1
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024; 65:1553-1578. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Xu L, Zhong XL, Xi ZC, Li Y, Xu HX. Medicinal plants and natural compounds against acyclovir-resistant HSV infections. Front Microbiol 2022; 13:1025605. [PMID: 36299732 PMCID: PMC9589345 DOI: 10.3389/fmicb.2022.1025605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuan-Lei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Yang Li,
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong-Xi Xu,
| |
Collapse
|
3
|
Juszkiewicz M, Walczak M, Woźniakowski G, Szczotka-Bochniarz A. Virucidal Activity of Plant Extracts against African Swine Fever Virus. Pathogens 2021; 10:1357. [PMID: 34832513 PMCID: PMC8624909 DOI: 10.3390/pathogens10111357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever is one of the most dangerous and fatal swine diseases, described for the first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine nor treatment available. The only way to hinder further spread of the disease is by culling the affected herds and applying prevention based mainly on proper biosecurity. Due to growing awareness of the potential ASF threat among pig producers, disinfection processes are considered as one of the most important preventive measures. Currently, a variety of chemical compounds are applied for the disinfection of pig farms. Meanwhile, these chemicals may pose a potential risk, due to their toxic, irritant or corrosive effect. The aim of this study was to determine whether any plant-based natural compounds may show a virucidal effect against ASFV, and simultaneously be depleted of some of the side-effects typical for chemical compounds. Ideally, natural virucidal compounds should be safe for both humans and animals, biodegradable, easily available and inexpensive. Fourteen plant extracts were selected and screened for their virucidal effect against ASFV, using the suspension test inspired by the PN-EN 14675:2015 European Standard procedure. The results of our study showed that most of the tested plant extracts were ineffective against ASFV. Some extracts suspended in a hydroglycolic medium exhibited high virus titre reduction, but it was confirmed that the effect resulted from medium composition. However, a 1.05% peppermint extract showed high effectiveness against ASFV, reducing the virus titre by ≥4 log10, thus demonstrating that natural compounds used as virucidal agents could potentially be used in disinfection procedures, being both effective and harmless to humans and animals.
Collapse
Affiliation(s)
- Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
- Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland
| | - Anna Szczotka-Bochniarz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| |
Collapse
|
4
|
Ćavar Zeljković S, Šišková J, Komzáková K, De Diego N, Kaffková K, Tarkowski P. Phenolic Compounds and Biological Activity of Selected Mentha Species. PLANTS 2021; 10:plants10030550. [PMID: 33804017 PMCID: PMC8000339 DOI: 10.3390/plants10030550] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Mentha species are widely used as food, medicine, spices, and flavoring agents. Thus, chemical composition is an important parameter for assessing the quality of mints. In general, the contents of menthol, menthone, eucalyptol, and limonene comprise one of the major parameters for assessing the quality of commercially important mints. Building further on the phytochemical characterization of the quality of Mentha species, this work was focused on the composition of phenolic compounds in methanolic extracts. Thirteen Mentha species were grown under the same environmental conditions, and their methanolic extracts were subjected to the LC-MS/MS (liquid chromatography-tandem mass spectrometry) profiling of phenolics and the testing their biological activities, i.e., antioxidant and tyrosinase inhibition activities, which are important features for the cosmetic industry. The total phenolic content (TPC) ranged from 14.81 ± 1.09 mg GAE (gallic acid equivalents)/g for Mentha cervina to 58.93. ± 8.39 mg GAE/g for Mentha suaveolens. The antioxidant activity of examined Mentha related with the content of the phenolic compounds and ranged from 22.79 ± 1.85 to 106.04 ± 3.26 mg TE (Trolox equivalents)/g for M. cervina and Mentha x villosa, respectively. Additionally, Mentha pulegium (123.89 ± 5.64 mg KAE (kojic acid equivalents)/g) and Mentha x piperita (102.82 ± 15.16 mg KAE/g) showed a strong inhibition of the enzyme tyrosinase, which is related to skin hyperpigmentation. The most abundant compound in all samples was rosmarinic acid, ranging from 1363.38 ± 8323 to 2557.08 ± 64.21 μg/g. In general, the levels of phenolic acids in all examined mint extracts did not significantly differ. On the contrary, the levels of flavonoids varied within the species, especially in the case of hesperidin (from 0.73 ± 0.02 to 109. 39 ± 2.01 μg/g), luteolin (from 1.84 ± 0.11 to 31.03 ± 0.16 μg/g), and kaempferol (from 1.30 ± 0.17 to 33.68 ± 0.81 μg/g). Overall results indicated that all examined mints possess significant amounts of phenolic compounds that are responsible for antioxidant activity and, to some extent, for tyrosinase inhibition activity. Phenolics also proved to be adequate compounds, together with terpenoids, for the characterization of Mentha sp. Additionally, citrus-scented Mentha x villosa could be selected as a good candidate for the food and pharmaceutical industry, especially due its chemical composition and easy cultivation, even in winter continental conditions.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
- Correspondence: or
| | - Jana Šišková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Karolína Komzáková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Nuria De Diego
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| | - Katarína Kaffková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic; (K.K.); or (P.T.)
- Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (K.K.); (N.D.D.)
| |
Collapse
|
5
|
Garber A, Barnard L, Pickrell C. Review of Whole Plant Extracts With Activity Against Herpes Simplex Viruses In Vitro and In Vivo. J Evid Based Integr Med 2021; 26:2515690X20978394. [PMID: 33593082 PMCID: PMC7894602 DOI: 10.1177/2515690x20978394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex viruses, HSV-1 and HSV-2, are highly contagious and cause lifelong, latent infections with recurrent outbreaks of oral and/or genital lesions. No cure exists for HSV-1 or HSV-2 infections, but antiviral medications are commonly used to prevent and treat outbreaks. Resistance to antivirals has begun to emerge, placing an importance on finding new and effective therapies for prophylaxis and treatment of HSV outbreaks. Botanicals may be effective HSV therapies as the constituents they contain act through a variety of mechanisms, potentially making the development of antiviral resistance more challenging. A wide variety of plants from different regions in the world have been studied for antiviral activity against HSV-1 and/or HSV-2 and showed efficacy of varying degrees. The purpose of this review is to summarize research conducted on whole plant extracts against HSV-1 and/or HSV-2 in vitro and in vivo. The majority of the research reviewed was conducted in vitro using animal cell lines, and some studies used an animal model design. Also summarized are a limited number of human trials conducted using botanical therapies on HSV lesions.
Collapse
Affiliation(s)
- Anna Garber
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Lianna Barnard
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Chris Pickrell
- Department of Research, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Haarberg KMK, Wymore Brand MJ, Overstreet AMC, Hauck CC, Murphy PA, Hostetter JM, Ramer-Tait AE, Wannemuehler MJ. Orally administered extract from Prunella vulgaris attenuates spontaneous colitis in mdr1a -/- mice. World J Gastrointest Pharmacol Ther 2015; 6:223-237. [PMID: 26558156 PMCID: PMC4635162 DOI: 10.4292/wjgpt.v6.i4.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice.
METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity.
RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P < 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P < 0.05) in P. vulgaris-treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P < 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris-treated mdr1a-/- were significantly reduced (P < 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris-treated mdr1a-/- mice.
CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice.
Collapse
|
8
|
Bauer N, Vuković R, Likić S, Jelaska S. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production. Food Technol Biotechnol 2015; 53:3-10. [PMID: 27904326 DOI: 10.17113/ftb.53.01.15.3661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid.
Collapse
Affiliation(s)
- Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a,
HR-10000 Zagreb, Croatia; These authors contributed equally to this work
| | - Rosemary Vuković
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; These authors contributed equally to this work
| | - Saša Likić
- Department of Botany, Faculty of Science, University of Zagreb, Marulićev trg 9a,
HR-10000 Zagreb, Croatia
| | - Sibila Jelaska
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a,
HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Thirugnanasampandan R, Jayakumar R. Protection of cadmium chloride induced DNA damage by Lamiaceae plants. Asian Pac J Trop Biomed 2015; 1:391-4. [PMID: 23569799 DOI: 10.1016/s2221-1691(11)60086-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/02/2011] [Accepted: 04/23/2011] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). METHODS The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. RESULTS Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. CONCLUSIONS The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.
Collapse
Affiliation(s)
- Ramaraj Thirugnanasampandan
- PG and Research Department of Biotechnology, Kongunadu Arts and Science College, GN Mills, Coimbatore-029, Tamil nadu, India
| | | |
Collapse
|
10
|
Non-cytotoxic Thymus capitata extracts prevent Bovine herpesvirus-1 infection in cell cultures. BMC Vet Res 2014; 10:231. [PMID: 25260761 PMCID: PMC4189610 DOI: 10.1186/s12917-014-0231-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Bovine herpes virus type 1 (BHV-1) still causes great economic loss to the livestock industry and trade because there aren’t any available drugs that proved to be fully effective against it. In this study, the cytotoxicity and the antiviral activities of the Thymus capitata extracts were evaluated for the development of new, non toxic and specific anti-herpesvirus drug. Aqueous extracts (AE), ethanolic extracts (EE) and essential oil (EO) of the aerial parts of Thymus capitata were analyzed to determine their chemical compositions by gas chromatography, and high performance liquid chromatography combined with mass spectrometry. Their cytotoxicity and antiviral activities against Bovine Herpesvirus type 1 (BHV-1) were evaluated by quantifying the reduction of the viral cytopathic effect using Madin-Darby Bovine Kidney cell line with colorimetric assay. T. capitata extracts were added at different stages of the viral infection to investigate and better quantify their potential inhibitory effects. Results Polyphenols and flavonoids were the major compounds found in T. capitata EO, EE and AE. The cytotoxic concentrations at 50% were 48.70, 189 and 289 μg ml−1 for EO, EE and AE, respectively. The inhibitor concentrations at 50% for the EO, EE and AE, were 3.36, 47.80 and 164 μg ml−1, respectively. The selectivity index anti-BHV-1 values were 14.49, 3.95 and 1.81 for EO, EE and AE, respectively. Thus, the EO extracts were the most efficient antiviral compounds. T. capitata extracts affect mainly the adsorption of BHV-1 virus to host cells. Conclusion T. capitata extracts inhibit the viral replication by interfering with the early stages of viral adsorption and replication. Thus, T. capitata is a potential candidate for anti-herpesvirus treatment.
Collapse
|
11
|
Ulbricht C, Abrams TR, Brigham A, Ceurvels J, Clubb J, Curtiss W, Kirkwood CD, Giese N, Hoehn K, Iovin R, Isaac R, Rusie E, Serrano JMG, Varghese M, Weissner W, Windsor RC. An evidence-based systematic review of rosemary (Rosmarinus officinalis) by the Natural Standard Research Collaboration. J Diet Suppl 2012; 7:351-413. [PMID: 22432564 DOI: 10.3109/19390211.2010.525049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An evidence-based systematic review of rosemary (Rosmarinus officinalis), including written and statistical analysis of scientific literature, expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
12
|
Antioxidant activities of total phenols of Prunella vulgaris L. in vitro and in tumor-bearing mice. Molecules 2010; 15:9145-56. [PMID: 21150830 PMCID: PMC6259167 DOI: 10.3390/molecules15129145] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/22/2010] [Accepted: 12/08/2010] [Indexed: 11/17/2022] Open
Abstract
Prunella vulgaris L. (PV, Labiatae) is known as a self-heal herb. The different extracts of dried spikes were studied for the best antioxidant active compounds. The 60% ethanol extract (P-60) showed strong antioxidant activity based on the results of 2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonic acid (ABTS˙+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay methods. High performance liquid chromatography (HPLC) and LC/MS analysis showed that the main active compounds in P-60 were phenols, such as caffeic acid, rosmarinic acid, rutin and quercetin. Total phenols were highly correlated with the antioxidant activity (R2=0.9988 in ABTS˙+; 0.6284 in DPPH and 0.9673 FRAP tests). P-60 could inhibit significantly the tumor growth in C57BL/6 mice. It can also been showed that increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content in serum of tumor-bearing mice. These results suggested that P-60 extract had high antioxidant activity in vitro and in vivo and total phenols played an important role in antioxidant activity for inhibition of tumor growth.
Collapse
|