1
|
Zhang H, Hu Q, Zhang Y, Yang L, Tian S, Zhang X, Shen H, Shu H, Xie L, Wu D, Zhou L, Wei X, Cheng C, Jiang J, Wang H, Shen C, Kong D, Xu L. Lachnospiraceae bacterium alleviates alcohol-associated liver disease by enhancing N-acetyl-glutamic acid levels and inhibiting ferroptosis through the KEAP1-NRF2 pathway. Gut Microbes 2025; 17:2517821. [PMID: 40511521 PMCID: PMC12169036 DOI: 10.1080/19490976.2025.2517821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/08/2025] [Accepted: 06/04/2025] [Indexed: 06/18/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent global health issue primarily caused by excessive alcohol consumption. Recent studies have highlighted the gut-liver axis's protective role against ALD, mainly through gut microbiota. However, the precise mechanism remains ill-defined. Our results showed a significant reduction in Lachnospiraceae bacterium in the gut microbiota of ALD patients and ethanol (EtOH)-fed mice, as revealed by 16S rDNA sequencing. Supplementation with Lachnospiraceae bacterium strains in mice significantly reduced inflammation, hepatic neutrophil infiltration, oxidative stress, and improved gut microbiota and intestinal permeability. Multi-omics analysis identified N-Acetyl-glutamic acid (NAG) as the most significantly altered metabolite following Lachnospiraceae bacterium supplementation, with levels positively correlated to Lachnospiraceae bacterium colonization. NAG treatment exhibited significant protective effects in EtOH-exposed hepatocyte cell lines and EtOH-fed mice. Mechanistically, NAG confers hepatoprotection against ALD by activating the KEAP1-NRF2 pathway, inhibiting ferroptosis. Notably, the protective effects of NAG were reversed by the NRF2 inhibitor. In conclusion, oral supplementation with Lachnospiraceae bacterium mitigates alcohol-induced liver damage both in vivo and in vitro by inhibiting ferroptosis through NAG-mediated activation of the KEAP1-NRF2 pathway. Lachnospiraceae bacterium may serve as promising probiotics for future clinical applications.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shanfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Shu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dongqing Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiali Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Qian Z, Chen S, Liao X, Xie J, Xu Y, Zhong H, Ou L, Zuo X, Xu X, Peng J, Wu J, Cai S. Decreased intestinal abundance of Akkermansia muciniphila is associated with metabolic disorders among people living with HIV. Ann Med 2025; 57:2474730. [PMID: 40052450 PMCID: PMC11892071 DOI: 10.1080/07853890.2025.2474730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/12/2025] Open
Abstract
BACKGROUND Previous studies have shown changes in gut microbiota after human immunodeficiency virus (HIV) infection, but there is limited research linking the gut microbiota of people living with HIV (PLWHIV) to metabolic diseases. METHODS A total of 103 PLWHIV were followed for 48 weeks of anti-retroviral therapy (ART), with demographic and clinical data collected. Gut microbiome analysis was conducted using metagenomic sequencing of fecal samples from 12 individuals. Nonalcoholic fatty liver disease (NAFLD) was diagnosed based on controlled attenuation parameter (CAP) values of 238 dB/m from liver fibro-scans. Participants were divided based on the presence of metabolic disorders, including NAFLD, overweight, and hyperlipidemia. Akkermansia abundance in stool samples was measured using RT-qPCR, and Pearson correlation and logistic regression were applied for analysis. RESULTS Metagenomic sequencing revealed a significant decline in gut Akkermansia abundance in PLWHIV with NAFLD. STAMP analysis of public datasets confirmed this decline after HIV infection, while KEGG pathway analysis identified enrichment of metabolism-related genes. A prospective cohort study with 103 PLWHIV followed for 48 weeks validated these findings. Akkermansia abundance was significantly lower in participants with NAFLD, overweight, and hyperlipidemia at baseline, and it emerged as an independent predictor of NAFLD and overweight. Negative correlations were observed between Akkermansia abundance and both CAP values and body mass index (BMI) at baseline and at week 48. At the 48-week follow-up, Akkermansia remained a predictive marker for NAFLD. CONCLUSIONS Akkermansia abundance was reduced in PLWHIV with metabolic disorders and served as a predictive biomarker for NAFLD progression over 48 weeks of ART.
Collapse
Affiliation(s)
- Zhe Qian
- Second Department of Elderly Respiratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suling Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyang Liao
- Second Department of Elderly Respiratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Jingfang Xie
- Department of Geriatrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Yuyuan Xu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiqun Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Ou
- Department of hepatobiliary surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiang Zuo
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuwen Xu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wu
- Second Department of Elderly Respiratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shaohang Cai
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Harberts A, Schnabl B. Microbiota in Alcohol-Associated Organ Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00194-4. [PMID: 40513820 DOI: 10.1016/j.ajpath.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025]
Abstract
Alcohol-associated organ damage is a major cause of morbidity and mortality worldwide, with the liver being the primarily affected organ. Emerging evidence highlights the gut microbiota as a key driver in alcohol-associated liver disease. Changes in the microbiota composition, microbial translocation, and a dysregulated immune response culminate in inflammation and tissue injury. Persistent liver injury eventually promotes disease progression from steatohepatitis to fibrosis and cirrhosis. In this review, we provide an overview of microbiota alterations observed in patients with chronic alcohol consumption and explore the mechanisms by which microbiota contributes to alcohol-associated damage across various organ systems. Emphasis is placed on changes in the gut microbiota and its role in alcohol-associated liver disease, the disease condition with the most robust evidence linking microbiota-related changes to organ injury. Additionally, we highlight key areas where further research is needed to address unresolved questions. Finally, we discuss emerging therapeutic strategies targeting the microbiota to treat alcohol use disorders and prevent alcohol-associated liver diseases.
Collapse
Affiliation(s)
- Aenne Harberts
- Department of Medicine, University of California, San Diego, La Jolla; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla; Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA.
| |
Collapse
|
4
|
Chung BS, Yang K, Park C, Ryu T. Prolonged Intestinal Ethanol Absorption and Oxidative Stress: Revisiting the Gut-Liver Axis in Alcohol-Associated Disease. Int J Mol Sci 2025; 26:5442. [PMID: 40564903 DOI: 10.3390/ijms26125442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 06/04/2025] [Accepted: 06/04/2025] [Indexed: 06/28/2025] Open
Abstract
Chronic alcohol consumption induces oxidative stress not only in the liver but also in the gastrointestinal tract, where prolonged intestinal ethanol absorption plays a pivotal and underrecognized role. This review reframes ethanol pharmacokinetics to emphasize sustained jejunal and ileal uptake, which maintains elevated blood alcohol levels and perpetuates redox imbalance across the gut-liver axis. We integrate recent findings on ethanol-induced barrier dysfunction, CYP2E1-mediated ROS production, microbial dysbiosis, and mitochondrial disruption, proposing that the intestine is an active site of injury and a driver of systemic inflammation. Key mechanistic insights reveal that gut-derived endotoxins, compromised epithelial integrity, and microbiome-mitochondria interactions converge to exacerbate hepatic and extrahepatic damage. We further explore emerging therapeutic strategies-ranging from NAD+ repletion and probiotics to fecal microbiota transplantation-that target this upstream pathology. Recognizing prolonged intestinal ethanol absorption as a clinically meaningful phase offers new directions for early intervention and redox-based treatment in alcohol-associated disease.
Collapse
Affiliation(s)
- Beom Sun Chung
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chihyun Park
- Forensic Chemistry Division, National Forensic Service, Wonju 26460, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
5
|
Cheng Z, Yang L, Chu H. The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. J Adv Res 2025; 72:353-367. [PMID: 38969094 DOI: 10.1016/j.jare.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis, alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes. AIMS The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
6
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lin H, Shao X, Gu H, Yu X, He L, Zhou J, Zhong Z, Guo S, Li D, Chen F, Song Y, Xu L, Wang P, Meng L, Chi J, Lian J. Akkermansia muciniphila ameliorates doxorubicin-induced cardiotoxicity by regulating PPARα-dependent mitochondrial biogenesis. NPJ Biofilms Microbiomes 2025; 11:86. [PMID: 40410194 PMCID: PMC12102390 DOI: 10.1038/s41522-025-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/26/2025] [Indexed: 05/25/2025] Open
Abstract
Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xian Shao
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Haodi Gu
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xinrou Yu
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Jiedong Zhou
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zuoquan Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Department of Haematology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fei Chen
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yongfei Song
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Lili Xu
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Ping Wang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China.
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
8
|
Wang R, Ma F, Yin D, Wang H, Wei X. Intestinal Microbes, Metabolites, and Hormones in Alcohol-Associated Liver Disease. Semin Liver Dis 2025. [PMID: 40334703 DOI: 10.1055/a-2601-9480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Alcohol-associated liver disease (ALD)-encompassing conditions including steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma-refers to hepatic damage arising from excessive or hazardous alcohol consumption, and is now recognized as a significant global health burden. Although the mechanisms underlying ALD remain incompletely understood, several pathways have been substantiated over the last five decades, notably the involvement of intestinal microorganisms and the involvement of the gut-liver axis in alcohol metabolism and ALD pathogenesis. Ethanol intake disrupts the intestinal microbial balance and compromises the gut barrier, resulting in increased permeability to microbial products. The subsequent translocation of microbial metabolites and other antigenic substances to the liver activates hepatic immune responses, thereby contributing to liver injury. In addition, gastrointestinal hormones are also implicated in ALD progression through various mechanisms. Although no therapies for ALD have been approved by the Food and Drug Administration, various therapeutic strategies targeting the intestinal microbiota and gut barrier have been identified. In conclusion, this review discusses the role of the gut-liver axis in alcohol metabolism and ALD pathogenesis and explores the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ruimeng Wang
- Second Clinical Medical College, Anhui Medical University, Hefei, China
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Ma
- Center for Scientific Research of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dou Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiaohui Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Shen H, Liangpunsakul S, Iwakiri Y, Szabo G, Wang H. Immunological mechanisms and emerging therapeutic targets in alcohol-associated liver disease. Cell Mol Immunol 2025:10.1038/s41423-025-01291-w. [PMID: 40399593 DOI: 10.1038/s41423-025-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/19/2025] [Indexed: 05/23/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health challenge, with inflammation playing a central role in its progression. As inflammation emerges as a critical therapeutic target, ongoing research aims to unravel its underlying mechanisms. This review explores the immunological pathways of ALD, highlighting the roles of immune cells and their inflammatory mediators in disease onset and progression. We also examine the complex interactions between inflammatory cells and non-parenchymal liver cells, as well as their crosstalk with extra-hepatic organs, including the gut, adipose tissue, and nervous system. Furthermore, we summarize current clinical research on anti-inflammatory therapies and discuss promising therapeutic targets. Given the heterogeneity of ALD-associated inflammation, we emphasize the need for precision medicine to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Hu ML, Wang FS, Lian WS, Yang CH, Yang JW, Chen IY, Huang CH, Liou JS, Yang MY. Probiotics may not adhere to gut and provide benefits in inflammatory bowel disease patients based on an AOM/DSS murine model. J Formos Med Assoc 2025:S0929-6646(25)00221-9. [PMID: 40393834 DOI: 10.1016/j.jfma.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/11/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Dysbiosis, characterized by imbalanced gut microbiota, is common in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). While probiotics theoretically offer promise for IBD treatment, their actual efficacy remains uncertain, leading to non-recommendation in current guidelines. Akkermansia muciniphila (AKK) is a potential next-generation probiotic strain with benefits in obesity, diabetes and gut protection. Recent study showed reduced AKK abundance in IBD patients and mice with colitis and CAC. Hence, we administered AKK treatment to these mice to assess its effects. METHODS Using a mouse model of colitis and CAC induced by azoxymethane/dextran sodium sulfate (AOM/DSS) in BALB/c mice, we administered AKK orally to mice on the AOM/DSS protocol with 5 × 108 CFU of AKK three times a week for a total 27 times. The treatment effect of AKK were evaluated. RESULTS Despite AKK supplementation, mice showed no significant differences in body weight, colon length, histological inflammation, or short chain fatty acid composition compared to those on the AOM/DSS protocol alone. Unexpectedly, AKK-treated mice exhibited decreased AKK abundance in stool samples, suggesting poor adherence and colonization despite supplementation. These results parallel our previous findings with Clotridium butyricum, indicating challenges in probiotic intervention for severe colitis and CAC due to mucosal barrier damage. CONCLUSION Our study highlights the limitations of probiotic therapy in IBD, attributing its failure to inadequate adherence and colonization in damaged mucosal barriers. Further research is warranted to clarify the role of probiotics in IBD management.
Collapse
Affiliation(s)
- Ming-Luen Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Hui Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing-Wen Yang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Ya Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
12
|
Wu Y, Yao Y, Shen Y, Bai H, Zhang L, Zhang C. Nanoplastics Chronic Toxicity in Mice: Disturbing the Homeostasis of Tryptophan Metabolism in Gut-Lung-Microbiota Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412286. [PMID: 40351096 DOI: 10.1002/smll.202412286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/02/2025] [Indexed: 05/14/2025]
Abstract
Long-term exposure to nanoplastics causes chronic toxicity in mammals, particularly in the gut and lung tissues. The gut-lung-microbiota axis plays a pivotal role in organisms through the management of gut bacteria amino acid metabolic homeostasis. However, chronic toxicity of nanoplastics from gut to lungs have yet to be fully elucidated. In this study, nanoplastics exposure not only causes colon inflammation but also results in lung fibrosis. The abundance of Akkermansia muciniphila (AKK) is decreased after nanoplastics exposure. Interestingly, a positive correlation is observed between AKK and indole-3-lactic (ILA). Supplementation with AKK or ILA ameliorated nanoplastics-induced gut-derived lung injury by restoring the balance of tryptophan metabolism. Furthermore, knocking down indoleamine 2,3-dioxygenase 1 (ido1) upregulated ILA levels, contributing to defense against damage from nanoplastics. These results suggest that regulating ido1 expression and AKK abundance, involved in tryptophan metabolic homeostasis (especially ILA production), maybe a strategy to reduce the biological toxicity induced by nanoplastics. Mogroside V, a natural product, is found to promote AKK growth and inhibit ido1, thereby ameliorating chronic toxicity induced by nanoplastics. The study offers a new understanding of how nanoplastics cause chronic toxicity by dysregulating gut-lung-microbiota axis, as well as strategies for preventing and treating nanoplastics.
Collapse
Affiliation(s)
- Yanliang Wu
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongrong Yao
- School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye Shen
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hangjia Bai
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Louqian Zhang
- Department of Thoratic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
13
|
Yan S, Yin XM. Cholestasis in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00155-5. [PMID: 40350058 DOI: 10.1016/j.ajpath.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality. ALD covers a spectrum of diseases, ranging from mild and reversible hepatic steatosis to the development of fibrosis, cirrhosis, and alcohol-associated hepatitis (AH). AH is marked by a rapid onset of jaundice and elevated serum levels of aspartate aminotransferase in individuals with heavy alcohol use. It can progress to acute-on-chronic liver failure, with a mortality rate of approximately 30% within the first month. Unfortunately, treatment options for AH are still limited. Cholestasis refers to an impairment in bile formation or flow, leading to clinical symptoms, such as fatigue, pruritus, and jaundice. Cholestasis and biliary dysfunction are commonly seen in patients with AH and can significantly worsen the prognosis. However, the mechanisms and roles of cholestasis in ALD are not yet fully understood. In this review, we will summarize recent findings and explore the potential roles and mechanisms of cholestasis in the progression of ALD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
14
|
Nie YM, Zhou WQ, Niu T, Mao MF, Zhan YX, Li Y, Wang KP, Li MX, Ding K. Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota. Acta Pharmacol Sin 2025; 46:1329-1344. [PMID: 39833303 PMCID: PMC12032012 DOI: 10.1038/s41401-024-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.
Collapse
Affiliation(s)
- Ying-Min Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Qi Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Ting Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meng-Fei Mao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xue Zhan
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei-Xia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| |
Collapse
|
15
|
Luo Y, Luo L, Xia M, Liu Q, Zhang G. Studies on the changes in rectal permeability and intestinal microbiota with developmental age in young rats. Front Microbiol 2025; 16:1551693. [PMID: 40336831 PMCID: PMC12058081 DOI: 10.3389/fmicb.2025.1551693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction The gut contains a diverse array of commensal microorganisms, forming a vital biological barrier within the intestine that contributes to the overall intestinal mucosal barrier. However, research on the rectal barrier during early development remains limited. This study aims to investigate the relationship between intestinal microbiota and rectal barrier function in young rats. Methods We evaluated the rectal barrier structure and function in rats at 2-, 4-, and 10-week-old. Methodology included histological analysis, Muc2 expression quantification, immunofluorescence localization of tight junction proteins (ZO-1, Occludin, Claudins), blood glucose monitoring after rectal insulin administration, and 16S rDNA sequencing of rectal microbiota. Spearman correlation analysis was used to explore mechanisms linking age-dependent changes in rectal permeability to microbiota dynamics. Results Physiological rectal permeability was significantly higher in 2-week-old rats compared to 4- and 10-week-old rats (p < 0.01), although systemic biomarkers (LPS, D-LA, and LBP) showed no significant differences. The rectal microbiota exhibited marked age-dependent shifts in composition, α/β-diversity, and metabolic pathways, with increased abundance of beneficial taxa (e.g., Muribaculaceae, Akkermansia) in older rats. Correlation analysis revealed strong associations between reduced permeability, elevated Occludin expression, and microbiota maturation (R = 0.65, p < 0.001). Conclusion This study demonstrates that age-dependent maturation of the rectal barrier is closely linked to microbiota composition and tight junction protein expression, providing insights into developmental mechanisms and potential strategies for pediatric rectal drug delivery.
Collapse
Affiliation(s)
- Yunfeng Luo
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangming Luo
- Yudu County Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Mengle Xia
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qian Liu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guosong Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
16
|
Jiang M, Jia Y, Ma C, Zeng Z, Wu Y, Gan H, Zhang H. Akkermansia muciniphila Protects Against Trinitrobenzene Sulfonic Acid Induced Colitis by Inhibiting IL6/STAT3 Pathway. Inflamm Bowel Dis 2025:izaf057. [PMID: 40209092 DOI: 10.1093/ibd/izaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND Inflammatory bowel disease is a long-standing inflammatory disorder that influences the intestinal tract. The intent of this research is to explore whether the relative abundance of Akkermansia muciniphila is related to the IL6/STAT3 pathway and the fundamental molecular mechanisms of A. muciniphila on a trinitrobenzene sulfonic acid (TNBS)-induced enteritis mouse model, including the expression of inflammatory cytokines and proteins in the IL6/STAT3 signaling pathway. METHODS The association between the A. muciniphila and IL6/STAT3 was investigated by using mucosal biopsies and fecal samples. TNBS-induced colitis mouse models were performed to elucidate the underlying mechanisms. The alteration of intestinal microbiota was organized by 16s rRNA sequencing. RESULTS In Crohn's disease patients, the level of STAT3 and IL-6 presented a negative relationship with A. muciniphila. The expression of IL-6, p-STAT3, and STAT3 was downregulated in A.m+TNBS group, indicating A. muciniphila may inhibit the IL6/STAT3 pathway in TNBS-induced enteritis in vivo. To investigate the potential defensive role of A. muciniphila supplementation in vivo with TNBS-induced enteritis, 16S rRNA sequencing was performed to analyze changes in the intestinal microbiota composition. The results revealed a marked increase in microbial diversity and abundance within the A. muciniphila-treated group, suggesting a beneficial modulation of the gut microbiome associated with the supplementation. CONCLUSIONS Our findings declared that A. muciniphila supplementation alleviates gastrointestinal inflammation through IL-6/STAT3 signaling pathway. This protective effect was mediated by the downregulation of the IL-6 and STAT3, highlighting a potential mechanism by which A. muciniphila modulates inflammatory responses. This work disclosed that A. muciniphila demonstrates a defensive influence against TNBS-induced enteritis in vivo, proposing it qualified as a unique therapeutic focusing on modulating IL-6, STAT3, or p-STAT3 in the treatment of colitis.
Collapse
Affiliation(s)
- Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongbin Jia
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huatian Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
19
|
Huang X, Jin Y, Wang T, Fu D, Ma J, Yu X, Lu Y, Song J, Chen Y, Yan R, Zhang Y. Gut Akkermansia enhances liver protection and facilitates copper removal during D-penicillamine treatment in a Wilson's disease model. Microbiol Spectr 2025; 13:e0057324. [PMID: 40162768 PMCID: PMC12054026 DOI: 10.1128/spectrum.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Patients afflicted with Wilson's disease (WD) may encounter hepatic and extraneous manifestations due to the progressive accumulation of copper in the liver and other subsequent organs. Copper-chelating agents, such as D-penicillamine (DPA), are commonly utilized in the medical treatment of copper overload in WD. Manipulating the composition of gut microbiota appropriately can enhance drug efficacy and safety. This study aims to investigate how targeted intervention on gut microbiota influences the effectiveness of copper removal in a WD model during DPA treatment. First, following a 4-week treatment of DPA, the liver copper concentration and gut microbial composition were assessed in the WD mice model to identify potential candidates for targeted regulation of gut microbiota. Second, after 8 weeks of manipulating the gut microbiota during DPA treatment, various parameters including blood liver function indicators, tissue copper load, hepatic histopathological features, and gut microbiota were investigated in WD mice. The findings demonstrated that the presence of Akkermansia significantly enhances the efficacy of DPA, leading to a more efficient elimination of copper from tissues and a greater improvement in liver injury, liver dysfunction, and gut dysbiosis. In contrast, Butyricimonas has an antagonistic effect. The results of gene function prediction analysis indicated that the altered gut microbial function by DPA and Akk is primarily linked to energy generation/utilization, amino acid, fatty acid, lipid, and nucleic acid metabolisms. To summarize, this study provides experimental evidence for the potential application of targeted regulation of gut microbiota in the adjunctive therapy of copper dysregulation disease.IMPORTANCECopper is an essential element in virtually all living organisms. Wilson's disease (WD) is a representative disorder caused by the disruption of copper homeostasis. Oral-chelating agents are the first-line treatment for copper-overloaded diseases, with D-penicillamine (DPA) being the prototypical drug. However, the efficacy and adverse effects of DPA remain challenging in its use for WD treatment. In our study, the supplementation of Akkermansia muciniphila (Akk), a key gut microbe, along with DPA was demonstrated to enhance copper removal, ameliorate liver injury and dysfunction, and restore gut dysbiosis in a mouse model of WD. These findings highlight the significant potential applications of targeted modulation of gut microbiota as "pharmacomicrobiomics" in adjunctive therapy for disorders involving copper dysregulation.
Collapse
Affiliation(s)
- Xi Huang
- Department of Electrocardiogram, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanqi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hospital-Acquired Infection Control, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danting Fu
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jindi Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyuan Song
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Haining People’s Hospital, Haining, Zhejiang, China
| |
Collapse
|
20
|
Yakut A. Gut microbiota in the development and progression of chronic liver diseases: Gut microbiota-liver axis. World J Hepatol 2025; 17:104167. [PMID: 40177197 PMCID: PMC11959663 DOI: 10.4254/wjh.v17.i3.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The gut microbiota (GM) is a highly dynamic ecology whose density and composition can be influenced by a wide range of internal and external factors. Thus, "How do GM, which can have commensal, pathological, and mutualistic relationships with us, affect human health?" has become the most popular research issue in recent years. Numerous studies have demonstrated that the trillions of microorganisms that inhabit the human body can alter host physiology in a variety of systems, such as metabolism, immunology, cardiovascular health, and neurons. The GM may have a role in the development of a number of clinical disorders by producing bioactive peptides, including neurotransmitters, short-chain fatty acids, branched-chain amino acids, intestinal hormones, and secondary bile acid conversion. These bioactive peptides enter the portal circulatory system through the gut-liver axis and play a role in the development of chronic liver diseases, cirrhosis, and hepatic encephalopathy. This procedure is still unclear and quite complex. In this study, we aim to discuss the contribution of GM to the development of liver diseases, its effects on the progression of existing chronic liver disease, and to address the basic mechanisms of the intestinal microbiota-liver axis in the light of recent publications that may inspire the future.
Collapse
Affiliation(s)
- Aysun Yakut
- Department of Gastroenterology, İstanbul Medipol University Sefakoy Health Practice Research Center, İstanbul 38000, Türkiye.
| |
Collapse
|
21
|
Murgiano M, Bartocci B, Puca P, di Vincenzo F, Del Gaudio A, Papa A, Cammarota G, Gasbarrini A, Scaldaferri F, Lopetuso LR. Gut Microbiota Modulation in IBD: From the Old Paradigm to Revolutionary Tools. Int J Mol Sci 2025; 26:3059. [PMID: 40243712 PMCID: PMC11988433 DOI: 10.3390/ijms26073059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders primarily comprising two main conditions: ulcerative colitis and Crohn's disease. The gut microbiota's role in driving inflammation in IBD has garnered significant attention, yet the precise mechanisms through which the microbiota influences IBD pathogenesis remain largely unclear. Given the limited therapeutic options for IBD, alternative microbiota-targeted therapies-including prebiotics, probiotics, postbiotics, and symbiotics-have been proposed. While these approaches have shown promising results, microbiota modulation is still mainly considered an adjunct therapy to conventional treatments, with a demonstrated impact on patients' quality of life. Fecal microbiota transplantation (FMT), already approved for treating Clostridioides difficile infection, represents the first in a series of innovative microbiota-based therapies under investigation. Microbial biotherapeutics are emerging as personalized and cutting-edge tools for IBD management, encompassing next-generation probiotics, bacterial consortia, bacteriophages, engineered probiotics, direct metabolic pathway modulation, and nanotherapeutics. This review explores microbial modulation as a therapeutic strategy for IBDs, highlighting current approaches and examining promising tools under development to better understand their potential clinical applications in managing intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Federica di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
| | - Alfredo Papa
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (B.B.); (P.P.); (F.d.V.); (A.D.G.); (A.P.); (G.C.); (A.G.); (F.S.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Rome, Italy
| |
Collapse
|
22
|
D’Alessandro M, Gottardi D, Arboleya S, Alvarado-Jasso GM, Parolin C, Vitali B, Lanciotti R, Gueimonde M, Patrignani F. Impact of Fermented Soy Beverages Containing Selected Vaginal Probiotics on the In Vitro Fecal Microbiota of Post-Menopausal Women. Foods 2025; 14:1022. [PMID: 40232047 PMCID: PMC11942071 DOI: 10.3390/foods14061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome of women can change after menopause, and during this phase women can also be more susceptible to vaginal dysbiosis. Recent studies have explored the probiotic potential of Lactobacillus crispatus BC4 and Lactobacillus gasseri BC9 against various pathogens and their use as co-starters in foods. However, their effects on the gut microbiota of post-menopausal women, who are more prone to dysbiosis, have not been examined. This study investigated the effects of predigested soy beverages (INFOGEST) containing BC4 and BC9 (encapsulated or not) on the composition and metabolic activity of the gut microbiota in post-menopausal women, using a fecal batch culture model. Parameters such as pH, gas, SCFAs, and microbiota composition (targeted qPCR and 16S rRNA gene sequencing) were assessed. The study, while highlighting a strong variability among donors, showed differences in gut microbiota response to the tested products. For instance, donor 2 showed a significant increase in bifidobacteria with BC4 + BC9 and E-BC9, while BC4 increased Ruminococcaceae in donors 1 and 3, and E-BC4 and E-BC9 enhanced Akkermansia in donor 1. BC4, E-BC4, E-BC9, and E-BC4 + BC9 significantly impacted metabolic activity, as measured by SCFAs, compared to other samples. However, no significant differences in gas production were observed.
Collapse
Affiliation(s)
- Margherita D’Alessandro
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
| | - Davide Gottardi
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Rosalba Lanciotti
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute IPLA-CSIC, C/Francisco Pintado Fe 26, 33011 Oviedo, Spain; (S.A.); (G.M.A.-J.); (M.G.)
| | - Francesca Patrignani
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy; (R.L.); (F.P.)
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
23
|
Liu QL, Zhou H, Wang Z, Chen Y. Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis. Front Cell Dev Biol 2025; 13:1563184. [PMID: 40181829 PMCID: PMC11965903 DOI: 10.3389/fcell.2025.1563184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Colorectal liver metastasis (CRLM) represents a major therapeutic challenge in colorectal cancer (CRC), with complex interactions between the gut microbiota and the liver tumor microenvironment (TME) playing a crucial role in disease progression via the gut-liver axis. The gut barrier serves as a gatekeeper, regulating microbial translocation, which influences liver colonization and metastasis. Through the gut-liver axis, the microbiota actively shapes the TME, where specific microbial species and their metabolites exert dual roles in immune modulation. The immunologically "cold" nature of the liver, combined with the influence of the gut microbiota on liver immunity, complicates effective immunotherapy. However, microbiota-targeted interventions present promising strategies to enhance immunotherapy outcomes by modulating the gut-liver axis. Overall, this review highlights the emerging evidence on the role of the gut microbiota in CRLM and provides insights into the molecular mechanisms driving the dynamic interactions within the gut-liver axis.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute of Digestive Surgery, Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Xu J, Chen N, Li Z, Liu Y. Gut microbiome and liver diseases. FUNDAMENTAL RESEARCH 2025; 5:890-901. [PMID: 40242515 PMCID: PMC11997574 DOI: 10.1016/j.fmre.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 04/18/2025] Open
Abstract
Symbiotic microbiota plays a crucial role in the education, development, and maintenance of the host immune system, significantly contributing to overall health. Through the gut-liver axis, the gut microbiota and liver have a bidirectional relationship that is becoming increasingly evident as more research highlights the translocation of the gut microbiota and its metabolites. The focus of this narrative review is to examine and discuss the importance of the gut-liver axis and the enterohepatic barrier in maintaining overall health. Additionally, we emphasize the crucial role of the gut microbiome in liver diseases and explore potential therapeutic strategies for liver diseases by manipulating the microbiota.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
25
|
Jin L, Hu R, Qing Y, Rang Z, Cui F. Exploring the Role of Gut Vascular Barrier Proteins in HIV-Induced Mucosal Damage: A Comparative Study. AIDS Res Hum Retroviruses 2025; 41:159-166. [PMID: 39501662 DOI: 10.1089/aid.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
This study aims to compare intestinal mucosal damage and the expression levels of occludin, zonula occludens-1 (ZO-1), vascular endothelial (VE)-cadherin, β-catenin, and plasmalemma vesicle-associated protein (PLVAP) in the gut vascular barrier (GVB) among people living with HIV (PLWH), asymptomatic PLWH, and healthy volunteers (non-PLWH). Three groups were selected for the study: PLWH, asymptomatic PLWH, and healthy volunteers. Colonic mucosal tissue samples were collected via colonoscopy from all participants. Histological examination of the colonic mucosa was conducted using hematoxylin and eosin staining. The expression levels of occludin, ZO-1, VE-cadherin, β-catenin, and PLVAP were assessed using RT-qPCR, immunohistochemistry, and western blot analyses. Pathological scores of colonic mucosa in PLWH and asymptomatic PLWH were significantly higher than those in non-PLWH (p < .001 and p = .0056, respectively). CD4+ T cell counts in asymptomatic PLWH and non-PLWH were significantly higher than in PLWH (p < 0.05). The CD4+/CD8+ T cell ratio in non-PLWH significantly exceeded those in PLWH and asymptomatic PLWH (p < .05). Analysis of protein and mRNA expression revealed: (1) no statistically significant differences in PLVAP-mRNA expression across all groups (p > .05); (2) higher PLVAP protein levels in PLWH compared with asymptomatic PLWH and non-PLWH (p < .05), with no significant differences between asymptomatic PLWH and non-PLWH (p = .632); (3) significantly higher PLVAP expression in the colonic mucosa of PLWH and asymptomatic PLWH compared with non-PLWH (p = .034 and p = .011, respectively), with no significant differences between PLWH and asymptomatic PLWH (p > .999). ZO-1 expression was significantly lower in PLWH than in non-PLWH (p = .012), with no notable differences between asymptomatic PLWH and other groups. PLWH, compared with healthy controls, exhibit significant inflammatory changes in the intestinal mucosa. PLVAP expression serves as a potential indicator to assess the extent of GVB damage and disease progression in PLWH.
Collapse
Affiliation(s)
- Li Jin
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Hu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Qing
- Department of Proctology and Dermatology, Chengdu Anorectal Hospital, Chengdu, China
| | - Zhen Rang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Cui
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Mittal A, Choudhary N, Kumari A, Yadav K, Maras JS, Sarin SK, Sharma S. Protein supplementation differentially alters gut microbiota and associated liver injury recovery in mouse model of alcohol-related liver disease. Clin Nutr 2025; 46:96-106. [PMID: 39892166 DOI: 10.1016/j.clnu.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Patients with Alcohol-related Liver Disease (ALD) are advised increased protein supplementation. These nutrients are also available to gut microbiota. We evaluated the effects of protein supplementation from two sources, soya (veg) or egg, on gut microbiota modulation and ALD remission. METHODS ALD was induced in mice using the Lieber-DeCarli diet and incremental ethanol + thioacetamide (150 mg/kg body-weight,i.p.) twice-a-week. After 8wks, mice were fed standard (std.), egg (ovalbumin) or veg diet (20 % increase protein) for 7days. Biochemical parameters, hepatic proteome and gut microbiota composition were analyzed and correlated to capture liver and intestinal recovery. RESULTS Veg-diet decreased hepatic steatosis and fibrosis compared with std diet (83.3 %, p = 0.001 and 75 %, p = 0.01, respectively) or egg-diet (66.6 %, p = 0.03 and 25 %, p = 0.04, respectively). ALT and AST levels reduced by 40 % (p = 0.04) and 27.3 % (p = 0.04), respectively in veg diet compared to egg diet. Veg-diet increased intestinal claudin-3 (61 %, p = 0.02) and occludin (80 %, p = 0.001) compared to egg-diet. Plasma endotoxin levels in veg were reduced by 64 % and 32 % compared to std. (p = 0.04) or egg (p = 0.06). Veg-diet increased beneficial taxa, Lachnospiraceae UCG-006 (8.06-folds, p = 1.64E-25), Prevotellaceae NK3B31 (9.96-folds, p = 1.58E-36), Kurthia (8.11-folds, p = 3.98E-16) and Akkermansia (5.9-folds, p = 5.01E-75), while decreasing pathogenic Roseburia (-3.28-folds, p = 1.60E-06), Klebsiella (-5.7-folds, p = 1.55E-06), Staphylococcus (-5.3-folds, p = 1.62E-12). Hepatic proteome showed an increase in pyruvate, cysteine, methionine metabolism, bile acid biosynthesis, and glycolysis. CONCLUSION Alteration in protein alone can affect variable outcomes in ALD, with protein from vegetable sources resulting in enhanced improvement in the gut-liver axis. Vegetable protein-supplemented diet enhances fatty acid beta oxidation and energy metabolism accompanied by improvement in gut-dysbiosis and ALD associated hepatic injury.
Collapse
Affiliation(s)
- Ashi Mittal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nishu Choudhary
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kavita Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shvetank Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
27
|
Guo M, Jiang X, Ouyang H, Zhang X, Zhang S, Wang P, Bi G, Wu T, Zhou W, Liang F, Yang X, Fan S, Fang JH, Chen P, Bi H. Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals. Acta Pharm Sin B 2025; 15:1430-1446. [PMID: 40370533 PMCID: PMC12069244 DOI: 10.1016/j.apsb.2025.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
Collapse
Affiliation(s)
- Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
28
|
Mak KM, Shekhar AC. Lipopolysaccharide, arbiter of the gut-liver axis, modulates hepatic cell pathophysiology in alcoholism. Anat Rec (Hoboken) 2025; 308:975-1004. [PMID: 39166429 DOI: 10.1002/ar.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Over the last four decades, clinical research and experimental studies have established that lipopolysaccharide (LPS)-a component of the outer membrane of gram-negative bacteria-is a potent hepatotoxic molecule in humans and animals. Alcohol abuse is commonly associated with LPS endotoxemia. This review highlights LPS molecular structures and modes of release from bacteria, plasma LPS concentrations, induction of microbiota dysbiosis, disruption of gut epithelial barrier, and translocation of LPS into the portal circulation impacting the pathophysiology of hepatic cells via the gut-liver axis. We describe and illustrate the portal vein circulation and its distributaries draining the gastrointestinal tract. We also elaborate on the gut-liver axis coupled with enterohepatic circulation that represents a bidirectional communication between the gut and liver. The review also updates the data on how circulating LPS is cleared in a coordinated effort between Kupffer cells, hepatocytes, and liver sinusoidal endothelial cells. Significantly, the article reviews and updates the modes/mechanisms of action by which LPS mediates the diverse pathophysiology of Kupffer cells, hepatocytes, sinusoidal endothelial cells, and hepatic stellate cells primarily in association with alcohol consumption. Specifically, we review the intricate linkages between ethanol, microbiota dysbiosis, LPS production, gut-liver axis, and pathophysiology of various hepatic cells. The maintenance of the gut barrier structural and functional integrity and microbiome homeostasis is essential in mitigating alcoholic liver disease and improving liver health.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
29
|
Yang F, Li X, Sun J, Pang X, Sun Q, Lu Y. Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39905925 DOI: 10.1080/10408398.2025.2455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
30
|
Shen H, Zhou L, Yang Y, Shu H, Wu D, Yang S, Xie L, Yang L, Tian S, Zhang X, Ma R, Jiang L, Jiang M, Zhang H, Wang Y, Zhang H, Gao S, Xu L, Wang H. The gut microbiota-produced vitamin B6 mitigates alcohol-associated liver disease by attenuating hepatic oxidative stress damage. Hepatol Commun 2025; 9:e0599. [PMID: 39670862 PMCID: PMC11637752 DOI: 10.1097/hc9.0000000000000599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/22/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a major clinical issue characterized by progressive stages, including hepatic steatosis, liver fibrosis, cirrhosis, and HCC. Patients with long-term chronic alcoholism often present with gut microbiota dysbiosis and reduced plasma levels of vitamin B6. This study aimed to verify that gut microbiota disruption in ALD significantly contributes to reduced in vivo production of vitamin B6 and to investigate the role of this reduction in the pathogenesis of ALD. METHODS The ALD was investigated utilizing the Gao-binge mouse model. Fecal microbial composition was analyzed in pair-fed mice and ALD mice to identify alcohol-induced functional changes in the microbiota. Additionally, liver protein expression profiles and liver and plasma metabolomic profiles were characterized to elucidate the role of vitamin B6 in ALD pathogenesis through integrated proteomic and metabolomic analyses. The findings were further validated using animal models and clinical patient samples. RESULTS Alcohol consumption disrupted the gut microbiota in the mice, impairing the vitamin B6 synthesis by intestinal microorganisms. Vitamin B6 deficiency aggravated the disorder of amino acid metabolism in the liver and inhibited ornithine aminotransferase expression, thereby worsening oxidative stress damage. In patients with ALD, significant disturbances of gut microbiota were observed, along with decreased intestinal vitamin B6 levels, which were negatively correlated with serum biochemical markers. CONCLUSIONS The imbalance of gut microbiota in ALD mice reduces vitamin B6 synthesis, which affects amino acid metabolism and glutathione synthesis in the liver, thereby exacerbating ALD. These findings suggest that vitamin B6 may play a critical protective role in ALD progression by regulating amino acid metabolism.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanru Yang
- Department of Blood Transfusion, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hang Shu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Dongqing Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Simin Yang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Lei Yang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Shanfei Tian
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Ma
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Man Jiang
- Department of Neurology, Mengcheng First People’s Hospital, Bozhou, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yan Wang
- School of Health Service Management, Anhui Medical University, Hefei, China
| | - Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Jiang Q, Zhu X, Sun L, Xie C, Wang X, Ma L, Yan X. Akkermansia muciniphila Promotes SIgA Production and Alters the Reactivity Toward Commensal Bacteria in Early-Weaned Piglets. J Nutr 2025; 155:52-65. [PMID: 39528052 DOI: 10.1016/j.tjnut.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Secretory IgA (SIgA) is the first line of defense in protecting the intestinal epithelium against pathogenic bacteria, regulating gut microbiota composition, and maintaining intestinal homeostasis. Early weaning strategies may disrupt SIgA levels in piglet intestines, causing a decline in immune response and early weaning stress. However, the specific microbial mechanisms modulating SIgA in early-weaned piglets are not well understood. OBJECTIVES We hypothesized that Akkermansia muciniphila increases intestinal SIgA production in the early-weaned piglets. METHODS Fecal SIgA levels, SIgA-coated bacteria abundance, and fecal metagenomes were compared between 6 Huanjiang miniature (HM) and 6 Duroc×Landrace×Yorkshire (DLY) early-weaned piglets to identify bacterial species involved in SIgA modulation. Four bacterial species were investigated using 5 groups (Control, A. muciniphila, L. amylovorus, L. crispatus, and L. acidophilus) of male specific pathogen-free C57BL/6J mice, weaned 3 wk postbirth (n = 8/group). Subsequently, 10-d-old Landrace×Yorkshire (LY) piglets were randomly assigned to 3 groups (Control, 109A. muciniphila, and 108A. muciniphila) (n = 10/group) to evaluate the effect of orally administered A. muciniphila on intestinal SIgA production and microbial composition. RESULTS HM early-weaned piglets showed significantly higher SIgA levels [7.59 μg/mg, 95% confidence interval (CI): 3.2, 12, P = 0.002] and SIgA-coated bacteria abundance (8.64%, 95% CI: 3.2, 14, P = 0.014) than DLY piglets. In the mouse model, the administration of A. muciniphila significantly increased SIgA levels (3.50 μg/mg, 95% CI: 0.59, 6.4, P = 0.018), SIgA-coated bacteria abundance (9.06%, 95% CI: 4, 14, P = 0.018), and IgA+ plasma cell counts (6.1%, 95% CI: 4.3, 8, P = 0.005). In the pig experiments, the oral administration of A. muciniphila to LY piglets significantly enhanced intestinal SIgA concentrations (4.22 μg/mg, 95% CI: 0.37, 8.5, P = 0.034) and altered the SIgA-coated bacterial landscape. CONCLUSIONS Early intervention with A. muciniphila in nursing piglets can increases intestinal SIgA production and alter the reactivity toward commensal bacteria upon early weaning.
Collapse
Affiliation(s)
- Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Yazhouwan National Laboratory (YNL), Sanya, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingling Sun
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunlin Xie
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Shuhan W, Jinxiao L, Luorui S, Liuying C, Fangyuan Z, Mengqi Z, Qifeng L, Yuju C, Junli Z, Yao W, Shenglan Y. Dachengqi decoction ameliorated liver injury in liver fibrosis mice by maintaining gut vascular barrier integrity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156272. [PMID: 39577253 DOI: 10.1016/j.phymed.2024.156272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Severe liver fibrosis may be accompanied by intestinal barrier damage, such as bacterial peritonitis, suggesting that the role of the gut-liver axis is nonnegligible. Dachengqi decoction (DCQD) was reported to improve bowel movements, but whether DCQD was effective for intestinal damage caused by liver fibrosis remained unclear. PURPOSE To investigate the role of DCQD in liver fibrosis-related gut vascular barrier (GVB) damage in mice. STUDY DESIGN DCQD was verified to reduce the imbalance of the intestinal vascular barrier and restore intestinal homeostasis to prove that DCQD acts through the gut-liver axis. METHODS Three graded doses of DCQD were gavaged into the CCL4-induced mice for 12 weeks to evaluate the resistance to liver and intestinal damage. Immunoblotting and primary flow cytometry were used to assess organ damage; PV-1 to indicate gut vascular barrier damage; serum endotoxin, fecal SCFAs, and liver microbiota translocation to examine the gut-liver axis's crosstalk. Network pharmacology and RNA sequencing were used to analyze and verify the signaling pathway of DCQD. RESULTS DCQD significantly ameliorated fibrosis and inflammatory response in the CCL4-induced mice, alleviated gut leakage, downregulated PV-1, relieved liver enterobacterial translocation, restored intestinal homeostasis, and reduced infiltration of myeloid cells in the lamina propria. Network pharmacology and RNA sequencing results indicated that DCQD exerted anti-fibrotic and anti-inflammatory effects in the liver through inhibition of the ESR1/NF-κB/TNFα pathway and maintained GVB homeostasis through the FUT2/Wnt/β-Catenin pathway. CONCLUSIONS DCQD broke the closed-loop damage of the gut-liver axis to improve GVB injury in mice with liver fibrosis.
Collapse
Affiliation(s)
- Wang Shuhan
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Li Jinxiao
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Shang Luorui
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Chen Liuying
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Zhou Fangyuan
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Zhang Mengqi
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Lin Qifeng
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Cai Yuju
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China
| | - Zhang Junli
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wang Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
| | - Yang Shenglan
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City 430022, Hubei Province, China.
| |
Collapse
|
33
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
34
|
Li Z, Gu M, Zaparte A, Fu X, Mahen K, Mrdjen M, Li XS, Yang Z, Ma J, Thoudam T, Chandler K, Hesler M, Heathers L, Gorse K, Van TT, Wong D, Gibson AM, Wang Z, Taylor CM, Quijada P, Makarewich CA, Hazen SL, Liangpunsakul S, Brown JM, Lefer DJ, Welsh DA, Sharp TE. Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease. Nat Commun 2024; 15:10788. [PMID: 39738016 PMCID: PMC11685538 DOI: 10.1038/s41467-024-55084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- International Flavors and Fragrances Health and Bioscience, Shanghai, China
| | - Aline Zaparte
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Mahen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Marko Mrdjen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Themis Thoudam
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maggie Hesler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Heathers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thanh Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Wong
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher M Taylor
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pearl Quijada
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Heart and Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Thomas E Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Heart Institute, Morsani College of Medicine, USF Health, University South Florida, Tampa, FL, USA.
| |
Collapse
|
35
|
Wang Z, Ye R, Zhang S, Liu C, Chen K, Zhu K, Wang P, Wang F, Huang J. Amelioration of LPS-Induced Jejunum Injury and Mucus Barrier Damage in Mice by IgY Embedded in W/O/W Emulsion. Foods 2024; 13:4138. [PMID: 39767078 PMCID: PMC11675984 DOI: 10.3390/foods13244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier. IgY + DE increased the amount of related transcription factors (Math1, Spdef, Elf3, and Klf4) and promoted thrush cell differentiation. IgY + DE ameliorated LPS-induced reduction in mucin quantity and markers. It promoted the expression of Muc1 and Muc2 and increased the mRNA expression levels of Muc1, Muc2, Muc3, Muc4, Muc13, and Agr2 (p < 0.05). IgY + DE increased the expression of several glycosyltransferases involved in mucin glycosylation. IgY + DE also neutralized the LPS attack on the expression of jejunal inflammatory factors IL-1β, IL-6, IL-4, and TNF-α. In conclusion, the IgY-embedded double emulsion can be used as a dietary supplement for immunotherapy to prevent LPS-induced jejunal injury in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ke Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lasha 851414, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| |
Collapse
|
36
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
37
|
Skladany L, Kubanek N, Adamcova Selcanova S, Zilincanova D, Havaj D, Sulejova K, Soltys K, Messingerova L, Lichvar M, Laffers L, Zilincan M, Honsova E, Liptak P, Banovcin P, Bures J, Koller T, Golubnitschaja O, Arab JP. 3PM-guided innovation in treatments of severe alcohol-associated hepatitis utilizing fecal microbiota transplantation. EPMA J 2024; 15:677-692. [PMID: 39635024 PMCID: PMC11612130 DOI: 10.1007/s13167-024-00381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 12/07/2024]
Abstract
RATIONALE Severe alcohol-associated hepatitis (SAH) is the most critical, acute, inflammatory phenotype within the alcohol-associated liver disease (ALD) spectrum, characterized by high 30- and 90-day mortality. Since several decades, corticosteroids (CS) are the only approved pharmacotherapy offering highly limited survival benefits. Contextually, there is an evident demand for 3PM innovation in the area meeting patients' needs and improving individual outcomes. Fecal microbiota transplantation (FMT) has emerged as one of the new potential therapeutic options. In this study, we aimed to address the crucial 3PM domains in order to assess (i) the impact of FMT on mortality in SAH patients beyond CS, (ii) to identify factors associated with the outcome to be improved (iii) the prediction of futility, (iv) prevention of suboptimal individual outcomes linked to increased mortality, and (v) personalized allocation of therapy. METHODS We conducted a prospective study (NCT04758806) in adult patients with SAH who were non-responders (NR) to or non-eligible (NE) for CS between January 2018 and August 2022. The intervention consisted of five 100 ml of FMT, prepared from 30 g stool from an unrelated healthy donor and frozen at - 80 °C, administered daily to the upper gastrointestinal (GI) tract. We evaluated the impact of FMT on 30- and 90-day mortality which we compared to the control group selected by the propensity score matching and treated by the standard of care; the control group was derived from the RH7 registry of patients hospitalized at the liver unit (NCT04767945). We have also scrutinized the FMT outcome against established and potential prognostic factors for SAH - such as the model for end-stage liver disease (MELD), Maddrey Discriminant Function (MDF), acute-on-chronic liver failure (ACLF), Liver Frailty Index (LFI), hepatic venous-portal pressure gradient (HVPG) and Alcoholic Hepatitis Histologic Score (AHHS) - to see if the 3PM method assigns them a new dimension in predicting response to therapy, prevention of suboptimal individual outcomes, and personalized patient management. RESULTS We enrolled 44 patients with SAH (NR or NE) on an intention-to-treat basis; we analyzed 33 patients per protocol for associated factors (after an additional 11 being excluded for receiving less than 5 doses of FMT), and 31 patients by propensity score matching for corresponding individual outcomes, respectively. The mean age was 49.6 years, 11 patients (33.3%) were females. The median MELD score was 29, and ACLF of any degree had 27 patients (81.8%). FMT improved 30-day mortality (p = 0.0204) and non-significantly improved 90-day mortality (p = 0.4386). Univariate analysis identified MELD ≥ 30, MDF ≥ 90, and ACLF grade > 1 as significant predictors of 30-day mortality, (p = 0.031; p = 0.014; p = 0.034). Survival was not associated with baseline LFI, HVPG, or AHHS. CONCLUSIONS AND RECOMMENDATIONS IN THE FRAMEWORK OF 3PM In the most difficult-to-treat sub-cohort of patients with SAH (i.e., NR/NE), FMT improved 30-day mortality. Factors associated with benefit included MELD ≤ 30, MDF ≤ 90, and ACLF < 2. These results support the potential of gut microbiome as a therapeutic target in the context of 3PM research and vice versa - to use 3PM methodology as the expedient unifying template for microbiome research. The results allow for immediate impact on the innovative concepts of (i) personalized phenotyping and stratification of the disease for the clinical research and practice, (ii) multilevel predictive diagnosis related to personalized/precise treatment allocation including evidence-based (ii) prevention of futile and sub-optimally effective therapy, as well as (iii) targeted prevention of poor individual outcomes in patients with SAH. Moreover, our results add to the existing evidence with the potential to generate new research along the SAH's pathogenetic pathways such as diverse individual susceptibility to alcohol toxicity, host-specific mitochondrial function and systemic inflammation, and the role of gut dysbiosis thereof. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-024-00381-5.
Collapse
Affiliation(s)
- Lubomir Skladany
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Natalia Kubanek
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Svetlana Adamcova Selcanova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Daniela Zilincanova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Daniel Havaj
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Karolina Sulejova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Lucia Messingerova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Bratislava, Slovakia
| | | | - Lukas Laffers
- Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Banska Bystrica, Slovakia
| | - Michal Zilincan
- Department of Radiology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia
| | - Eva Honsova
- UniLabs S.R.O - Pathology, Prague, Czech Republic
| | - Peter Liptak
- Jessenius Faculty of Medicine in Martin (JFM CU), Gastroenterology Clinic JFM CU, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Banovcin
- Department of Internal Medicine, Charles University First Faculty of Medicine and Military University Hospital Prague, Prague, Czech Republic
| | - Jan Bures
- Department of Internal Medicine, Charles University First Faculty of Medicine and Military University Hospital Prague, Prague, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Prague, Prague, Czech Republic
| | - Tomas Koller
- Gastroenterology and Hepatology Subdivision, 5Th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Juan-Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, ON Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Geng X, Zhuang M, Tian W, Shang H, Gong Z, Lv Y, Li J. Green Radish Polysaccharide Prevents Alcoholic Liver Injury by Interfering with Intestinal Bacteria and Short-Chain Fatty Acids in Mice. Foods 2024; 13:3733. [PMID: 39682806 DOI: 10.3390/foods13233733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to ascertain the potential benefits of green radish polysaccharide (GRP) in treating alcoholic liver disease (ALD) in mice and explore its mechanism of action. Using biochemical analysis, high-throughput sequencing of gut microbiota, and gas chromatography-mass spectrometry to measure short-chain fatty acids (SCFAs) in feces, we found that GRP intervention significantly improved lipid metabolism and hepatic function in mice subjected to excessive alcohol intake. The GRP intervention reduced malondialdehyde levels by 66% and increased total superoxide dismutase levels by 22%, thereby mitigating alcohol-induced oxidative stress. Furthermore, GRP intervention in mice with alcohol consumption resulted in a reduction in tumor necrosis factor, interleukin 6, and lipopolysaccharide levels by 12%, 9%, and 25%, respectively, effectively attenuating alcoholic liver inflammation. 16S rRNA amplicon sequencing demonstrated that excessive alcohol consumption markedly altered the gut microbiota composition in mice. The GRP treatment resulted in a significant reduction in the number of beneficial bacteria (Lactobacillus and Lachnospiraceae_NK4A136_group) and an increase in the proportion of harmful bacteria (Muribaculaceae and Verrucomicrobiota). The metabolomic analyses of the SCFAs demonstrated an increase in the contents of SCFAs, acetic acid, propionic acid, and butyric acid, following GRP supplementation. Furthermore, the metabolic levels of cholinergic synapses and glycolysis/gluconeogenesis were found to be modulated. In conclusion, these findings suggest that GRP may attenuate alcohol-induced oxidative damage in the liver by modulating the gut microbiota and hepatic metabolic pathways. This may position GRP as a potential functional component for ALD prevention.
Collapse
Affiliation(s)
- Xiong Geng
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Miaomiao Zhuang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Weina Tian
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Huayan Shang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ziyi Gong
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yanfang Lv
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
40
|
Zhang H, Pan Y, Jiang Y, Chen M, Ma X, Yu X, Ren D, Jiang B. Akkermansia muciniphila ONE effectively ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. NPJ Sci Food 2024; 8:97. [PMID: 39562574 PMCID: PMC11576909 DOI: 10.1038/s41538-024-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Akermansia muciniphila shows promise as a next-generation probiotic, however, its beneficial regulatory effects on mice ulcerative colitis (UC) has not been extensively investigated. We used an Akkermansia muciniphila strain (AKK ONE) isolated from healthy human feces to study its effect on DSS-induced colitis in mice. Our results demonstrate that AKK ONE supplementation significantly improves food intake, weight, colon length, disease activity index (DAI) score, organ index, and tissue damage of colitis mice. AKK ONE notably improved intestinal barrier integrity by significantly enhancing expression of occludin and claudin-1. Additionally, AKK ONE reduced inflammation by down-regulating IL-1β, IL-6, and TNF-α, and up-regulating IL-10. In addition to reducing excessive inflammation, AKK ONE also increased the abundance of Akkermansia and decreased the abundance of Bacteroides. Furthermore, the AKK ONE intervention markedly increased SCFAs in cecal contents. AKK ONE may be a potential therapeutic agent for improving UC, based on the findings of this study.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yue Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Ying Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Mengling Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xueping Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China.
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China.
| |
Collapse
|
41
|
Hou M, Song P, Chen Y, Yang X, Chen P, Cao A, Ni Y. Bile acids supplementation improves colonic mucosal barrier via alteration of bile acids metabolism and gut microbiota composition in goats with subacute ruminal acidosis (SARA). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117313. [PMID: 39536567 DOI: 10.1016/j.ecoenv.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease due to feeding high-concentrate (HC) diets to ruminants, especially dairy cows, in intensive farming system. Long term feeding HC diets commonly induce damages to hindgut barrier, leading to the translocation of harmful substances such as endotoxins (LPS) from lumen to blood, which results in a low-grade inflammation and stress response. Secondary bile acids (SBAs) play an important role in maintaining intestinal homeostasis. However, the function of SBAs on the intestinal epithelial barrier in SARA remains unclear. In this study, 15 growing goats were randomly divided into 3 groups, control group (30 % concentrate of dry matter, CON), SARA group (70 % concentrate of dry matter, SARA), and SARA+BAs group (70 % concentrate of dry matte, supplemented with 3 g/d/goat of BAs, SARA+BAs). The changes of mucosal permeability, gut microbiota and bile acids (BAs) profile was measured in the colon. The results showed that compared to CON group, the level of plasma D-lactate and diamine oxidase activity (DAO) (P < 0.05) was elevated in SARA group, while BAs supplementation significantly decreased plasma DAO (P < 0.05). The thickness of colonic mucosa, goblet cells (GCs) number (P < 0.01) and the abundance of MUC2 and occludin expression (P < 0.05) were significantly decreased in SARA group, while BAs supplementation markedly increased GCs number and improved mucosal barrier. BAs effectively reduced the content of LPS and volatile fatty acids (VFAs) in the colonic digesta (P < 0.05). Furthermore, BAs ameliorated SARA-induced reduction of total BAs (P < 0.001), primary BAs (P < 0.05), and conjugated BAs (P < 0.05) including taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) and taurodeoxycholic acid (TDCA), as well as significantly increased hyodeoxycholic acid (HDCA) and lithocholic acid (LCA) contents in colonic digesta. 16S rRNA gene sequence analysis revealed that BAs decreased the abundance of Prevotella and Treponema, but increased the abundance of Akkermansia which was positively correlated with GCs number and MUC2 abundance. BAs supplementation improved the changes in the abundance of Roseburia, Negativibacillus, Lactobacillus, and unclassified_f_prevotellaceae, which were correlated with TCA, TCDCA, and TDCA levels. RNA-Seq results showed that, compared to SARA group, BAs activated the PPAR signaling pathway which was positively correlated with the number of GCs. In summary, BAs supplementation remodels the profiles of gut microbiota and metabolites, activates the PPAR signaling pathway, and eventually ameliorates intestinal mucosal barrier damage.
Collapse
Affiliation(s)
- Manman Hou
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pin Song
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoran Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengnan Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aizhi Cao
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
42
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
43
|
Kong FS, Huang P, Chen JH, Ma Y. The Novel Insight of Gut Microbiota from Mouse Model to Clinical Patients and the Role of NF-κB Pathway in Polycystic Ovary Syndrome. Reprod Sci 2024; 31:3323-3333. [PMID: 38653859 DOI: 10.1007/s43032-024-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a metabolic disorder characterized by hyperandrogenism and related symptoms in women of reproductive age. Emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development of PCOS. The gut microbiota, a complex bacterial ecosystem, has been extensively studied for various diseases, including PCOS, while the underlying mechanisms are not fully understood. This review comprehensively summarizes the changes in gut microbiota and metabolites observed in PCOS and their potential association with the condition. Additionally, we discuss the role of abnormal nuclear factor κB signaling in the pathogenesis of PCOS. These findings offer valuable insights into the mechanisms of PCOS and may pave the way for the development of control and therapeutic strategies for this condition in clinical practice. By bridging the gap between mouse models and clinical patients, this review contributes to a better understanding of the interplay between gut microbiota and inflammation in PCOS, thus paving new ways for future investigations and interventions.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Panwang Huang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
44
|
Yang Y, Schnabl B. Gut Bacteria in Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:663-679. [PMID: 39362714 PMCID: PMC11450261 DOI: 10.1016/j.cld.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) poses a significant global public health challenge, with high patient mortality rates and economic burden. The gut microbiome plays an important role in the onset and progression of alcohol-associated liver disease. Excessive alcohol consumption disrupts the intestinal barrier, facilitating the entry of harmful microbes and their products into the liver, exacerbating liver damage. Dysbiosis, marked by imbalance in gut bacteria, correlates with ALD severity. Promising microbiota-centered therapies include probiotics, phages, and fecal microbiota transplantation. Clinical trials demonstrate the potential of these interventions to improve liver function and patient outcomes, offering a new frontier in ALD treatment.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
45
|
Chi YY, Xiang JY, Li HM, Shi HY, Ning K, Shi C, Xiang H, Xie Q. Schisandra chinensis polysaccharide prevents alcohol-associated liver disease in mice by modulating the gut microbiota-tryptophan metabolism-AHR pathway axis. Int J Biol Macromol 2024; 282:136843. [PMID: 39461640 DOI: 10.1016/j.ijbiomac.2024.136843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Polysaccharides are one of the main active components of Schisandra chinensis and have been shown to possess diverse biological activities. In this study, we investigated the preventive effect of Schisandra chinensis polysaccharide (SCP) on alcohol-associated liver disease (ALD) by chronic-plus-binge ethanol feeding and the underlying mechanisms. The results suggest that supplementation with SCP prevents ALD by modulating gut microbiota and tryptophan (Trp) metabolism. SCP significantly enriched intestinal Lactobacillus, especially Lactobacillus reuteri, restored the content of intestinal indole derivatives (TRM, IAA, ILA, IALD) that can activate the aromatic hydrocarbon receptor (AHR), increased the colon AHR pathway activity, repaired intestinal barriers damage, reduced the circulating LPS, and inhibited the liver inflammation, oxidative stress, and lipid accumulation. The in vitro Trp metabolizing capacity was used to selected for a strain of L.reuteri whose in vitro proliferation was similarly promoted by SCP. Importantly, the gavage of the L.reuteri increased intestinal TRM content in mice. In addition, its ALD preventive effects were consistent with SCP and dependent on the colon AHR pathway. Our findings confirm that SCP may prevent ALD by mudulating the gut microbial-Trp metabolism-AHR pathway axis, suggesting that supplementation with the prebiotic SCP is an effective way to prevent ALD.
Collapse
Affiliation(s)
- Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Jun-Yan Xiang
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK.
| | - Hui-Min Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Hao-Yu Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Chao Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, People's Republic of China.
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, People's Republic of China
| |
Collapse
|
46
|
Yan T, Sun J, Zhang Y, Wen C, Yang J. Enteromorpha prolifera Polysaccharide Alleviates Acute Alcoholic Liver Injury in C57 BL/6 Mice through the Gut-Liver Axis and NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23258-23270. [PMID: 39404145 DOI: 10.1021/acs.jafc.4c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Enteromorpha prolifera polysaccharide (EP2) protection against acute alcoholic liver injury (AALI) in mice was investigated. By integration of physiological indicators, gut microbiota, and short-chain fatty acids (SCFAs), the mechanism of EP2 in alleviating AALI was disclosed. The results showed that EP2 significantly ameliorated alcohol-induced abnormal transaminase activities, liver and intestinal systemic inflammation, and intestinal environmental disorders. EP2 significantly reduces liver and serum LPS contents by 1.69-fold and 1.54-fold. Furthermore, inhibition of the NF-κB signaling pathway by EP2 reduced the production of proinflammatory cytokines such as TNF-α (1.83-fold), IL-6 (11.09-fold), and IL-1β (1.99-fold). EP2 restored SCFAs to normal levels by upregulating the abundance of beneficial bacteria (Colidextribacter, Ruminococcus, unclassified_Lachnospiraceae, and Akkermansia). The alleviation of AALI by EP2 occurs through protection of the intestinal mucosal barrier and reduction of LPS permeating in serum. The decrease in LPS inactivates the NF-κB signaling pathway and prevents inflammation. In short, EP2 regulates the gut-liver axis and inflammation, alleviating effects in AALI mice.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
47
|
Li S, Zhou C, Liu T, Zhang L, Liu S, Zhao Q, Liu J, Zhao W. Causal relationships between the gut microbiota, inflammatory cytokines, and alcoholic liver disease: a Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1442603. [PMID: 39497803 PMCID: PMC11532067 DOI: 10.3389/fendo.2024.1442603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Previous studies have suggested a potential association between gut microbiota and the development of alcohol-related liver disease (ALD). However, the causal relationship between gut microbiota and ALD, as well as the role of inflammatory cytokines as mediators, remains unclear. This study aims to explore the causal relationship between gut microbiota and ALD using Mendelian randomization (MR) methods, and to analyze the mediating role of inflammatory cytokines. Methods Gut microbiota, 91 inflammatory cytokines, and ALD were identified from summary data of large-scale genome-wide association studies (GWAS). MR was employed to investigate the causal relationship between gut microbiota, cytokines, and ALD, with the inverse variance-weighted method (IVW) as the primary statistical approach. Additionally, we examined whether inflammatory cytokines act as mediating factors in the pathway from gut microbiota to ALD. Results The IVW results confirmed two positive and one negative causal effect between genetic liability in the gut microbiota and ALD. Escherichia coli (P= 0.003) was identified as a protective factor for ALD, while Roseburia hominis (P=0.023) and Family Porphyromonadaceae (P=0.038) were identified as risk factors for ALD. Furthermore, there were five positive and two negative causal effects between inflammatory cytokines and ALD, with CUB domain-containing protein 1 (P= 0.035), Macrophage colony-stimulating factor 1 (P=0.047), Cystatin D (P = 0.035), Fractalkine (P=0.000000038), Monocyte chemoattractant protein-1 (P=0.004) positively associated with ALD onset. CD40L receptor (P= 0.044) and Leukemia inhibitory factor (P = 0.024) exhibited protective effects against ALD. Mediation MR analysis indicated that CUB domain-containing protein 1 (mediation proportion=1.6%, P=0.035), Cystatin D (mediation proportion=1.5%, P=0.012), and Monocyte chemoattractant protein-1 (mediation proportion=3.3%, P=0.005) mediated the causal effect of Roseburia hominis on ALD. Conclusion In conclusion, our study supports a causal relationship among gut microbiota, inflammatory cytokines and ALD, with inflammatory cytokines potentially acting as mediating factors in the pathway from gut microbiota to ALD.
Collapse
Affiliation(s)
- Shanzheng Li
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Tong Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihui Zhang
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Sutong Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
48
|
Wu M, Tian C, Zou Z, Jin M, Liu H. Gastrointestinal Microbiota in Gastric Cancer: Potential Mechanisms and Clinical Applications-A Literature Review. Cancers (Basel) 2024; 16:3547. [PMID: 39456641 PMCID: PMC11506470 DOI: 10.3390/cancers16203547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Emerging evidence highlights the crucial role of gastrointestinal microbiota in the pathogenesis of gastric cancer. Helicobacter pylori (H. pylori) infection stands out as a primary pathogenic factor. However, interventions such as anti-H. pylori therapy, gastric surgeries, immunotherapy, and chronic inflammation significantly remodel the gastric microbiome, implicating a broader spectrum of microorganisms in cancer development. These microbial populations can modulate gastric carcinogenesis through various mechanisms, including sustained chronic inflammation, bacterial genotoxins, alterations in short-chain fatty acids, elevated gastrointestinal bile acids, impaired mucus barrier function, and increased concentrations of N-nitrosamines and lactic acid. The dynamic changes in gut microbiota also critically influence the outcomes of anti-cancer therapies by modifying drug bioavailability and metabolism, thus affecting therapeutic efficacy and side effect profiles. Additionally, the effectiveness of radiotherapy can be significantly impacted by gut microbiota alterations. Novel therapeutic strategies targeting the microbiome, such as dietary interventions, probiotic and synbiotic supplementation, and fecal microbiota transplantation, are showing promise in cancer treatment. Understanding the intricate relationship between the gut microbiota and gastric cancer is essential for developing new, evidence-based approaches to the prevention and treatment of this malignancy.
Collapse
Affiliation(s)
- Mengjiao Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenjun Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The Eighth Hospital of Wuhan, Wuhan 430012, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
49
|
Xie S, Wang C, Song J, Zhang Y, Wang H, Chen X, Suo H. Lacticaseibacillus rhamnosus KY16 Improves Depression by Promoting Intestinal Secretion of 5-HTP and Altering the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21560-21573. [PMID: 39311539 DOI: 10.1021/acs.jafc.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Increasing research suggests a connection between gut microbiota and depressive disorders. Targeted changes to the intestinal flora may contribute to alleviating anxiety and depression. This study aimed to identify probiotics that could attenuate stress-induced abnormal behavior and explore potential mechanisms. The administration of LR.KY16 significantly reduced stress-induced abnormal behaviors and physiological dysfunction. The mechanism may be via regulating the structure of the intestinal microbiota in mice, increasing the abundance of Akkermansia muciniphila, prompting enterochromaffin cells to secrete 5-HTP in the gut, which enters the brain through the bloodstream and promotes the synthesis of 5-HT in the brain, and then activates brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) through the 5-HT1A receptor. In addition, LR.KY16 also increased the expression of claudin-7, occludin, and zonula occludens-1 (ZO-1) in the colon, inhibited microglial M1 polarization, and inhibited systemic inflammation.
Collapse
Affiliation(s)
- Shicai Xie
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
50
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|