT scans of 58 patients pathologically diagnosed with lung cancer. The following CT features were evaluated and recorded for each case: location, margins, structure, lymph node involvement, cavitation, vascular bundle-thickening, bronchial obstruction, and pleural involvement. Squamous cell carcinoma (SQCC) and small cell lung cancer (SCLC) showed a higher incidence of central location, while adenocarcinoma (ADC) showed a significant predilection for a peripheral location. Internal cavitation was mostly observed in SQCC, and a solid structure was observed in almost all cases of ADC. These features can provide information about the prognosis of the patient, considering that NSCLCs are more frequent but tend to demonstrate positive results for targetable driver mutations, such as EGFR, thereby increasing the overall survival. In addition, SCLC presents with early distant spreads, which limits the opportunity to investigate the evolution of tumorigenesis and gene alterations at early stages but can have a rapidly positively response to chemotherapy. The location of the lung cancer exhibits distinct forecasts, with several studies suggesting that peripheral lung tumours offer a more favourable prognosis. Cavity formation appears correlate with a poorer prognosis. Histopathological analysis is the gold standard for diagnosing the type of lung cancer; however, using CT scanning for the purpose of a rough, but fast, preliminary diagnosis has the potential to shorten the waiting time for treatment by helping clinicians and patients to know more about the diagnosis and prognosis.
Collapse
Affiliation(s)
| | - Mădălin Mămuleanu
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Lucian Mihai Florescu
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (I.A.G.)
| | - Ioana Andreea Gheonea
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.M.F.); (I.A.G.)
| |
Collapse
|
31
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
32
|
Pan C, Yu T, Han L, Hao D, Yang M, Li L, Chu L, Ni Q. Surufatinib combined camrelizumab as a valuable third-line rescue therapy for a patient with extensive-stage for small-cell lung cancer: a case report and literature review. Anticancer Drugs 2024; 35:271-276. [PMID: 37948349 DOI: 10.1097/cad.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Lung cancer is one of the most common malignant tumors with the highest incidence. Gene mutations are rare in small-cell lung carcinoma (SCLC), resulting in targeted therapy being only a third-line recommendation. Surufatinib (Sulanda) is an oral angio-immune kinase inhibitor used to treat solid tumors. We report a case of SCLC treated with surufatinib combined with camrelizumab, with good therapeutic results in our department. The patient experienced over 18 months of progression-free survival and over 28 months of overall survival. This suggests that surufatinib combined with camrelizumab is an effective third-line treatment for SCLC patients. However, the response rate to surufatinib treatment in all patients with SCLC remains unknown and needs to be determined in a large population.
Collapse
Affiliation(s)
- Chi Pan
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou
| | - Tao Yu
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Li Han
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Daxuan Hao
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Ming Yang
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Lin Li
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Laili Chu
- Department of Medical Oncology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou
| | - Qingtao Ni
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
33
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
34
|
Koni E, Congur I, Tokcaer Keskin Z. Overexpression of CXCL17 increases migration and invasion of A549 lung adenocarcinoma cells. Front Pharmacol 2024; 15:1306273. [PMID: 38384293 PMCID: PMC10879421 DOI: 10.3389/fphar.2024.1306273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Lung cancer is one of the most frequently diagnosed malignancies and is a widespread disease that affects millions of individuals globally. CXCL17 is a member of the CXC chemokine family that attracts myeloid cells and is associated with the mucosa. CXCL17 can both support and suppress tumor growth in certain types of cancer. A549 LUAD cells were transfected with N-Terminal p3XFLAG-CMV or N-Terminal p3XFLAG-CMV-CXCL17 to establish stably transfected CXCL17-overexpressing cells. Reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme Linked Immunosorbent Assay (ELISA) were performed to verify the levels of CXCL17 mRNA and of CXCL17 protein concentration of stably transfected A549 cells respectively. Wound healing, CCK8, and matrigel invasion assays were performed to assess the effect of CXCL17 overexpression on migration, proliferation, and invasion of A549 cells. When compared to control groups, proliferative capacity of A549 cells were unaffected by CXCL17 overexpression; however, the wound area in the CXCL17 overexpression group had dramatically decreased after 48 h. Similarly, the number of invasion cells was significantly higher in the CXCL17-overexpressing group than in the control ones after 48 h. CXCL17 overexpression significantly increased the ability of A549 cells to migrate and invade, without affecting their proliferative abilities.
Collapse
Affiliation(s)
- Ekin Koni
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Irem Congur
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Zeynep Tokcaer Keskin
- Graduate School of Natural and Applied Sciences, Department of Molecular and Translational Biomedicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
35
|
Kut E, Menekse S. Prognostic significance of pretreatment albumin-bilirubin (ALBI) grade and platelet-albumin-bilirubin (PALBI) grade in patients with small cell lung cancer. Sci Rep 2024; 14:1371. [PMID: 38228667 DOI: 10.1038/s41598-024-51375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Small cell lung cancer (SCLC) is a common cancer among the world's lung cancers. Despite advances in diagnosis and treatment, the prognosis is still poor. There is no effective biomarker other than stage in daily practice. However, in daily practice, patients may have different features and survival times even though they have the same stage. Previously, albumin-bilirubin (ALBI) grade, platelet-albumin-bilirubin (PALBI) grade were used to determine the prognosis of acute-chronic liver failure and acute upper gastrointestinal bleeding in liver cirrhosis. In subsequent studies, they were found to be associated with prognosis in hepatocellular carcinoma (HCC) and other solid cancers. However, the prognostic relationship between ALBI grade, PALBI grade, and SCLC is unknown. Therefore, we conducted this study to examine the relationship between ALBI grade and PALBI grade and prognosis in SCLC patients. Data of 138 patients with advanced SCLC at diagnosis between 2009 and 2020 were analyzed retrospectively. The results of the multivariate analysis were as follows: ALBI grade 1 vs 2, hazard ratio (HR) = 1.608, p = 0.002 for OS and HR = 1.575, p = 0.002 for PFS; ALBI grade 1 vs 3, HR = 2.035, p < 0.001 for OS and HR = 2.675, p < 0.001 for PFS; PALBI grade 1 vs 2, HR = 1.302, p = 0.006 for OS and HR = 1.674, p = 0.002 for PFS; and PALBI grade 1 vs 3, HR = 1.725, p < 0.001 for OS and HR = 2.675, p < 0.001 for PFS. In conclusion, the ALBI and PALBI grades were determined to be associated with the prognosis of SCLC, and they can be used as easy, inexpensive, and practical markers in determining the follow-up treatment and prognosis of SCLC patients.
Collapse
Affiliation(s)
- Engin Kut
- Medical Oncology Clinic of Manisa State Hospital, 45040, Manisa, Turkey.
| | - Serkan Menekse
- Medical Oncology Clinic of Manisa State Hospital, 45040, Manisa, Turkey
| |
Collapse
|
36
|
Zhou J, Du Z, Liang Y, Zhang S. Benefits and risks of PD-1/PD-L1 inhibitors for recurrent small cell lung cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 193:104222. [PMID: 38036155 DOI: 10.1016/j.critrevonc.2023.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
The development of immune checkpoint inhibitors(ICIs) has revolutionized the progress of solid tumors. Ongoing clinical trials are exploring the use of checkpoint inhibitors in recurrent small-cell lung cancer and achieving specific results. Although studies have been conducted to systematically review this issue, we conducted this single-arm meta-analysis in light of the emergence of several new clinical studies. In total, 854 individuals from 11 clinical investigations were enrolled in this single-arm meta-analysis. Median progression-free survival, median overall survival, and objective response rate were 1.65 months, 6.83 months, and 20.5%, respectively, according to pooled analyses. The best treatment regimen in the subgroup analysis was a dual checkpoint inhibitor combined with other treatments, and the drug that worked well for treatment was pembrolizumab. The benefit of programmed death 1/programmed cell death-ligand 1(PD-1/PD-L1) inhibitors alone is limited, and their combination with other therapies is a promising treatment option. Among PD-1/PD-L1 inhibitors, pembrolizumab is the recommended drug.
Collapse
Affiliation(s)
- Juyue Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhonghai Du
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China.
| | - Yan Liang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Sensen Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
37
|
Zheng P, Xia Y, Shen X, Lu H, Chen Y, Xu C, Qiu C, Zhang Y, Zou P, Cui R, Huang X. Combination of TrxR1 inhibitor and lenvatinib triggers ROS-dependent cell death in human lung cancer cells. Int J Biol Sci 2024; 20:249-264. [PMID: 38164168 PMCID: PMC10750290 DOI: 10.7150/ijbs.86160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.
Collapse
Affiliation(s)
- Peisen Zheng
- Pulmonary Division, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiqun Xia
- Pulmonary Division, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyu Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Zou
- Pulmonary Division, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ri Cui
- Pulmonary Division, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Pulmonary Division, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
38
|
Zhang Q, Zheng L, Bai Y, Su C, Che Y, Xu J, Sun K, Ni J, Huang L, Shen Y, Jia L, Xu L, Yin R, Li M, Hu J. ITPR1-AS1 promotes small cell lung cancer metastasis by facilitating P21 HRAS splicing and stabilizing DDX3X to activate the cRaf-MEK-ERK cascade. Cancer Lett 2023; 577:216426. [PMID: 37820992 DOI: 10.1016/j.canlet.2023.216426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The mechanisms underlying the involvement of long non-coding RNAs (lncRNAs) in the metastasis of small cell lung cancer (SCLC) remain largely unknown. Here, we identified that the lncRNA ITPR1-AS1 was upregulated in SCLC and lymph node metastasis tissues and positively correlated with SCLC malignant features. The overexpression of ITPR1-AS1 in SCLC was an independent risk factor for the overall survival of patients with SCLC. Our data confirmed that ITPR1-AS1 induces SCLC cell metastasis both in vitro and in vivo. Mechanistically, ITPR1-AS1 acts as a scaffold to enhance the interaction between SRC-associated in mitosis 68 kDa and heterogeneous nuclear ribonucleoprotein A1, which facilitates the alternative splicing of the H-Ras proto-oncogene (HRAS) pre-mRNA (P21HRAS). Moreover, we observed that ITPR1-AS1 could associate in a complex with and maintain the stability of DEAD-box polypeptide 3 (DDX3X), which inhibited the latter's ubiquitination and degradation. Our data provide evidence that ITPR1-AS1 activates the cRaf-MEK-ERK cascade by upregulating P21HRAS production and stabilizing DDX3X, to promote SCLC metastasis.
Collapse
Affiliation(s)
- Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Limin Zheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yongkang Bai
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China; Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210009, PR China
| | - Chi Su
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Yuru Che
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiawen Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Kemin Sun
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Jie Ni
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingli Huang
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Ye Shen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lili Jia
- Department of Pathology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, PR China
| | - Lin Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Rong Yin
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Jingwen Hu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
39
|
Wu S, Guan W, Zhao H, Li G, Zhou Y, Shi B, Zhang X. Prognostic role of short-term heart rate variability and deceleration/acceleration capacities of heart rate in extensive-stage small cell lung cancer. Front Physiol 2023; 14:1277383. [PMID: 38028778 PMCID: PMC10663334 DOI: 10.3389/fphys.2023.1277383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Prior research suggests that autonomic modulation investigated by heart rate variability (HRV) might act as a novel predictive biomarker for cancer prognosis, such as in breast cancer and pancreatic cancer. It is not clear whether there is a correlation between autonomic modulation and prognosis in patients with extensive-stage small cell lung cancer (ES-SCLC). Therefore, the purpose of the study was to examine the association between short-term HRV, deceleration capacity (DC) and acceleration capacity (AC) of heart rate and overall survival in patients with ES-SCLC. Methods: We recruited 40 patients with ES-SCLC, and 39 were included in the final analysis. A 5-min resting electrocardiogram of patients with ES-SCLC was collected using a microelectrocardiogram recorder to analyse short-term HRV, DC and AC. The following HRV parameters were used: standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD). Overall survival of patients with ES-SCLC was defined as time from the date of electrocardiogram measurement to the date of death or the last follow-up. Follow-up was last performed on 07 June 2023. There was a median follow-up time of 42.2 months. Results: Univariate analysis revealed that the HRV parameter SDNN, as well as DC significantly predicted the overall survival of ES-SCLC patients (all p < 0.05). Multivariate analysis showed that the HRV parameters SDNN (hazard ratio = 5.254, 95% CI: 1.817-15.189, p = 0.002), RMSSD (hazard ratio = 3.024, 95% CI: 1.093-8.372, p = 0.033), as well as DC (hazard ratio = 3.909, 95% CI: 1.353-11.293, p = 0.012) were independent prognostic factors in ES-SCLC patients. Conclusion: Decreased HRV parameters (SDNN, RMSSD) and DC are independently associated with shorter overall survival in ES-SCLC patients. Autonomic nervous system function (assessed based on HRV and DC) may be a new biomarker for evaluating the prognosis of patients with ES-SCLC.
Collapse
Affiliation(s)
- Shuang Wu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Weizheng Guan
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yufu Zhou
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| |
Collapse
|
40
|
Wang J, Mu HJ, Sun YL, Yuan B, Wang Y. Use of honokiol in lung cancer therapy: a mini review of its pharmacological mechanism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1029-1037. [PMID: 37010929 DOI: 10.1080/10286020.2023.2193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Honokiol (3',5-di-(2-propenyl)-1,1'-biphenyl-2,2'-diol) is a biologically active natural product derived from Magnolia and has been shown to have excellent biological activities. This paper discusses research progress on the use of honokiol in the treatment of lung cancer, as studies have confirmed that honokiol can exert anti-lung-cancer effects through multiple pathways and multiple signaling pathways, such as inhibiting angiogenesis, affecting mitochondrial function and apoptosis, regulating of autophagy and epithelial-mesenchymal transition (EMT). In addition, honokiol combined with other chemotherapy drugs is also a way in which it can be applied.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Hui-Juan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yu-Li Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| |
Collapse
|
41
|
Li J, Wang L, Dong Z, Song Q, Wang Z. A meta-analysis of circulating tumor DNA as a survival indicator in small cell lung cancer patients. Clin Exp Med 2023; 23:3935-3945. [PMID: 37027065 DOI: 10.1007/s10238-023-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
A high level of circulating tumor DNA (ctDNA) has been linked to poor survival in patients with certain solid tumors. In spite of this, it is still unclear whether ctDNA is associated with poor survival in small cell lung cancer (SCLC). To investigate the above association, we conducted a systematic review and meta-analysis. PubMed, Web of Science, Cochrane's Library, and Embase were searched for relevant cohort studies from the inception of the databases to November 28, 2022. Data collection, literature search, and statistical analysis were carried out independently by two authors. To account for heterogeneity, we used a random-effects model. In this meta-analysis, 391 patients with SCLC were identified, and the data were pooled from nine observational studies and followed for 11.4 to 25.0 months. A high ctDNA was associated with worse overall survival (OS, risk ratio [RR] 2.50, 95% confidence interval [CI]1.85 to 3.38, p < 0.001; I2 = 25%) and progression-free survival (PFS, RR 2.33, 95% CI 1.48 to 3.64, p < 0.001, I2 = 42%). Subgroup analyses retrieved consistent results in prospective and retrospective studies, in studies with ctDNA measured with polymerase chain reaction or next-generation sequencing, and in studies analyzed with univariate or multivariate regression models. Studies suggest that ctDNA may be an important factor in predicting poor OS and PFS in SCLC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liqun Wang
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhouhuan Dong
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qi Song
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhanbo Wang
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
42
|
Yang W, Wang W, Li Z, Wu J, Huang X, Li J, Zhang X, Ye X. Delta-like ligand 3 in small cell lung cancer: Potential mechanism and treatment progress. Crit Rev Oncol Hematol 2023; 191:104136. [PMID: 37716517 DOI: 10.1016/j.critrevonc.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of a pathological type of lung cancer, and it is characterized by invasiveness, high malignancy and refractoriness. The mortality rate of SCLC is significantly higher than other types of lung cancer, and the treatment options for SCLC patients are limited. Delta-like ligand 3 (DLL3) is a Notch signaling ligand that plays a role in regulating the proliferation, development and metastasis of SCLC cells. Mnay studies have shown that DLL3 is overexpressed on the surface of SCLC cells, suggesting that DLL3 is a potential target for SCLC patients. A series of drug trials targeting DLL3 are underway. The Phase III clinical trials of Rova-T, a drug targeting DLL3, have not yielded the expected results. However, other drugs that target DLL3, such as AMG119, AMG757 and DLL3-targeted NIR-PIT, bring new ideas for SCLC treatment. Overall, DLL3 remains a valuable target for SCLC.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaotian Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinbo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
43
|
Mollazadeh S, Abdolahzadeh N, Moghbeli M, Arab F, Saburi E. The crosstalk between non-coding RNA polymorphisms and resistance to lung cancer therapies. Heliyon 2023; 9:e20652. [PMID: 37829813 PMCID: PMC10565774 DOI: 10.1016/j.heliyon.2023.e20652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Lung cancer (LC) is one of the most common cancer-related mortality in the world. Even with intensive multimodality therapies, lung cancer has a poor prognosis and a high morbidity rate. This review focused on the role of non-coding RNA polymorphisms such as lncRNAs and miRNAs in the resistance to LC therapies, which could open promising avenue for better therapeutic response. Of note, there is currently no valid biomarker to predict lung cancer sensitivity in patients during treatment. Since genetic variations cause many challenges in treating patients, genotyping of known polymorphisms must be thoroughly explored to find desirable treatment platforms. With this knowledge, individualized treatments could become more possible in management of LC.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Negar Abdolahzadeh
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Meysam Moghbeli
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Arab
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Xu X, Chen Y, Zhang Y, Cai H, Shen P, Peng J, Liu H, Chen X, Chu F. CYTOR Promotes Proliferation of Lung Cancer Cell by Targeting miR-103a-3p to Upregulate HMGB1. Mol Biotechnol 2023; 65:1528-1538. [PMID: 36697993 DOI: 10.1007/s12033-023-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Lung cancer is one of the most dangerous malignant tumors to human health in the world. Previous researches have shown that cytoskeleton regulator RNA (CYTOR), a long noncoding RNA was involved in the occurrence and development of various types of cancer. The aim of this study is to investigate the clinical significance and biological function of CYTOR in lung cancer. Real-time quantitative PCR was applied to detect the expression of CYTOR. The proliferation of A549 and H1299 cells was analyzed by CCK8 assay. The luciferase reporter assay and RNA pull-down assay were used to reveal the interactions between CYTOR and its downstream targets. Western blot was used to detect the expression of high-mobility group protein B1 (HMGB1). Here we found CYTOR was upregulated in lung cancer tissues and cell lines. The proliferation of A549 and H1299 cells was inhibited after CYTOR silencing. In addition, CYTOR could directly interact with and negatively regulate miR-103a-3p, and miR-103a-3p inhibited cell proliferation by targeting HMGB1. The CYTOR/miR-103a-3p/HMGB1 axis promoted lung cancer cell proliferation. CYTOR sponges miR-103a-3p to promote the proliferation of lung cancer cells through HMGB1. The CYTOR/miR-103a-3p/HMGB1 axis plays a critical role in the progression of lung cancer.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yi Chen
- Department of Clinical Laboratory Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Yan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hua Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jingjing Peng
- Department of Laboratory Medicine, Nantong First People's Hospital, Nantong, 226001, China
| | - Hongli Liu
- Department of Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226001, China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital, Nantong, 226001, China
| | - Fuying Chu
- Department of Laboratory Medicine, Nantong First People's Hospital, Nantong, 226001, China.
| |
Collapse
|
45
|
Qian X, Zhu L, Xu M, Liu H, Yu X, Shao Q, Qin J. Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact 2023; 382:110588. [PMID: 37268198 DOI: 10.1016/j.cbi.2023.110588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a very poor overall survival rate due to its extremely high proliferation and metastasis predilection. Shikonin is an active ingredient extracted from the roots of Lithospermum erythrorhizon, and exerts multiple anti-tumor functions in many cancers. In the present study, the role and underlying mechanism of shikonin in SCLC were investigated for the first time. We found that shikonin effectively suppressed cell proliferation, apoptosis, migration, invasion, and colony formation and slightly induced apoptosis in SCLC cells. Further experiment indicated the shikonin could also induced ferroptosis in SCLC cells. Shikonin treatment effectively suppressed the activation of ERK, the expression of ferroptosis inhibitor GPX4, and elevated the level of 4-HNE, a biomarker of ferroptosis. Both total ROS and lipid ROS were increased, while the GSH levels were decreased in SCLC cells after shikonin treatment. More importantly, our data identified that the function of shikonin was dependent on the up-regulation of ATF3 by performing rescue experiments using shRNA to silence the expression of ATF3, especially in the total and lipid ROS accumulaiton. Xenograft model was established using SBC-2 cells, and the results revealed that shikonin also significantly inhibited tumor growth by inducing ferroptosis. Finally, our data further confirmed that shikonin activated ATF3 transcription by impairing the recruitment of HDAC1 mediated by c-myc on the ATF3 promoter, and subsequently elevating of histone acetylation. Our data documented that shikonin suppressed SCLC by inducing ferroptosis in a ATF3-dependent manner. Shikonin upregulated the expression of ATF3 expression via promoting the histone acetylation by inhibiting c-myc-mediated HDAC1 binding on ATF3 promoter.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine (Hangzhou Cancer Hospital), Hangzhou, Zhejiang, 310006, China
| | - Lin Zhu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mengzhen Xu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haoli Liu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyan Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiuyue Shao
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Qin
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic oncology (lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, PR China.
| |
Collapse
|
46
|
Kong F, Wang Z, Wang N, Zhang D, Liao D, Zhang J, Sun Y, Zhang H, Jia Y. Maintenance anlotinib improves the survival prognosis of extensive-stage small cell lung cancer: a single-arm, prospective, phase II study. Am J Cancer Res 2023; 13:3679-3685. [PMID: 37693149 PMCID: PMC10492109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
The extent to which anlotinib provides survival benefits in the maintenance therapy of extensive-stage small cell lung cancer (ES-SCLC) remains unclear. Thus, this study aimed to assess the efficacy and safety of anlotinib monotherapy as maintenance therapy following induction chemotherapy in ES-SCLC patients. 27 ES-SCLC patients registered at the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine were screened from February 2022 to October 2022, of which 3 were not eligible. Eligible patients in stable status after first-line chemotherapy would subsequently accept oral anlotinib (12 mg, p.o., qd. on d1-d14, every 21 days). The maintenance method was continued until disease progression or unmanageable toxicity occurred. The primary endpoint is median progression-free survival (mPFS). The second endpoints include median duration of response (mDOR), median overall survival (mOS) and safety. The mPFS and mDOR have been determined (mPFS: 252 days, 95% CI: 217.782-286.218 days; mDOR: 126 days, 95% CI: 98.899-153.101 days). The mOS was not reached; only 7 patients were reached while 20 patients survived. The primary treatment-related adverse events included hypertension (n=7, 25.9%), fatigue (n=5, 18.5%), poor appetite (n=5, 18.5%), and others. Notably, no patients required a dose reduction due to the severity of adverse events. Patients were generally able to tolerate treatment with anlotinib and exhibited a favorable prognosis. Anlotinib achieved prospective efficacy and manageable safety in the maintenance treatment of ES-SCLC.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Ziwei Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Yidan Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Haojian Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineAnshanxi Road, Nankai District, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjin 300193, China
| |
Collapse
|
47
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
48
|
Liu R, Jiang C, Zhao Z, Lv Y, Wang G. Rosavin exerts an antitumor role and inactivates the MAPK/ERK pathway in small-cell lung carcinoma in vitro. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:269-280. [PMID: 37307376 DOI: 10.2478/acph-2023-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 06/14/2023]
Abstract
This study attempts to explore the function and mechanism of action of rosavin in small-cell lung cancer (SCLC) in vitro. The viability and clone formation of SCLC cells were assessed using cell counting kit-8 and colony formation assays, respectively. Apoptosis and cell cycle were detected using flow cytometry and cell cycle analysis, respectively. Wound healing and transwell assays were performed to evaluate the migration and invasion of SCLC cells. Besides, protein levels of p-ERK, ERK, p-MEK and MEK were determined using Western blot analysis. Rosavin repressed the viability and clone formation of SCLC cells, and promoted apoptosis and G0/G1 arrest of SCLC cells. At the same time, rosavin suppressed migration and invasion of SCLC cells. Moreover, protein levels of p-ERK/ERK and p-MEK/MEK were decreased after rosavin addition in SCLC cells. Rosavin impaired malignant behaviors of SCLC cells, which may be associated with inhibition of the MAPK/ERK pathway in vitro.
Collapse
Affiliation(s)
- Rui Liu
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Cuihong Jiang
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Zhizheng Zhao
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Yutong Lv
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Gaoxing Wang
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| |
Collapse
|
49
|
Wang N, Zhao L, Zhang D, Kong F. Efficacy and safety of anlotinib as maintenance therapy after induction chemotherapy in extensive-stage small-cell lung cancer. Anticancer Drugs 2023; 34:558-562. [PMID: 36728981 DOI: 10.1097/cad.0000000000001488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Anlotinib has been approved as the third-line or beyond treatment regimen for patients with extensive-stage small-cell lung cancer (ES-SCLC). However, it is indistinct whether there are survival benefits of anlotinib in the maintenance therapy of ES-SCLC. Therefore, this study aims to evaluate the efficacy and safety of anlotinib monotherapy as maintenance therapy after induction chemotherapy for patients with ES-SCLC. The median progression-free survival (mPFS) was considered to be the pivotal symbol as the primary endpoint. The median overall survival (mOS) and safety were recognized as the second endpoints. Eligible patients in stable status after first-line chemotherapy would subsequently accept oral anlotinib (12 mg/d, d1-d14, every 21 days as a course). The maintenance method was continued until disease progression or unmanageable toxicity occurred. The mPFS was 7.7 months (95% CI, 7.20-8.20 months) and the mOS was 11.0 months (95% CI, 9.19-12.82 months), respectively. The most common treatment-related adverse events were hypertension ( n = 9; 64.3%), fatigue ( n = 6; 42.9%), followed by decreased appetite ( n = 5; 35.7%), nausea ( n = 5; 35.7%), weight decrease ( n = 4; 28.6%), and rash ( n = 4; 28.6%). There were no patients who required dose reduction because of severe adverse events. Anlotinib achieved prospective efficacy and manageable safety in the maintenance treatment of ES-SCLC. These above outcomes demonstrated that anlotinib was a tolerable and potent maintenance treatment option after induction chemotherapy in ES-SCLC.
Collapse
Affiliation(s)
- Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
50
|
Shan X, Zhang C, Li C, Fan X, Song G, Zhu J, Cao R, Zhang X, Zhu W. miR-338-3p acts as a tumor suppressor in lung squamous cell carcinoma by targeting FGFR2/FRS2. CANCER PATHOGENESIS AND THERAPY 2023; 1:87-97. [PMID: 38328402 PMCID: PMC10846316 DOI: 10.1016/j.cpt.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2024]
Abstract
Background Lung cancer refers to the occurrence of malignant tumors in the lung, and squamous cell carcinoma is one of the most common pathological types of non-small cell lung cancer. Studies have shown that microRNAs (miRNAs) play an important role in the occurrence, development, early diagnosis, and treatment of lung cancer. This study aimed to explore the role and possible mechanism of MicroRNA-338-3p (miR-338-3p) in lung squamous cell carcinoma (LUSC). Method In this study, we compared 238 LUSC patients with relatively high miR-338-3p expression levels with 238 miR-338-3p expression levels in The Cancer Genome Atlas (TCGA)-LUSC dataset using first-line gene set enrichment analysis (GSEA). Second, the mRNA expression of miR-338-3p, FGFR2, and fibroblast growth factor receptor substrate 2 (FRS2) in 30 lung cancers and adjacent lung tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vitro experiments were conducted, whereby the expression levels of miR-338-3p in lung cancer cells (H1703, SKMES1, H2170, H520) and normal lung epithelial cells (16HBE) were detected using qRT-PCR. miR-338-3p was overexpressed in lung cancer cells (H1703), and the cell proliferation (cell counting kit-8 [CCK8] assay), colony formation, cell apoptosis, cell cycle (BD-FACSVerse assay, Becton Dickinson, Bedford, MA, USA), cell invasion, and migration (Transwell assay, Thermo Fischer Corporation, Waltham, MA, USA) were detected. Results We found that the expression of miR-338-3p was significantly reduced in LUSC tissues (p < 0.001) and cancer cell lines (P < 0.01), and miR-338-3p was significantly negatively correlated with the expression of FGFR2 (P < 0.001) and FRS2 (P < 0.01). Furthermore, overexpression of miR-338-3p inhibited proliferation (P < 0.001), migration, and invasion (P < 0.001) of LUSC cell lines and increased apoptosis in the G1 phase (P < 0.001) and cell cycle arrest (P < 0.05). Conclusions Our study demonstrates that miR-338-3p inhibits tumor cell proliferation and migration by targeting FGFR2 and FRS2 in LUSC. We believe that miR-338-3p may be a promising target for the treatment of LUSC.
Collapse
Affiliation(s)
- Xia Shan
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Cheng Zhang
- Women & Children Central Laboratory, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Chunyu Li
- Women & Children Intensive Care Unit, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Xingchen Fan
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Guoxin Song
- Department of Pathology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Jingfeng Zhu
- Department of Nephrology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Risheng Cao
- Department of Science and Technology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Xiuwei Zhang
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Wei Zhu
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|