1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Chakraborty S, Dinakaran I, Karunasagar A, Ahmed W, Mohan Raj J, Karunasagar I, Vashisth M, Chauhan A. WGS of a lytic phage targeting biofilm-forming carbapenem-resistant Klebsiella pneumoniae prevalent in a tertiary healthcare setup. Microb Pathog 2025; 205:107680. [PMID: 40348211 DOI: 10.1016/j.micpath.2025.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are listed as a priority-one critical pathogen category by the WHO because of their abysmal treatment outcomes owing to antibiotic inefficiency. Among CRE, Klebsiella pneumoniae is prevalent in acquiring resistance genes and withstanding the last-resort drugs. Additionally, its ability to form robust biofilms further exacerbates the treatment challenges. The escalating resistance and recalcitrance of biofilm-residing bacteria against standard antibiotic treatments demand an alternative to antibiotics. Phages, being nature-tailored, are a never-ending arsenal against the bacteria because of their capacity to lyse bacteria rapidly and co-evolve with bacteria. In our study, we isolated K. pneumoniae from patients at Madras Medical Mission Hospital (MMMH), India, and assessed their antibiogram profiles, presence of carbapenemase genes, and biofilm-forming abilities. 100 % of the strains were extended-spectrum beta-lactamase producing, multidrug-resistant (ESBL-MDR), with 95 % harbouring carbapenemase genes. Among the isolates, 65 % were strong biofilm formers, and the rest were moderate. Further, we isolated a bacteriophage, SAKp11, from the hospital sewage, which was able to lyse 62 out of 167 clinical isolates and successfully reduced 99.99 % viable bacterial cells of the 24-h-old biofilm of strong biofilm forming MDR K. pneumoniae strains. Whole genome analysis revealed that SAKp11, with a genome size of 59,338bp, belonged to the Casjensviridae family, one of the less explored bacteriophage families. Comprehensive characterization of SAKp11 indicated its suitability for therapeutic use. Our study highlights the severity of drug-resistant K. pneumoniae in Indian healthcare and the inadequacy of current antibiotics, underscoring the potential of phages as an alternative therapeutic option.
Collapse
Affiliation(s)
- Sambuddha Chakraborty
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India
| | - I Dinakaran
- The Madras Medical Mission, 4-A Dr JJ Nagar Mogappair, 600053, Chennai, India
| | - Anusha Karunasagar
- Speciality Microbiology, The Princess Alexandra Hospital Harlow, Essex, CM20 2UD, United Kingdom
| | - Wasim Ahmed
- Department of Microbiology, Tripura University, Suryamaninagar, 799022, Tripura, India
| | - Juliet Mohan Raj
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, 575018, Karnataka, India
| | - Medhavi Vashisth
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India
| | - Ashwini Chauhan
- Department of Microbiology, University of Delhi South Campus, Benito Jaurez Marg, New Delhi, 110021, India.
| |
Collapse
|
3
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Rand EA, Quinones-Olvera N, Jean KDC, Hernandez-Perez C, Owen SV, Baym M. Phage DisCo: targeted discovery of bacteriophages by co-culture. mSystems 2025:e0164424. [PMID: 40434069 DOI: 10.1128/msystems.01644-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Phages interact with many components of bacterial physiology from the surface to the cytoplasm. Although there are methods to determine the receptors and intracellular systems a specified phage interacts with retroactively, finding a phage that interacts with a chosen piece of bacterial physiology a priori is very challenging. Variation in phage plaque morphology does not to reliably distinguish distinct phages, and therefore many potentially redundant phages may need to be isolated, purified, and individually characterized to find phages of interest. Here, we present a method in which multiple bacterial strains are co-cultured on the same screening plate to add an extra dimension to plaque morphology data. In this method, phage discovery by co-culture (Phage DisCo), strains are isogenic except for fluorescent tags and one perturbation expected to impact phage infection. Differential plaquing on the strains is easily detectable by fluorescent signal and implies that the perturbation made to the surviving strain in a plaque prevents phage infection. We validate the Phage DisCo method by showing that characterized phages have the expected plaque morphology on Phage DisCo plates and demonstrate the power of Phage DisCo for multiple targeted discovery applications, from receptors to phage defense systems.IMPORTANCEIn this work, we describe a targeted phage discovery method that allows immediate isolation of phages with specific traits. Currently, to find a phage with specific properties, huge libraries of phages must be collected and screened retroactively. This assay, Phage Discovery by Co-culture (Phage DisCo), works by co-culture of host strains that are identical except for one perturbation that may interfere with phage infection and a unique fluorescent marker. These strains are co-cultured with an environmental sample of interest in traditional plaque assay format, making phage characteristics easily identifiable by fluorescent signal after imaging of the screening plate. We validate that Phage DisCo can identify phages with specific properties, even when these phages are rare in samples. This approach allows rapid exploration of the diversity within phage samples with vastly streamlined processes, and we anticipate it will be widely adopted within the phage discovery field.
Collapse
Affiliation(s)
- Eleanor A Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Kesther D C Jean
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Roxbury Community College, Boston, Massachusetts, USA
| | - Carmen Hernandez-Perez
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Siân V Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
5
|
Vareschi S, Jaut V, Vijay S, Allen RJ, Schreiber F. Antimicrobial efflux and biofilms: an interplay leading to emergent resistance evolution. Trends Microbiol 2025:S0966-842X(25)00123-4. [PMID: 40410028 DOI: 10.1016/j.tim.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/25/2025]
Abstract
The biofilm mode of growth and drug efflux are both important factors that impede the treatment of bacterial infections with antimicrobials. Decades of work have uncovered the mechanisms involved in both efflux and biofilm-mediated antimicrobial tolerance, but links between these phenomena have only recently been discovered. Novel findings show how efflux impacts global cellular physiology and antibiotic tolerance, underpinned by phenotypic heterogeneity. In addition efflux can mediate cell-to-cell interactions, relevant in biofilms, via mechanisms including efflux of signaling molecules and metabolites, signaling using pump components and the establishment of local antibiotic gradients via pumping. These recent findings suggest that biofilm antibiotic tolerance and efflux are closely coupled, with synergistic effects leading to the evolution of antimicrobial resistance in the biofilm environment.
Collapse
Affiliation(s)
- Silvia Vareschi
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Valerie Jaut
- Division Biodeterioration and Reference Organisms, Department of Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Srinivasan Vijay
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Rosalind J Allen
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Department of Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
6
|
Ghosh S, Pradhan S, Ghosh K. Mini-review: Insight of bacteriophage therapy in clinical practice. Virology 2025; 610:110583. [PMID: 40424677 DOI: 10.1016/j.virol.2025.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
The emergence of drug-resistant microorganisms requires implementing alternative therapy rather than antibiotics. Phage therapy is a fantastic substitute for antibiotics. Compared to antibiotics, phage therapy has many benefits, such as high specificity for the target bacteria, auto-dosing, biofilm penetration, and a decreased likelihood of resistance development. Regulatory issues, manufacturing barriers, the possibility of phage resistance, and interactions with the human immune system are only a few of the major obstacles that still exist. Various phage-derived enzymes and bioengineered phages may increase the therapeutic potential to combat antibiotic-resistant infections. This mini-review is compiled from research on phage mechanisms in mammalian immune systems, therapeutic uses, regulatory issues, and phage engineering advancements. Thus, it offers a hopeful future in phage therapy by offering a thorough overview of the therapeutic potentiality of phage and the global aspects of phage therapy. In conclusion, phages are expected to become an alternative treatment for antibiotics against multidrug-resistant (MDR) bacteria for medical purposes.
Collapse
Affiliation(s)
- Smita Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India; Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
7
|
Zhou F, Wang K, Ji S, Liao X, Zhang W, Teng T, Wang L, Li Q. The virulent bacteriophage Henu8 as an antimicrobial synergist against Escherichia coli. Microbiol Spectr 2025:e0163324. [PMID: 40377308 DOI: 10.1128/spectrum.01633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
As the overuse of antibiotics has not yet been strictly limited in urban areas, drug-resistant Escherichia coli has become a fatal pressure for bacteremia treatment. Considering the outstanding performance of bacteriophages in vitro, bacteriophages may serve as an alternative to heal chronic refractory infections. In this study, a 49,890 bp double-stranded circular DNA phage, Henu8, was isolated and was able to lyse the group of E. coli strains tested in this study. Prominent biological characterization revealed that the highly adsorbed bacteriophage Henu8 could form a fully transparent plaque with a narrow translucent halo. The optimal multiplicity of infection of the bacteriophage Henu8 was 0.01, with a burst size of 275 PFU/cell. Genomic analysis revealed a G + C content of 44.17% Henu8, in which 65 open reading frames were located, which could be assigned as a new species in the genus Hanrivervirus of the subfamily Tempevirinae. The effective antibacterial ability and the obvious biofilm destruction and inhibition capability of phage Henu8 were observed. The time-killing assay demonstrated the synergetic potential of Henu8 with antibiotics in vitro for E. coli eradication. Henu8 has profound medicinal potential in a mouse bacteremia model. These studies indicate that Henu8 is a novel bacteriophage with therapeutic potential alone or in combination with antibiotics for clinical treatment.IMPORTANCEThe findings described in this study constitute concrete evidence that it is possible to significantly synergize the antimicrobial activity of bacteriophages and antibiotics. We showed that the newly isolated potent bacteriophage Henu8 lyses Escherichia coli rapidly but tends to produce resistant bacteria. The bacteriophage Henu8 has synergistic antimicrobial effects with several antibiotics and is not susceptible to developing resistance. These results provide further evidence that bacterial resistance to phages arises, possibly at an adaptive cost to sensitivity to antibiotics. Therefore, the findings of this study are important for increasing the potential of phages for clinical applications and developing new approaches to improve their therapeutic efficacy against bacterial drug resistance.
Collapse
Affiliation(s)
- Fang Zhou
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kexiao Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Shuai Ji
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Xiaochen Liao
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Wenwen Zhang
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Tieshan Teng
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Li Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qiming Li
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Pirlar RF, Halili N, Travnik T, Trampuz A, Karbysheva S. In vitro activity of cefiderocol against Gram-negative aerobic bacilli in planktonic and biofilm form-alone and in combination with bacteriophages. Sci Rep 2025; 15:17105. [PMID: 40379736 DOI: 10.1038/s41598-025-01704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Multi-drug resistant Gram-negative pathogens are increasingly difficult-to-treat perpetrators of infections. New, innovative, and more multifaceted therapies for the treatment of multi-drug resistant strains are thus urgent to hinder further drug resistance and mitigate deadly, untreatable infections. Our study aimed to investigate the efficacy of cefiderocol against Gram-negative aerobic bacteria alone and in combination with phages. The minimum inhibitory concentration (MIC) of cefiderocol was determined using the microdilution broth method, while the minimum biofilm bactericidal concentration was assessed using isothermal microcalorimetry. The combined effect of cefiderocol and phages was evaluated using colony-forming unit counts. Results demonstrated a notable antibacterial effect of cefiderocol, with 83.4% of tested strains exhibiting susceptibility. When combined with phages, the MIC of cefiderocol was reduced by 2-64-fold, indicating a synergistic interaction between the two agents. Furthermore, the combination therapy showed enhanced efficacy against biofilm compared to monotherapy with either cefiderocol or phages alone, leading to complete biofilm elimination in certain cases. This study highlights the potential of combining cefiderocol with phages as a strategy to combat multi-drug resistant Gram-negative bacterial infections. The observed synergy suggests that this combination therapy could improve treatment outcomes and help address the challenges of antibiotic resistance and biofilm-associated infections.
Collapse
Affiliation(s)
- Rima Fanaei Pirlar
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tina Travnik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- School of Medicine, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Svetlana Karbysheva
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Weissfuss C, Li J, Behrendt U, Hoffmann K, Bürkle M, Tan C, Krishnamoorthy G, Korf IHE, Rohde C, Gaborieau B, Debarbieux L, Ricard JD, Witzenrath M, Felten M, Nouailles G. Adjunctive phage therapy improves antibiotic treatment of ventilator-associated-pneumonia with Pseudomonas aeruginosa. Nat Commun 2025; 16:4500. [PMID: 40368965 PMCID: PMC12078490 DOI: 10.1038/s41467-025-59806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Bacterial multidrug resistance poses an urgent challenge for the treatment of critically ill patients developing ventilator-associated pneumonia (VAP). Phage therapy, a potential alternative when conventional antibiotics fail, has been unsuccessful in first clinical trials when used alone. Whether combining antibiotics with phages may enhance effectiveness remains to be tested in experimental models. Here, we use a murine model of Pseudomonas-induced VAP to compare the efficacy of adjunctive phage cocktail for antibiotic therapy to either meropenem or phages alone. Combined treatment in murine VAP results in faster clinical improvement and prevents lung epithelial cell damage. Using human primary epithelial cells to dissect these synergistic effects, we find that adjunctive phage therapy reduces the minimum effective concentration of meropenem and prevents resistance development against both treatments. These findings suggest adjunctive phage therapy represents a promising treatment for MDR-induced VAP, enhancing the effectiveness of both antibiotics and phages while reducing adverse effects.
Collapse
Grants
- M.W. received funding for research from Biotest AG, Boehringer Ingelheim, Pantherna, Vaxxilon, and for talks or advisory from Actelion, Aptarion, Astra Zeneca, Bayer Health Care, Berlin Chemie, Biotest, Boehringer Ingelheim, Chiesi, Glaxo Smith Kline, Novartis, Pantherna, Teva.
- G.N. received funding for research from Biotest AG.
Collapse
Affiliation(s)
- Chantal Weissfuss
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Jingjing Li
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Behrendt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karen Hoffmann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magdalena Bürkle
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chunjiang Tan
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gopinath Krishnamoorthy
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Imke H E Korf
- Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Braunschweig, Germany
| | - Christine Rohde
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Baptiste Gaborieau
- Institut Pasteur, Department of Microbiology, Bacteriophage Bacteria Host Laboratory, Université Paris Cité, CNRS UMR6047, Paris, France
- Infection Antimicrobials Modelling Evolution, Université Paris-Cité, Inserm, UMR 1137, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Laurent Debarbieux
- Institut Pasteur, Department of Microbiology, Bacteriophage Bacteria Host Laboratory, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Jean-Damien Ricard
- Infection Antimicrobials Modelling Evolution, Université Paris-Cité, Inserm, UMR 1137, Paris, France
- APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Felten
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Franklin HC, Makhlouf R, Ha AD, Bataglioli RA, Baker ZR, Murphy SA, Jirsa H, Heuler J, Southard T, Aylward FO, Hsu BB. A bacteriophage-conditional mouse model reveals the impact of phages within a conventionally colonized gut microbiota. Cell Host Microbe 2025; 33:745-758.e6. [PMID: 40300596 DOI: 10.1016/j.chom.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
The significance of bacteriophages in the gut microbiota remains poorly understood due, in part, to an absence of an animal model that allows for comparative study of conditions with or without phages while retaining the microbial diversity attained by conventional colonization. We describe a mouse model that uses a broadly available chemical compound, acriflavine, to preferentially deplete virulent phages from the gut without significantly impacting gut bacteria. We then show that gut phage density can be reconstituted by oral gavage. Using this bacteriophage-conditional (BaCon) mouse model, we reveal that while phages have comparatively minimal impact during equilibrium conditions, they increase the potency of ampicillin against commensal gut bacteria. Collectively, our work presents an animal model that can be leveraged to conditionally study the role of phages in complex, physiologically relevant systems and further identifies virulent gut phages as potential sources of bacterial variability during major perturbations.
Collapse
Affiliation(s)
- Hollyn C Franklin
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anh D Ha
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rogerio A Bataglioli
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zachary R Baker
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sydney A Murphy
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hannah Jirsa
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua Heuler
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bryan B Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Naseef Pathoor N, Valsa V, Ganesh PS, Gopal RK. From resistance to treatment: the ongoing struggle with Acinetobacter baumannii. Crit Rev Microbiol 2025:1-22. [PMID: 40326718 DOI: 10.1080/1040841x.2025.2497791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Acinetobacter baumannii (A. baumannii) has become a major hospital-acquired pathogen, well-known for its rapid development of resistance to multiple antibiotics. The rising incidence of antibiotic-resistant A. baumannii presents a significant global public health challenge. Gaining a deep understanding of the mechanisms behind this resistance is essential for creating effective treatment options. This comprehensive review explores the understanding of various antibiotic resistance mechanisms in A. baumannii. It covers intrinsic resistance, acquired resistance genes, efflux pumps, changes in outer membrane permeability, alterations in drug targets, biofilm formation, and horizontal gene transfer. Additionally, the review investigates the role of mobile genetic elements and the clinical implications of antibiotic resistance in A. baumannii infections. The insights provided may inform the development of new antimicrobial agents and the design of effective infection control strategies to curb the spread of multidrug-resistant (MDR) A. baumannii strains in healthcare environments. Unlike previous reviews, this study offers a more integrative perspective by also addressing the pathogen's environmental resilience, with particular emphasis on its resistance to desiccation and the formation of robust biofilms. It further evaluates both established and emerging therapeutic strategies, thereby expanding the current understanding of A. baumannii persistence and treatment.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Vijetha Valsa
- Indian Council of Medical Research (ICMR), National Institute of Epidemiology (NIE), Chennai, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Fong SA, Bouras G, Houtak G, Nepal R, Feizi S, Morales S, Psaltis AJ, Wormald PJ, Vreugde S. Genomic variation in Pseudomonas aeruginosa clinical respiratory isolates with de novo resistance to a bacteriophage cocktail. Microbiol Spectr 2025; 13:e0214924. [PMID: 40162801 PMCID: PMC12054119 DOI: 10.1128/spectrum.02149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause sinus infections and pneumonia in cystic fibrosis (CF) patients. Bacteriophage therapy is being investigated as a treatment for antibiotic-resistant P. aeruginosa infections. Although virulent bacteriophages have shown promise in treating P. aeruginosa infections, the development of bacteriophage-insensitive mutants (BIMs) in the presence of bacteriophages has been described. The aim of this study was to examine the genetic changes associated with the BIM phenotype. Biofilms of three genetically distinct P. aeruginosa strains, including PAO1 (ATCC 15692), and two clinical respiratory isolates (one CF and one non-CF) were grown for 7 days and treated with either a cocktail of four bacteriophages or a vehicle control for 7 consecutive days. BIMs isolated from the biofilms were detected by streak assays, and resistance to the phage cocktail was confirmed using spot test assays. Comparison of whole genome sequencing between the recovered BIMs and their respective vehicle control-treated phage-sensitive isolates revealed structural variants in two strains, and several small variants in all three strains. These variations involved a TonB-dependent outer membrane receptor in one strain, and mutations in lipopolysaccharide synthesis genes in two strains. Prophage deletion and induction were also noted in two strains, as well as mutations in several genes associated with virulence factors. Mutations in genes involved in susceptibility to conventional antibiotics were also identified in BIMs, with both decreased and increased antibiotic sensitivity to various antibiotics being observed. These findings may have implications for future applications of lytic phage therapy.IMPORTANCELytic bacteriophages are viruses that infect and kill bacteria and can be used to treat difficult-to-treat bacterial infections, including biofilm-associated infections and multidrug-resistant bacteria. Pseudomonas aeruginosa is a bacterium that can cause life-threatening infections. Lytic bacteriophage therapy has been trialed in the treatment of P. aeruginosa infections; however, sometimes bacteria develop resistance to the bacteriophages. This study sheds light on the genetic mechanisms of such resistance, and how this might be harnessed to restore the sensitivity of multidrug-resistant P. aeruginosa to conventional antibiotics.
Collapse
Affiliation(s)
- Stephanie A. Fong
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - George Bouras
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Ghais Houtak
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sholeh Feizi
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sandra Morales
- AmpliPhi Australia, Brookvale, New South Wales, Australia
| | - Alkis J. Psaltis
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
13
|
Rohde C. [Basic knowledge of phages and their therapeutic application]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025:10.1007/s00103-025-04051-3. [PMID: 40314735 DOI: 10.1007/s00103-025-04051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025]
Abstract
Phages (bacteriophages) are viruses that specifically infect and kill bacteria. They are very abundant in nature, playing a highly relevant role in microbial ecosystems. In medicine, they are investigated as a potential alternative or supplement to antibiotics and can be used to treat wound, urinary tract and lung infections, for example. Single phages or so-called "phage cocktails" are applied.This overview article on basic knowledge of phages sheds light on well-known keywords from classical knowledge of phage biology and on state-of-the-art research focuses. Mechanisms of phage activity are presented as a basis for therapeutic application. Particularly, the phage-host interaction, lysis mechanisms, phage morphologies and specific methods for visualisation are discussed. Being part of the human microbiome, phages contribute to immune defence, especially in the mucosa. Temperate phages that are able to reside in bacterial genomes as prophages and therefore not suitable for therapy use as well as the CrAss phages (Crassvirales) and Lak megaphages discovered in recent years are also introduced. Further topics are bacterial phage defence, phage resistance and phage-antibiotic synergies. An outlook on future research is given, emphasising the importance of a coordinated collection of scientific results.Phages should not replace antibiotics, but they can even improve their efficiency. Currently, the licensing processes for phage therapy are still challenging. However, trust in phage preparations must be based on quality, which has to be guaranteed by harmonised standards.
Collapse
Affiliation(s)
- Christine Rohde
- Abteilung Bioressourcen für Bioökonomie und Gesundheitsforschung, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, 38124, Braunschweig, Deutschland.
| |
Collapse
|
14
|
Domagała A, Macura B, Piekarz K, Kiecka A. Septic arthritis - symptoms, diagnosis and new therapy. Eur J Clin Microbiol Infect Dis 2025; 44:1019-1029. [PMID: 39964630 DOI: 10.1007/s10096-025-05066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 05/09/2025]
Abstract
Septic arthritis (SA) is an infection of one or more joints caused mainly by Staphylococcus aureus, to a lesser extent by streptococci and Gram-negative bacilli. It poses a huge medical problem due to its high mortality rate of 2-15%. Disease symptoms are often vague, resulting in a risk that SA may be diagnosed too late. This shows the urgency of finding a rapid diagnostic method for SA and an effective therapy. Basic treatment of SA including joint drain or empirical antimicrobial therapy does not always provide the desired results. Hence, new therapies are being sought, including the use of antimicrobial peptide or phage therapy.
Collapse
Affiliation(s)
- Angelika Domagała
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
- Centre of Microbiological Research and Autovaccines, Kraków, Poland
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31- 034, Poland
| | - Karolina Piekarz
- Centre of Microbiological Research and Autovaccines, Kraków, Poland
| | - Aneta Kiecka
- Centre of Microbiological Research and Autovaccines, Kraków, Poland.
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31- 034, Poland.
| |
Collapse
|
15
|
Chan BK, Stanley GL, Kortright KE, Vill AC, Modak M, Ott IM, Sun Y, Würstle S, Grun CN, Kazmierczak BI, Rajagopalan G, Harris ZM, Britto CJ, Stewart J, Talwalkar JS, Appell CR, Chaudary N, Jagpal SK, Jain R, Kanu A, Quon BS, Reynolds JM, Teneback CC, Mai QA, Shabanova V, Turner PE, Koff JL. Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis. Nat Med 2025; 31:1494-1501. [PMID: 40301561 PMCID: PMC12092284 DOI: 10.1038/s41591-025-03678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Bacteriophage (phage) therapy, which uses lytic viruses as antimicrobials, is a potential strategy to address the antimicrobial resistance crisis. Cystic fibrosis, a disease complicated by recurrent Pseudomonas aeruginosa pulmonary infections, is an example of the clinical impact of antimicrobial resistance. Here, using a personalized phage therapy strategy that selects phages for a predicted evolutionary trade-off, nine adults with cystic fibrosis (eight women and one man) of median age 32 (range 22-46) years were treated with phages on a compassionate basis because their clinical course was complicated by multidrug-resistant or pan-drug-resistant Pseudomonas that was refractory to prior courses of standard antibiotics. The individuals received a nebulized cocktail or single-phage therapy without adverse events. Five to 18 days after phage therapy, sputum Pseudomonas decreased by a median of 104 CFU ml-1, or a mean difference of 102 CFU ml-1 (P = 0.006, two-way analysis of variance with Dunnett's multiple-comparisons test), without altering sputum microbiome, and an analysis of sputum Pseudomonas showed evidence of trade-offs that decreased antibiotic resistance or bacterial virulence. In addition, an improvement of 6% (median) and 8% (mean) predicted FEV1 was observed 21-35 days after phage therapy (P = 0.004, Wilcoxon signed-rank t-test), which may reflect the combined effects of decreased bacterial sputum density and phage-driven trade-offs. These results show that a personalized, nebulized phage therapy trade-off strategy may affect clinical and microbiologic endpoints, which must be evaluated in larger clinical trials.
Collapse
Affiliation(s)
- Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Gail L Stanley
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kaitlyn E Kortright
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Albert C Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Mrinalini Modak
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isabel M Ott
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Ying Sun
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Würstle
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Infectious Diseases, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Casey N Grun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Barbara I Kazmierczak
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Govindarajan Rajagopalan
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zachary M Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jill Stewart
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jaideep S Talwalkar
- Department of Internal Medicine, Section General Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Casey R Appell
- Department of Kinesiology & Sports Management, Texas Tech University, Lubbock, TX, USA
| | - Nauman Chaudary
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Sugeet K Jagpal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Raksha Jain
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adaobi Kanu
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
| | - Bradley S Quon
- Faculty of Medicine, Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John M Reynolds
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Charlotte C Teneback
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Quynh-Anh Mai
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Veronika Shabanova
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan L Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Tsai CE, Wang FQ, Yang CW, Yang LL, Nguyen TV, Chen YC, Chen PY, Hwang IS, Ting SY. Surface-mediated bacteriophage defense incurs fitness tradeoffs for interbacterial antagonism. EMBO J 2025; 44:2473-2500. [PMID: 40065098 PMCID: PMC12048535 DOI: 10.1038/s44318-025-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/04/2025] Open
Abstract
Bacteria in polymicrobial habitats are constantly exposed to biotic threats from bacteriophages (or "phages"), antagonistic bacteria, and predatory eukaryotes. These antagonistic interactions play crucial roles in shaping the evolution and physiology of bacteria. To survive, bacteria have evolved mechanisms to protect themselves from such attacks, but the fitness costs of resisting one threat and rendering bacteria susceptible to others remain unappreciated. Here, we examined the fitness consequences of phage resistance in Salmonella enterica, revealing that phage-resistant variants exhibited significant fitness loss upon co-culture with competitor bacteria. These phage-resistant strains display varying degrees of lipopolysaccharide (LPS) deficiency and increased susceptibility to contact-dependent interbacterial antagonism, such as the type VI secretion system (T6SS). Utilizing mutational analyses and atomic force microscopy, we show that the long-modal length O-antigen of LPS serves as a protective barrier against T6SS-mediated intoxication. Notably, this competitive disadvantage can also be triggered independently by phages possessing LPS-targeting endoglycosidase in their tail spike proteins, which actively cleave the O-antigen upon infection. Our findings reveal two distinct mechanisms of phage-mediated LPS modifications that modulate interbacterial competition, shedding light on the dynamic microbial interplay within mixed populations.
Collapse
Affiliation(s)
- Chia-En Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Qi Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Ling-Li Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Thao Vp Nguyen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yin Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - See-Yeun Ting
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106319, Taiwan.
| |
Collapse
|
17
|
Abdo Ahmad TA, El Houjeiry SA, Abou Fayad A, Kanj SS, Matar GM, Saba ES. Isolation and Genomic Analysis of Escherichia coli Phage AUBRB02: Implications for Phage Therapy in Lebanon. Antibiotics (Basel) 2025; 14:458. [PMID: 40426525 PMCID: PMC12108427 DOI: 10.3390/antibiotics14050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Escherichia coli (E. coli), a prevalent Gram-negative bacterium, is a frequent cause of illness. The extensive use of antibiotics has led to the emergence of resistant strains, complicating antimicrobial therapy and emphasizing the need for natural alternatives such as phages. METHODS In this study, a novel Escherichia coli phage, AUBRB02, was isolated from sewage and characterized through whole-genome sequencing, host range assays, and biofilm elimination assays. The phage's stability and infectivity were assessed under various pH and temperature conditions, and different E. coli strains. RESULTS Phage AUBRB02 has an incubation period of 45 min, a lysis period of 10 min, and a burst size of 30 phages/infected cell. It is stable across pH 5.0-9.0 and temperatures from 4 °C to 60 °C. Treatment with AUBRB02 significantly reduced post-formation E. coli biofilms, as indicated by lower OD values compared with the positive control. The whole genome sequencing revealed a genome size of 166,871 base pairs with a G + C (Guanine and Cytosine content) content of 35.47%. AUBRB02 belongs to the Tequatrovirus genus, sharing 93% intergenomic similarity with its closest RefSeq relative, and encodes 262 coding sequences, including 10 tRNAs. CONCLUSIONS AUBRB02 demonstrates high infectivity and stability under diverse conditions. Its genomic features and similarity to related phages highlight its potential for phage therapy, offering promising prospects for the targeted treatment of E. coli infections.
Collapse
Affiliation(s)
- Tasnime A. Abdo Ahmad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (T.A.A.A.); (S.A.E.H.); (A.A.F.); (G.M.M.)
| | - Samar A. El Houjeiry
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (T.A.A.A.); (S.A.E.H.); (A.A.F.); (G.M.M.)
| | - Antoine Abou Fayad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (T.A.A.A.); (S.A.E.H.); (A.A.F.); (G.M.M.)
| | - Souha S. Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (T.A.A.A.); (S.A.E.H.); (A.A.F.); (G.M.M.)
| | - Esber S. Saba
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut 1107 2020, Lebanon; (T.A.A.A.); (S.A.E.H.); (A.A.F.); (G.M.M.)
| |
Collapse
|
18
|
Singh J, Solomon M, Iredell J, Selvadurai H. Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy. Antibiotics (Basel) 2025; 14:427. [PMID: 40426494 PMCID: PMC12108500 DOI: 10.3390/antibiotics14050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Pseudomonas aeruginosa, a multidrug-resistant pathogen, significantly impacts patients with chronic respiratory conditions like cystic fibrosis (CF) and non-CF chronic suppurative lung disease (CSLD), contributing to progressive lung damage and poor clinical outcomes. This bacterium thrives in the airway environments of individuals with impaired mucociliary clearance, leading to persistent infections and increased morbidity and mortality. Despite advancements in management of these conditions, treatment failure remains common, emphasising the need for alternative or adjunctive treatment strategies. Bacteriophage therapy, an emerging approach utilising viruses that specifically target bacteria, offers a potential solution to combat P. aeruginosa infections resistant to conventional antibiotics. This review examines the prevalence and disease burden of P. aeruginosa in CF and CSLD, explores the mechanisms behind antibiotic resistance, the promising role of bacteriophage therapy and clinical trials in this sphere.
Collapse
Affiliation(s)
- Jagdev Singh
- Department of Respiratory Medicine, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia;
| | - Melinda Solomon
- Department of Respiratory Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jonathan Iredell
- Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia;
- Westmead Institute of Medical Research, Sydney, NSW 2145, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia;
- Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia;
| |
Collapse
|
19
|
Yuping L, Guan L, Becher I, Makarova KS, Cao X, Hareendranath S, Guan J, Stein F, Yang S, Boergel A, Lapouge K, Remans K, Agard D, Savitski M, Typas A, Koonin EV, Feng Y, Bondy-Denomy J. Jumbo phage killer immune system targets early infection of nucleus-forming phages. Cell 2025; 188:2127-2140.e21. [PMID: 40112800 PMCID: PMC12147104 DOI: 10.1016/j.cell.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Jumbo bacteriophages of the ϕKZ-like family assemble a lipid-based early phage infection (EPI) vesicle and a proteinaceous nucleus-like structure during infection. These structures protect the phage from nucleases and may create selective pressure for immunity mechanisms targeting this specific phage family. Here, we identify "jumbo phage killer" (Juk), a two-component immune system that terminates infection of ϕKZ-like phages, suppressing the expression of early phage genes and preventing phage DNA replication and phage nucleus assembly while saving the cell. JukA (formerly YaaW) rapidly senses the EPI vesicle by binding to an early-expressed phage protein, gp241, and then directly recruits JukB. The JukB effector structurally resembles a pore-forming toxin and destabilizes the EPI vesicle. Functional anti-ϕKZ JukA homologs are found across bacterial phyla, associated with diverse effectors. These findings reveal a widespread defense system that specifically targets early events executed by ϕKZ-like jumbo phages prior to phage nucleus assembly.
Collapse
Affiliation(s)
- Li Yuping
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA.
| | - Linlin Guan
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Xueli Cao
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Surabhi Hareendranath
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Jingwen Guan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Siqi Yang
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Arne Boergel
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David Agard
- The Chan-Zuckerberg Institute for Advanced Biological Imaging and the Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Feng
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94403, USA.
| |
Collapse
|
20
|
Hu M, Chua SL. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025; 13:913. [PMID: 40284749 PMCID: PMC12029751 DOI: 10.3390/microorganisms13040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is a pathogen notorious for its resilience in clinical settings due to biofilm formation, efflux pumps, and the rapid acquisition of resistance genes. With traditional antibiotic therapy rendered ineffective against Pseudomonas aeruginosa infections, we explore alternative therapies that have shown promise, including antimicrobial peptides, nanoparticles and quorum sensing inhibitors. While these approaches offer potential, they each face challenges, such as specificity, stability, and delivery, which require careful consideration and further study. We also delve into emerging alternative strategies, such as bacteriophage therapy and CRISPR-Cas gene editing that could enhance targeted treatment for personalized medicine. As most of them are currently in experimental stages, we highlight the need for clinical trials and additional research to confirm their feasibility. Hence, we offer insights into new therapeutic avenues that could help address the pressing issue of antibiotic-resistant Pseudomonas aeruginosa, with an eye toward practical applications in future healthcare.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
21
|
Liu D, Qin K, Hong C, Huang W, Li W, Lian P, Li M, Chen H, Liu X. Isolation and Characterization of a Novel Lytic Phage N22 and Its Effect on Drug-Resistant Klebsiella Pneumoniae. Infect Drug Resist 2025; 18:1807-1818. [PMID: 40231317 PMCID: PMC11995918 DOI: 10.2147/idr.s515363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Background Klebsiella pneumoniae (KP) infections present a significant clinical challenge and are frequently associated with elevated drug resistance. The use of phage therapy has resurged in response to escalating antibiotic resistance. This study aimed to address the multidrug resistance crisis in intensive care units by exploring the use of ceftazidime/avibactam (CAZ/AVI), a widely used clinical antimicrobial agent, in conjunction with phage therapy. Materials and Methods We screened a clinical strain of KP from ICU and successfully isolated phage N22 from hospital wastewater. We conducted an in-depth analysis of the physiological and biochemical properties of phage N22 and determined its optimal multiplicity of infection with the clinical KP strain. The inhibitory effects of phage N22 in combination with CAZ/AVI on biofilm formation were investigated. Comparative efficacies of these combinations were evaluated using a Galleria mellonella (G. mellonella) model. Results Phage N22 inhibited KP biofilm formation. The impact of varying phage N22 concentrations when used alongside CAZ/AVI was examined, and the combination of phage N22 and CAZ/AVI was more effective against KP than CAZ/AVI alone. Conclusion This study provides a preliminary investigation into the effects of combining CAZ/AVI with phage therapy, highlighting its potential significance in developing novel therapeutic strategies for bacterial infections resistant to CAZ/AVI. The findings underscore the importance of advancing highly effective phage agents as alternative treatment modalities for patients with infections refractory to conventional antibiotics.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Kunhao Qin
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji’an, 343009, People’s Republic of China
| | - Chengying Hong
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Wei Huang
- Department of Laboratory Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Wei Li
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Puqiao Lian
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Mengyao Li
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Huaisheng Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, People’s Republic of China
| |
Collapse
|
22
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Castledine M, Padfield D, Lewis R, Buckling A. Microbial community structure is affected by phage-resistance associated increases in host density. FEMS Microbiol Ecol 2025; 101:fiaf027. [PMID: 40101953 PMCID: PMC11953036 DOI: 10.1093/femsec/fiaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025] Open
Abstract
Lytic bacteriophages ('phages') can limit bacterial densities and shape community structure, either directly through lysis or indirectly through costs to resistance. However, phages have also been reported to have no, and in some cases even positive, effects on host densities. Here, we investigate the mechanisms behind an increase in host density in Variovorax sp. populations following a fixation of resistance that was maintained after phage extinction. Our results demonstrate that the density increase was a genetic trait coinciding with resistance emergence. Growth curves showed that phage resistance shifted population growth curves such that density was higher in the death phase. This density-increasing effect of resistance had important implications for community structure with phage-resistant Variovorax decreasing the density of a conspecific. That resistance to lytic phage can increase host densities has implications for wider ecology and phage therapy, where lytic phages are presumed to have negative effects on their hosts.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Daniel Padfield
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Rai Lewis
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
24
|
Abdel-Razek MA, Nazeih SI, Yousef N, Askoura M. Analysis of a novel phage as a promising biological agent targeting multidrug resistant Klebsiella pneumoniae. AMB Express 2025; 15:37. [PMID: 40044971 PMCID: PMC11882492 DOI: 10.1186/s13568-025-01846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The rise of deaths by resistant bacteria is a global threat to public health systems. Klebsiella pneumoniae is a virulent pathogen that causes serious nosocomial infections. The major obstacle to bacterial treatment is antibiotic resistance, which necessitates the introducing of alternative therapies. Phage therapy has been regarded as a promising avenue to fight multidrug-resistant (MDR) pathogens. In the current study, a novel phage vB_KpnP_KP17 was isolated from sewage, and its lytic potential was investigated against K. pneumoniae. The isolated phage vB_KpnP_kP17 was lytic to 17.5% of tested K. pneumoniae isolates. One step growth curve indicated a virulent phage with a short latent period (20 min) and large burst size (331 PFU/cell). Additionally, vB_KpnP_kP17 maintained its activity against planktonic cells over a wide range of pH, temperature and UV irradiation intervals. The potential of vB_KpnP_KP17 as antibiofilm agent was revealed by the biofilm inhibition assay. The isolated phage vB_KpnP_KP17 at multiplicity of infection (MOI) of 10 inhibited more than 50% of attached biofilms of tested K. pneumoniae isolates. The genome of vB_KpnP_kP17 was characterized and found to be a linear dsDNA of 39,936 bp in length and GC content of 52.85%. Additionally, the absence of toxicity, virulence and antibiotic resistance genes further confirms the safety of vB_KpnP_KP17 for clinical applications. These characteristics make vB_KpnP_KP17 of a potential therapeutic value to manage MDR K. pneumoniae infections. Additionally, the formulation of vB_KpnP_KP17 in a cocktail with other lytic phages or with antibiotics could be applied to further limit biofilm-producing K. pneumoniae infections.
Collapse
Affiliation(s)
- Mahmoud A Abdel-Razek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 45519, Egypt
| | - Shaimaa I Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 45519, Egypt
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 45519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 45519, Egypt.
| |
Collapse
|
25
|
Ranta K, Skurnik M, Kiljunen S. Isolation and characterization of fMGyn-Pae01, a phiKZ-like jumbo phage infecting Pseudomonas aeruginosa. Virol J 2025; 22:55. [PMID: 40033410 PMCID: PMC11877940 DOI: 10.1186/s12985-025-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide variety of infections, and belongs to the group of ESKAPE pathogens that are the leading cause of healthcare-associated infections and have high level of antibiotic resistance. The treatment of infections caused by antibiotic-resistant P. aeruginosa is challenging, which makes it a common target for phage therapy. The successful utilization of phage therapy requires a collection of well characterized phages. METHODS Phage fMGyn-Pae01 was isolated from a commercial phage therapy cocktail. The phage morphology was studied by transmission electron microscopy and the host range was analyzed with a liquid culture method. The phage genome was sequenced and characterized, and the genome was compared to closest phage genomes. Phage resistant bacterial mutants were isolated and whole genome sequencing and motility, phage adsorption and biofilm formation assays were performed to the mutants and host bacterium. RESULTS The genomic analysis revealed that fMGyn-Pae01 is a lytic, phiKZ-like jumbo phage with genome size of 277.8 kb. No genes associated with lysogeny, bacterial virulence, or antibiotic resistance were identified. Phage fMGyn-Pae01 did not reduce biofilm formation of P. aeruginosa, suggesting that it may not be an optimal phage to be used in monophage therapy in conditions where biofilm formation is expected. Host range screening revealed that fMGyn-Pae01 has a wide host range among P. aeruginosa strains and its infection was not dependent on O-serotype. Whole genome sequencing of the host bacterium and phage resistant mutants revealed that the mutations had inactivated either a flagellar or rpoN gene, thereby preventing the biosynthesis of a functional flagellum. The lack of functional flagella was confirmed in motility assays. Additionally, fMGyn-Pae01 failed to adsorb on non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSION fMGyn-Pae01 is a phiKZ-like jumbo phage infecting P. aeruginosa. fMGyn-Pae01 uses the flagellum as its phage-binding receptor, supporting earlier suggestions that flagellum might be utilized by phiKZ but differs from some other previous findings showing that phiKZ-like phages use the type-IV pili as the phage-binding receptor.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Lee MM, O'Neil CA, Vogt L, Kwon JH. Environmental hygiene strategies to combat antimicrobial resistance in healthcare settings. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2025; 5:e71. [PMID: 40109919 PMCID: PMC11920907 DOI: 10.1017/ash.2025.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 03/22/2025]
Abstract
In this manuscript, we highlight current literature on environmental hygiene techniques to combat reservoirs of antibiotic resistant organisms in the healthcare environment. We discuss several topics for each strategy, including mechanism of action, assessment of effectiveness based on studies, cost, and real-world translatability. The techniques and topics summarized here are not inclusive of all available environmental hygiene techniques but highlight some of the more popular and investigated strategies. We focus on the following: Ultraviolet radiation, hydrogen peroxide vapor, copper-coated surfaces, phages, interventions involving sinks, and educational initiatives.
Collapse
Affiliation(s)
- Mary Morgan Lee
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline A O'Neil
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lucy Vogt
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jennie H Kwon
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
27
|
Kim MK, Suh GA, Cullen GD, Perez Rodriguez S, Dharmaraj T, Chang THW, Li Z, Chen Q, Green SI, Lavigne R, Pirnay JP, Bollyky PL, Sacher JC. Bacteriophage therapy for multidrug-resistant infections: current technologies and therapeutic approaches. J Clin Invest 2025; 135:e187996. [PMID: 40026251 PMCID: PMC11870740 DOI: 10.1172/jci187996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacteriophage (phage) therapy has emerged as a promising solution to combat the growing crisis of multidrug-resistant (MDR) infections. There are several international centers actively engaged in implementation of phage therapy, and recent case series have reported encouraging success rates in patients receiving personalized, compassionate phage therapy for difficult-to-treat infections. Nonetheless, substantial hurdles remain in the way of more widespread adoption and more consistent success. This Review offers a comprehensive overview of current phage therapy technologies and therapeutic approaches. We first delineate the common steps in phage therapy development, from phage bank establishment to clinical administration, and examine the spectrum of therapeutic approaches, from personalized to fixed phage cocktails. Using the framework of a conventional drug development pipeline, we then identify critical knowledge gaps in areas such as cocktail design, formulation, pharmacology, and clinical trial design. We conclude that, while phage therapy holds promise, a structured drug development pipeline and sustained government support are crucial for widespread adoption of phage therapy for MDR infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gina A. Suh
- Division of Public Health, Infectious Diseases and Occupational Health, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Grace D. Cullen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Saumel Perez Rodriguez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Tony Hong Wei Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Zhiwei Li
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sabrina I. Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jessica C. Sacher
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Phage Directory, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Krakhotkin D, Iglovikov N, Blecher G, Chernylovskyi V, Greco F, Gayvoronskaya SA, El Meliegy A. Bacteriophage therapy in women with chronic recurrent cystitis caused by multidrug-resistant bacteria: A prospective, observational, comparative study. Curr Urol 2025; 19:125-132. [PMID: 40314011 PMCID: PMC12042198 DOI: 10.1097/cu9.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025] Open
Abstract
Objectives The aim of this study was to evaluate the effects of the combination of bacteriophage therapy with antibiotics and bacteriophage treatment alone on relieving clinical symptoms of chronic recurrent cystitis caused by multidrug-resistant bacteria. Materials and methods This clinical trial compared the treatment methods of 217 female patients with chronic recurrent cystitis caused by multidrug-resistant bacteria, who were investigated from June 2020 to May 2023. Patients were allocated into 4 groups: group I: received bacteriophage (Sextaphage) therapy alone; group II: received a combination of bacteriophages (Sextaphage) and furazidin; group III: received a combination of bacteriophage (Sextaphage) and furazidin with cefixime; and group IV: received furazidin and cefixime (without bacteriophage). The primary outcome included changes in the acute cystitis symptom scale and the pain visual analog scale, which were completed on days 7 and 14 following treatment. Secondary outcome measures included bladder diary records of urinary symptoms, median voided volumes, level of bacteriuria, and degree of leukocyturia. Results Initially, 217 female patients were presented during baseline visits. Those who did not meet the criteria inclusions were excluded, and 178 female patients were included in the final analysis. Statistically significant improvements from baseline in acute cystitis symptom scale scores for differential, typical symptoms, and quality of life domains were observed after 14 days of treatment in groups II, III, and IV. The pain level measured on the 14th day with the visual analog scale significantly decreased in groups II, III, and IV compared with group I. The patients of group I had a reduction of mean level bacteriuria of Escherichia coli from 106 to 102 CFU/mL at 14 days of therapy. Significant improvement of voided volume from baseline was observed in groups II, III, and IV. Episodes of urinary frequency, both daytime and night-time, reduced significantly from baseline in all 4 groups only at 14 days of treatment. Conclusions Bacteriophage cocktail alone or with antibiotics may improve clinical symptoms in women with chronic recurrent cystitis caused by multidrug-resistant bacterial pathogens. In addition to improving clinical symptoms, the therapy with a phage cocktail may restore antibiotic sensitivity and increase the efficacy of antimicrobial agents.
Collapse
Affiliation(s)
- Denis Krakhotkin
- Central District Hospital, Outpatient Clinic, Kamenolomni, Russia
| | - Nikolai Iglovikov
- Department and Clinic of Urology, S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| | - Gideon Blecher
- Department of Surgery, Monash University, Melbourne, Australia
- Department of Urology, The Alfred Hospital, Melbourne, Australia
| | | | | | | | - Amr El Meliegy
- Department of Andrology, Sexology, and STDs, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Vo L, Avgidis F, Mattingly HH, Edmonds K, Burger I, Balasubramanian R, Shimizu TS, Kazmierczak BI, Emonet T. Nongenetic adaptation by collective migration. Proc Natl Acad Sci U S A 2025; 122:e2423774122. [PMID: 39970001 PMCID: PMC11874451 DOI: 10.1073/pnas.2423774122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Cell populations must adjust their phenotypic composition to adapt to changing environments. One adaptation strategy is to maintain distinct phenotypic subsets within the population and to modulate their relative abundances via gene regulation. Another strategy involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. We found that the migrating populations became enriched with high-performing swimming phenotypes in each environment, allowing the populations to adapt without requiring mutations or gene regulation. This adaptation is dynamic and rapid, reversing in a few doubling times when migration ceases. By measuring the chemoreceptor abundance distributions during migration toward different attractants, we demonstrated that adaptation acts on multiple chemotaxis-related traits simultaneously. These measurements are consistent with a general mechanism in which adaptation results from a balance between cell growth generating diversity and collective migration eliminating underperforming phenotypes. Thus, collective migration enables cell populations with continuous, multidimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions.
Collapse
Affiliation(s)
- Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Fotios Avgidis
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | - Henry H. Mattingly
- Center for Computational Biology, Flatiron Institute, New York City, NY10010
| | - Karah Edmonds
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Isabel Burger
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Ravi Balasubramanian
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Thomas S. Shimizu
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | | | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
30
|
Yamashita W, Chihara K, Azam AH, Kondo K, Ojima S, Tamura A, Imanaka M, Nobrega FL, Takahashi Y, Watashi K, Tsuneda S, Kiga K. Phage engineering to overcome bacterial Tmn immunity in Dhillonvirus. Commun Biol 2025; 8:290. [PMID: 39987292 PMCID: PMC11846954 DOI: 10.1038/s42003-025-07730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
Bacteria possess numerous defense systems against phage infections, which limit phage infectivity and pose challenges for phage therapy. This study aimed to engineer phages capable of evading these defense systems, using the Tmn defense system as a model. We identified an anti-Tmn protein in the ΦSMS22 phage from the Dhillonvirus genus that inhibits Tmn function in Escherichia coli. Introducing this gene into the Tmn-sensitive ΦKSS9 phage enabled it to evade Tmn immunity. Additionally, we found that a single mutation in the nmad5 gene, a DNA modification enzyme in Dhillonvirus, prevented Tmn from sensing phage infection. By mutating the nmad5 gene in the Tmn-sensitive Dhillonvirus, we demonstrated that engineering phages to evade bacterial sensing mechanisms is another viable strategy. These two phage engineering approaches-introducing anti-defense genes and mutating sensing-related genes-present a promising strategy for establishing effective phage therapy by neutralizing bacterial defense systems.
Collapse
Affiliation(s)
- Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Matthew Imanaka
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Phage Therapy Institute, Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
- Phage Therapy Institute, Comprehensive Research Organization, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
31
|
Kalia VC, Patel SKS, Gong C, Lee JK. Re-Emergence of Bacteriophages and Their Products as Antibacterial Agents: An Overview. Int J Mol Sci 2025; 26:1755. [PMID: 40004222 PMCID: PMC11855700 DOI: 10.3390/ijms26041755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Microbes possess diverse genetic and metabolic traits that help them withstand adverse conditions. Microbial pathogens cause significant economic losses and around 7.7 million human deaths annually. While antibiotics have historically been a lifesaving treatment, their effectiveness is declining due to antibiotic-resistant strains, prompting the exploration of bacterial predation as an alternative. Bacteriophages (BPhs) have reemerged as antibacterial agents, offering advantages over antibiotics, such as (i) high specificity, (ii) self-replication, and (iii) strong killing capacity. This review explores BPh- and enzyme-based antibacterial strategies for infectious disease treatment, discussing phage-antibiotic synergy, the risks of BPh resistance, and the role of quorum sensing in BPh therapy.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| |
Collapse
|
32
|
Zagaliotis P, Michalik-Provasek J, Mavridou E, Naing E, Vizirianakis IS, Chatzidimitriou D, Gill JJ, Walsh TJ. Bacteriophage treatment is effective against carbapenem-resistant Klebsiella pneumoniae (KPC) in a neutropenic murine model of gastrointestinal translocation and renal infection. Antimicrob Agents Chemother 2025; 69:e0091924. [PMID: 39704532 PMCID: PMC11823626 DOI: 10.1128/aac.00919-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (KPC) are globally emerging pathogens that cause life-threatening infections. Novel treatment alternatives are urgently needed. We therefore investigated the effectiveness of three novel bacteriophages (Spivey, Pharr, and Soft) in a neutropenic murine model of KPC gastrointestinal colonization, translocation, and disseminated infection. Bacteriophage efficacy was determined by residual bacterial burden of KPC (CFU/g) in kidneys. Parallel studies were conducted of bacteriophage pharmacokinetics and resistance. Treatment of mice with 5 × 109 PFU of phage cocktail via intraperitoneal injection was effective in significantly reducing renal KPC CFU by 100-fold (P < 0.01) when administered every 24 h and 1000-fold (P < 0.01) every 12 h. Moreover, a combination of bacteriophage and ceftazidime-avibactam produced a synergistic effect, resulting in a 105-fold reduction in bacterial burden in cecum and kidney (P < 0.001 in both tissues). Prophylactic administration of bacteriophages via oral gavage did not prevent KPC translocation to the kidneys. Bacteriophage decay determined by linear regression of the ln of mean concentrations demonstrated R2 values in plasma of 0.941, kidney 0.976, and cecum 0.918, with half-lives of t1/2 = 2.5 h. Furthermore, a phage-resistant mutant displayed increased sensitivity to serum killing in vitro, but did not show significant defects in renal infection in vivo. A combination of bacteriophages demonstrated significant efficacy alone and synergy with ceftazidime/avibactam in the treatment of experimental disseminated KPC infection in neutropenic mice.
Collapse
Affiliation(s)
- Panagiotis Zagaliotis
- Transplantation/Oncology Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jordyn Michalik-Provasek
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, USA
| | - Eleftheria Mavridou
- Transplantation/Oncology Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Ethan Naing
- Transplantation/Oncology Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Ioannis S. Vizirianakis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Dimitrios Chatzidimitriou
- Deparment of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jason J. Gill
- Department of Animal Science, Texas A&M University Department of Animal Science, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Thomas J. Walsh
- Transplantation/Oncology Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
33
|
Ghatbale P, Sah GP, Dunham S, Khong E, Blanc A, Monsibais A, Garcia A, Schooley RT, Cobián Güemes AG, Whiteson K, Pride DT. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy. Antimicrob Agents Chemother 2025; 69:e0074024. [PMID: 39699213 PMCID: PMC11823633 DOI: 10.1128/aac.00740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteriophages are an increasingly attractive option for the treatment of antibiotic-resistant infections, but their efficacy is difficult to discern due to the confounding effects of antibiotics. Phages are generally delivered in conjunction with antibiotics, and thus, when patients improve, it is unclear whether the phages, antibiotics, or both are responsible. This question is particularly relevant for enterococcus infections, as limited data suggest phages might restore antibiotic efficacy against resistant strains. Enterococci can develop high-level resistance to vancomycin, a primary treatment. We assessed clinical and laboratory isolates of Enterococcus faecium and Enterococcus faecalis to determine whether we could observe synergistic interactions between phages and antibiotics. We identified synergy between multiple phages and antibiotics including linezolid, ampicillin, and vancomycin. Notably, antibiotic susceptibility did not predict synergistic interactions with phages. Vancomycin-resistant isolates (n = 6) were eradicated by the vancomycin-phage combination as effectively as vancomycin-susceptible isolates (n = 2). Transcriptome analysis revealed significant gene expression changes under antibiotic-phage conditions, especially for linezolid and vancomycin, with upregulated genes involved in nucleotide and protein biosynthesis and downregulated stress response and prophage-related genes. While our results do not conclusively determine the mechanism of the observed synergistic interactions between antibiotics and phages, they do confirm and build upon previous research that observed these synergistic interactions. Our work highlights how using phages can restore the effectiveness of vancomycin against resistant isolates. This finding provides a promising, although unexpected, strategy for moving forward with phage treatments for vancomycin-resistant Enterococcus infections.
Collapse
Affiliation(s)
- Pooja Ghatbale
- Department of Pathology, University of California, San Diego, California, USA
| | - Govind Prasad Sah
- Department of Pathology, University of California, San Diego, California, USA
| | - Sage Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Ethan Khong
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Blanc
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Monsibais
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California, San Diego, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California, San Diego, California, USA
| | | | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - David T. Pride
- Department of Pathology, University of California, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
34
|
Fatima R, Hynes AP. Temperate phage-antibiotic synergy is widespread-extending to Pseudomonas-but varies by phage, host strain, and antibiotic pairing. mBio 2025; 16:e0255924. [PMID: 39704503 PMCID: PMC11796409 DOI: 10.1128/mbio.02559-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 12/21/2024] Open
Abstract
Bacteriophages (phages) are bacterial-specific viruses that can be used alone or with antibiotics to reduce bacterial load. Most phages are unsuitable for therapy because they are "temperate" and can integrate into the host genome, forming a lysogen that is protected from subsequent phage infections. However, integrated phages can be awakened by stressors such as antibiotics. Supported by this interaction, here we explore the potential use of combined temperate phage and antibiotic against the multi-drug-resistant pathogen, Pseudomonas aeruginosa. In all, thirty-nine temperate phages were isolated from clinical strains, and a subset was screened for synergy with six antibiotics (ciprofloxacin, levofloxacin, meropenem, piperacillin, tobramycin, and polymyxin B), using checkerboard assays. Interestingly, our screen identified phages that can synergize with each antibiotic, despite their widely differing targets; however, these are highly phage-antibiotic and phage-host pairing specific. Screening across multiple clinical strains reveals that temperate phages can reduce the antibiotic minimum inhibitory concentration up to 32-fold, even in a resistant isolate, functionally re-sensitizing the bacterium to the antibiotic. Meropenem and tobramycin did not reduce the frequency of lysogens, suggesting a mechanism of action independent of the temperate nature of the phages. By contrast, ciprofloxacin and piperacillin were able to reduce the frequency of lysogeny, the former by inducing phages-as previously reported in E. coli. Curiously, synergy with piperacillin reduced lysogen survivors, but not by inducing the phages, suggesting an alternative mechanism for biasing the phage lysis-lysogeny equilibrium. Overall, our findings indicate that temperate phages can act as adjuvants in clinically relevant pathogens, even in the presence of antibiotic resistance, thereby drastically expanding their therapeutic potential. IMPORTANCE The recent discovery that otherwise therapeutically unusable temperate phages can potentiate the activity of antibiotics, resulting in a potent synergy, has only been tested in E. coli, and with a single model phage. Here, working with clinical isolates of Pseudomonas and phages from these isolates, we highlight the broad applicability of this synergy-across a variety of mechanisms but also highlight the limitations of predicting the phage, host, and antibiotic combinations that will synergize.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Blazanin M, Moore J, Olsen S, Travisano M. Fight Not Flight: Parasites Drive the Bacterial Evolution of Resistance, Not Escape. Am Nat 2025; 205:125-136. [PMID: 39913937 DOI: 10.1086/733414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractIn the face of ubiquitous threats from parasites, hosts can evolve strategies to resist infection or to altogether avoid parasitism, for instance by avoiding behavior that could expose them to parasites or by dispersing away from local parasite threats. At the microbial scale, bacteria frequently encounter viral parasites, bacteriophages. While bacteria are known to utilize a number of strategies to resist infection by phages and can have the capacity to avoid moving toward phage-infected cells, it is unknown whether bacteria can evolve dispersal to escape from phages. To answer this question, we combined experimental evolution and mathematical modeling. Experimental evolution of the bacterium Pseudomonas fluorescens in environments with differing spatial distributions of the phage Phi2 revealed that the host bacteria evolved resistance depending on parasite distribution but did not evolve dispersal to escape parasite infection. Simulations using parameterized mathematical models of bacterial growth and swimming motility showed that this is a general finding: while increased dispersal is adaptive in the absence of parasites, in the presence of parasites that fitness benefit disappears and resistance becomes adaptive, regardless of the spatial distribution of parasites. Together, these experiments suggest that parasites should rarely, if ever, drive the evolution of bacterial escape via dispersal.
Collapse
|
36
|
Necel A, Dydecka A, Topka-Bielecka G, Wesołowski W, Lewandowska N, Bloch S, Nejman-Faleńczyk B. What, how, and why? - anti-EHEC phages and their application potential in medicine and food industry. J Appl Genet 2025; 66:219-240. [PMID: 39527365 PMCID: PMC11762087 DOI: 10.1007/s13353-024-00918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are pathogens that, only in the United States, cause more than 250,000 foodborne infections a year. Since antibiotics or other antidiarrheal agents may increase the hemolytic-uremic syndrome (HUS) development risk, currently only supportive therapy, including hydration, is used. Therefore, many methods to fight EHEC bacteria focus on their use in food processing to prevent human infection. One of the proposed anti-EHEC agents is bacteriophages, known for their bactericidal effect, host specificity, and lack of cross-resistance with antibiotics. In this review article, we provide an overview of the characteristics like source of isolation, morphology, kinetics of life cycle, and treatment potential of over 130 bacteriophages able to infect EHEC strains. Based on the reviewed literature, we conclude that bacteriophages may play a highly significant role in regulating EHEC propagation. In addition, we also point out the phage features that should be taken into account not only when using bacteriophages but also when examining their properties. This may contribute to accelerating the pace of work on the preventive use of bacteriophages, which is extremely needed in the modern world of the food industry, but also stimulate interest in phages and accelerate regulatory work that would enable the use of bacteriophages also in medicine, to fight the drug-resistant strains.
Collapse
Affiliation(s)
- Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204, Gdansk, Poland.
| | | | | | - Wojciech Wesołowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| |
Collapse
|
37
|
Sudweeks J, Hauert C. The impact of simultaneous infections on phage-host ecology. Theor Popul Biol 2025; 161:42-49. [PMID: 39725170 DOI: 10.1016/j.tpb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Phages use bacterial host resources to replicate, intrinsically linking phage and host survival. To understand phage dynamics, it is essential to understand phage-host ecology. A key step in this ecology is infection of bacterial hosts. Previous work has explored single and multiple, sequential infections. Here we focus on the theory of simultaneous infections, where multiple phages simultaneously attach to and infect one bacterial host cell. Simultaneous infections are a relevant infection dynamic to consider, especially at high phage densities when many phages attach to a single host cell in a short time window. For high bacterial growth rates, simultaneous infection can result in bi-stability: depending on initial conditions phages go extinct or co-exist with hosts, either at stable densities or through periodic oscillations of a stable limit cycle. This bears important consequences for phage applications such as phage therapy: phages can persist even though they cannot invade. Consequently, through spikes in phage densities it is possible to infect a bacterial population even when the phage basic reproductive number is less than one. In the regime of stable limit cycles, if timed right, only small densities of phage may be necessary.
Collapse
Affiliation(s)
- Jaye Sudweeks
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver B.C., Canada, V6T 1Z2; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver B.C., Canada, V6T 1Z4.
| | - Christoph Hauert
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver B.C., Canada, V6T 1Z2; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver B.C., Canada, V6T 1Z4
| |
Collapse
|
38
|
Bae HW, Choi SY, Ki HJ, Cho YH. Pseudomonas aeruginosa as a model bacterium in antiphage defense research. FEMS Microbiol Rev 2025; 49:fuaf014. [PMID: 40240293 PMCID: PMC12035536 DOI: 10.1093/femsre/fuaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.
Collapse
Affiliation(s)
- Hee-Won Bae
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Hyeong-Jun Ki
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
39
|
Antani JD, Ward T, Emonet T, Turner PE. Microscopic phage adsorption assay: High-throughput quantification of virus particle attachment to host bacterial cells. Proc Natl Acad Sci U S A 2024; 121:e2410905121. [PMID: 39700139 DOI: 10.1073/pnas.2410905121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves coculturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants. Here, we utilized fluorescence microscopy and particle tracking to obtain trajectories of individual virus particles interacting with cells. The trajectory durations quantified the heterogeneity in dwell time, the time that each phage spends interacting with a bacterium. The average dwell time strongly correlated with the classically measured adsorption rate constant. We successfully applied this technique to quantify host-attachment dynamics of several phages including those targeting key bacterial pathogens. This approach should benefit the field of phage biology by providing highly quantitative, model-free readouts at single-virus resolution, helping to uncover single-virus phenomena missed by traditional measurements. Owing to significant reduction in manual effort, our method should enable rapid, high-throughput screening of a phage library against a target bacterial strain for applications such as therapy or diagnosis.
Collapse
Affiliation(s)
- Jyot D Antani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
| | - Timothy Ward
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| | - Thierry Emonet
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Physics, Yale University, New Haven, CT 06520
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
40
|
Zulk JJ, Patras KA, Maresso AW. The rise, fall, and resurgence of phage therapy for urinary tract infection. EcoSal Plus 2024; 12:eesp00292023. [PMID: 39665540 PMCID: PMC11636367 DOI: 10.1128/ecosalplus.esp-0029-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/13/2024]
Abstract
In the face of rising antimicrobial resistance, bacteriophage therapy, also known as phage therapy, is seeing a resurgence as a potential treatment for bacterial infections including urinary tract infection (UTI). Primarily caused by uropathogenic Escherichia coli, the 400 million UTI cases annually are major global healthcare burdens and a primary cause of antibiotic prescriptions in the outpatient setting. Phage therapy has several potential advantages over antibiotics including the ability to disrupt bacterial biofilms and synergize with antimicrobial treatments with minimal side effects or impacts on the microbiota. Phage therapy for UTI treatment has shown generally favorable results in recent animal models and human case reports. Ongoing clinical trials seek to understand the efficacy of phage therapy in individuals with asymptomatic bacteriuria and uncomplicated cystitis. A possible challenge for phage therapy is the development of phage resistance in bacteria during treatment. While resistance frequently develops in vitro and in vivo, resistance can come with negative consequences for the bacteria, leaving them susceptible to antibiotics and other environmental conditions and reducing their overall virulence. "Steering" bacteria toward phage resistance outcomes that leave them less fit or virulent is especially useful in the context of UTI where poorly adherent or slow-growing bacteria are likely to be flushed from the system. In this article, we describe the history of phage therapy in treating UTI and its current resurgence, the state of its clinical use, and an outlook on how well-designed phage therapy could be used to "steer" bacteria toward less virulent and antimicrobial-susceptible states.
Collapse
Affiliation(s)
- Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
41
|
Tellez-Carrasquilla S, Salazar-Ospina L, Jiménez JN. High activity and specificity of bacteriophage cocktails against carbapenem-resistant Klebsiella pneumoniae belonging to the high-risk clones CG258 and ST307. Front Microbiol 2024; 15:1502593. [PMID: 39717270 PMCID: PMC11663894 DOI: 10.3389/fmicb.2024.1502593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The widespread clinical and environmental dissemination of successful clones of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a serious global public health threat. In this context, lytic bacteriophages have emerged as a promising alternative for controlling these pathogens. This study describes the biological, structural, and genomic characteristics of lytic bacteriophages against the high-risk CRKP clones CG258 and ST307 and describes their performance in combination. Methods An experimental study was carried out. Bacteriophages were isolated from hospital wastewater and from wastewater treatment plants (WWTP). Bacteriophages were isolated using the double layer agar technique and their characterization included host range (individual and cocktail), plating efficiency (EOP), infection or bacterial killing curve, one-step curve, bacteriophage stability at pH and temperature conditions, transmission electron microscopy (TEM) and whole genome sequencing. Results After purification, five active bacteriophages against CRKP were obtained, three bacteriophages (FKP3, FKP4 and FKP14) had targeted activities against CG258 CRKP and two (FKP10 and FKP12) against ST307 isolates. Seven cocktails were prepared, of which Cocktail 2, made up of the bacteriophages FKP3, FKP10, and FKP14, showed the best activity against 85.7% (n = 36/42) of CRKP isolates belonging to both clones, CG258 (80.8%; n = 21/26) and ST307 (93.8%, n = 15/16). The efficiency of the plating (EOP), infection curve, and one-step growth curve showed that the cocktail phages efficiently infected other CRKP isolates (EOP ≥ 0.5), controlled bacterial growth up to 73.5%, and had short latency periods, respectively, (5-10 min). In addition, they were stable at temperatures between 4°C and 50°C and pH between 4 and 10. All bacteriophages belonged to the Caudoviricetes class, and no genes associated with virulence factors or antibiotic resistance were detected. Conclusion These findings showed bacteriophages and phage cocktails with high specificity against CRKP belonging to the successful clones CG258 and ST307 with promising characteristics, making them an alternative for controlling these clones in different environmental or health settings, biocontrol agents, or disinfectants in industry and in the field of diagnosis.
Collapse
Affiliation(s)
| | | | - J. Natalia Jiménez
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
42
|
Kim S, Son B, Kim Y, Kim H, Nam G, Shin H, Ryu S. Targeted dual-receptor phage cocktail against Cronobacter sakazakii: insights into phage-host interactions and resistance mechanisms. Front Microbiol 2024; 15:1468686. [PMID: 39712890 PMCID: PMC11659082 DOI: 10.3389/fmicb.2024.1468686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Cronobacter sakazakii is a notorious foodborne pathogen, frequently contaminating powdered infant formula and causing life-threatening diseases in infants. The escalating emergence of antibiotics-resistant mutants has led to increased interest in using bacteriophage as an alternative antimicrobial agent. Methods Two phages, CR8 and S13, were isolated from feces and soil samples and their morphology, physiology, and genomics were characterized. Phage receptor was determined using deletion mutants lacking flgK, rfaC, fhuA, btuB, lamb, or ompC genes, followed by complementation. Phage-resistant mutants were analyzed for phenotypic changes and fitness trade-offs using motility assays and Caco-2 cell invasion models. Results CR8 and S13 were identified as members of Caudoviricetes. Phage CR8 and phage S13 utilize flagella and LPS, respectively, to adhere to host cells. Bacterial challenge assay demonstrated delayed emergence of the resistant mutant as well as stronger lytic activity of a phage cocktail consisting of CR8 and S13 than the single phage treatment. Phenotypic analysis of the phage cocktail resistant strain, designated as CSR strain, revealed that the resistance resulted from the impaired receptor proteins for phage, such as defects in motility and alteration in LPS structure. CSR strain exhibited significant attenuation in invading human intestinal epithelial Caco-2 cells compared to WT cells. Conclusion This study demonstrates that the development of the phage cocktail targeting distinct host receptors can serve as a promising antimicrobial strategy to effectively control C. sakazakii.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Yeran Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gahyeon Nam
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Ahmad TA, Houjeiry SE, Kanj SS, Matar GM, Saba ES. From forgotten cure to modern medicine: The resurgence of bacteriophage therapy. J Glob Antimicrob Resist 2024; 39:231-239. [PMID: 39486687 DOI: 10.1016/j.jgar.2024.10.259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVES The unregulated use of antibiotics has led to the rise of antibiotic-resistant bacterial strains. This study explores bacteriophage therapy as an alternative treatment, highlighting its history, significance, and advancements in Europe, the United States, and the Middle East. METHODS A comprehensive literature review on bacteriophage therapy was conducted, focusing on its development, clinical trials, and patient treatment applications. The study also examined challenges, limitations, criteria for ideal phage selection, and manipulation techniques. RESULTS The United States and several European countries have advanced in phage therapy, progressing from clinical trials to patient treatment, whereas Middle Eastern countries are still in the early stages. Bacteriophages offer specificity, abundance, and minimal side effects, but challenges like safety concerns and potential resistance limit their widespread use. CONCLUSION Bacteriophage therapy shows promise as an antibiotic alternative but faces safety and resistance challenges. Continued research and better regulatory frameworks, especially in the Middle East, are needed to realize its potential.
Collapse
Affiliation(s)
- Tasnime Abdo Ahmad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Samar El Houjeiry
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Esber S Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
44
|
Kim MK, Chen Q, Echterhof A, Pennetzdorfer N, McBride RC, Banaei N, Burgener EB, Milla CE, Bollyky PL. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections. Nat Commun 2024; 15:9987. [PMID: 39609398 PMCID: PMC11604943 DOI: 10.1038/s41467-024-53994-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Bacteriophage (phage) therapy is a promising therapeutic modality for multidrug-resistant bacterial infections, but its application is mainly limited to personalized therapy due to the narrow host range of individual phages. While phage cocktails targeting all possible bacterial receptors could theoretically confer broad coverage, the extensive diversity of bacteria and the complexity of phage-phage interactions render this approach challenging. Here, using screening protocols for identifying "complementarity groups" of phages using non-redundant receptors, we generate effective, broad-range phage cocktails that prevent the emergence of bacterial resistance. We also discover characteristic interactions between phage complementarity groups and particular antibiotic classes, facilitating the prediction of phage-antibiotic as well as phage-phage interactions. Using this strategy, we create three phage-antibiotic cocktails, each demonstrating efficacy against ≥96% of 153 Pseudomonas aeruginosa clinical isolates, including biofilm cultures, and demonstrate comparable efficacy in an in vivo wound infection model. We similarly develop effective Staphylococcus aureus phage-antibiotic cocktails and demonstrate their utility of combined cocktails against polymicrobial (mixed P. aeruginosa/S. aureus) cultures, highlighting the broad applicability of this approach. These studies establish a blueprint for the development of effective, broad-spectrum phage-antibiotic cocktails, paving the way for off-the-shelf phage-based therapeutics to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert C McBride
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Ribes-Martínez L, Muñoz-Egea MC, Yuste J, Esteban J, García-Quintanilla M. Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics (Basel) 2024; 13:1120. [PMID: 39766510 PMCID: PMC11672805 DOI: 10.3390/antibiotics13121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Enterococcus faecium is a Gram-positive bacterium increasingly identified as a critical nosocomial pathogen that poses significant treatment challenges due to its resistance to multiple antibiotics, particularly vancomycin-resistant E. faecium (VRE) strains. The urgent need for alternative therapeutic strategies has renewed interest in bacteriophage (phage) therapy, given phages specificity and bactericidal potential. This review explores the advancements in phage therapy against antibiotic-resistant E. faecium, including phage morphological diversity, genomic characteristics, and infection mechanisms. The efficacy of phage therapy in in vitro, ex vivo, and in vivo models and the compassionate use in clinical settings are evaluated, highlighting the promising outcomes of phage-antibiotic synergies and biofilm disruption. Key challenges and future research directions are discussed, with a focus on improving therapeutic efficacy and overcoming bacterial resistance. This review emphasizes the potential of phage therapy as a viable solution for managing multidrug-resistant E. faecium infections and underscores the importance of future investigations to enhance clinical applications.
Collapse
Affiliation(s)
- Laura Ribes-Martínez
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria-Carmen Muñoz-Egea
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jose Yuste
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBERES-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
46
|
Shein AMS, Wannigama DL, Hurst C, Monk PN, Amarasiri M, Wongsurawat T, Jenjaroenpun P, Phattharapornjaroen P, Ditcham WGF, Ounjai P, Saethang T, Chantaravisoot N, Badavath VN, Luk-In S, Nilgate S, Rirerm U, Srisakul S, Kueakulpattana N, Laowansiri M, Rad SMAH, Wacharapluesadee S, Rodpan A, Ngamwongsatit N, Thammahong A, Ishikawa H, Storer RJ, Leelahavanichkul A, Ragupathi NKD, Classen AY, Kanjanabuch T, Pletzer D, Miyanaga K, Cui L, Hamamoto H, Higgins PG, Kicic A, Chatsuwan T, Hongsing P, Abe S. Phage cocktail amikacin combination as a potential therapy for bacteremia associated with carbapenemase producing colistin resistant Klebsiella pneumoniae. Sci Rep 2024; 14:28992. [PMID: 39578508 PMCID: PMC11584731 DOI: 10.1038/s41598-024-79924-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The increasing occurrence of hospital-associated infections, particularly bacteremia, caused by extensively drug-resistant (XDR) carbapenemase-producing colistin-resistant Klebsiella pneumoniae highlights a critical requirement to discover new therapeutic alternatives. Bacteriophages having host-specific bacteriolytic effects are promising alternatives for combating these pathogens. Among 12 phages isolated from public wastewater in Thailand, two phages-vB_kpnM_05 (myovirus) and vB_kpnP_08 (podovirus) showed broad-host range, producing bacteriolytic activities against 81.3% (n = 26) and 78.1% (n = 25) of 32 XDR carbapenemase-producing colistin-resistant K. pneumoniae, with capsular types-K15, K17, K50, K51, K52/wzi-50 and K2/wzi-2. Both phages showed short replication times, large burst sizes with rapid adsorptions. They exhibited significant stability under various environmental conditions. Genomic analysis revealed that both phages are genetically distinct phages from Myoviridae and Podoviridae family, with the lack of toxin, virulence, lysogeny and antibiotic resistance genes. These characteristics highlighted their promising potential for utilizing in phage therapy for combating XDR K. pneumoniae. Although phage cocktail combining vB_kpnM_05 and vB_kpnP_08 provided significant bacteriolysis for longer duration (8 h) than its monophage (6 h), bacterial regrowth was observed which suggested an evitable development of phage resistance under phages' selection pressures. Future study will be undertaken to elucidate the precise mechanisms by which these XDR K. pneumoniae developed phage resistance and their associated fitness cost. Remarkably, combining phage cocktail with amikacin at their sub-inhibitory concentrations produced potent synergy by completely suppressing bacterial regrowth in vitro. Our study demonstrated the significant therapeutic and prophylactic effectiveness of a phage cocktail-amikacin combination as a promising alternative strategy for overcoming bacteremia associated with XDR K. pneumoniae having carbapenemase and colistin resistance in vivo.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Nedlands, WA, Australia.
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan.
- Department of Infectious Diseases, Faculty of Medicine Yamagata University and Yamagata University Hospital, Yamagata, Japan.
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University, 10120, Rangsit, Thailand
- Center of Excellence in Applied Epidemiology, Thammasat University, 10120, Rangsit, Thailand
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Thidathip Wongsurawat
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Siriraj Long-Read Lab (Si-LoL), Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - William Graham Fox Ditcham
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vishnu Nayak Badavath
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubolrat Rirerm
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sukrit Srisakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Matchima Laowansiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, 9010, Dunedin, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Apaporn Rodpan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Arsa Thammahong
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Annika Y Classen
- Department for Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), Faculty of Medicine, School of Global Health, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroshi Hamamoto
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Paul G Higgins
- Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, 6009, Australia.
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, 6009, Australia.
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Parichart Hongsing
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand.
- Mae Fah Luang University Hospital, Chiang Rai, Thailand.
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
47
|
Vo L, Avgidis F, Mattingly HH, Edmonds K, Burger I, Balasubramanian R, Shimizu TS, Kazmierczak BI, Emonet T. Non-genetic adaptation by collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573956. [PMID: 38260286 PMCID: PMC10802332 DOI: 10.1101/2024.01.02.573956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cell populations must adjust their phenotypic composition to adapt to changing environments. One adaptation strategy is to maintain distinct phenotypic subsets within the population and to modulate their relative abundances via gene regulation. Another strategy involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. We found that the migrating populations became enriched with high-performing swimming phenotypes in each environment, allowing the populations to adapt without requiring mutations or gene regulation. This adaptation is dynamic and rapid, reversing in a few doubling times when migration ceases. By measuring the chemoreceptor abundance distributions during migration towards different attractants, we demonstrated that adaptation acts on multiple chemotaxis-related traits simultaneously. These measurements are consistent with a general mechanism in which adaptation results from a balance between cell growth generating diversity and collective migration eliminating under-performing phenotypes. Thus, collective migration enables cell populations with continuous, multi-dimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions. Significance statement Conventional cell adaptation mechanisms, like gene regulation and stochastic phenotypic switching, act swiftly but are limited to a few traits, while mutation-driven adaptations unfold slowly. By quantifying phenotypic diversity during bacterial collective migration, we discovered an adaptation mechanism that rapidly and reversibly adjusts multiple traits simultaneously. By balancing the generation of diversity through growth with the loss of phenotypes unable to keep up, this process tunes the phenotypic composition of migrating populations to the environments they traverse, without gene regulation or mutations. Given the prevalence of collective migration in microbes, cancers, and embryonic development, non-genetic adaptation through collective migration may be a universal mechanism for populations to navigate diverse environments, offering insights into broader applications across various fields.
Collapse
|
48
|
Haq K, Figgitt M, Lee D. Phage Therapy Against Antibiotic-Resistant and Multidrug-Resistant Infections Involving Nonhealing Wounds and Prosthetic Joint Infections Associated With Biofilms: A Mini-Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:6252415. [PMID: 39545100 PMCID: PMC11563716 DOI: 10.1155/2024/6252415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Chronic wounds and prosthetic joint infections are difficult to treat and are associated with a high burden of disease and economic cost. The rise of antibiotic resistance and the understanding of biofilm formation has inflamed an already challenging situation. Bacteriophage therapy has been used throughout the last century to treat bacterial infections. However, in the last 10 years, there has been a resurgence in phage therapy as a novel innovative treatment for nonhealing wounds. This mini systemic review assesses relevant clinical studies, case series and trials over 5 years associated with safety, treatment and success rates of phage therapy concerning nonhealing and prosthetic joint infections. A search of PubMed, Web of Science, Cochrane and Clinical Trials.gov databases resulted in 3151 studies, 27 met the criteria, and a total of 152 bacterial infections were treated from 130 individuals. Most common pathogen isolated in wounds was P. aeruginosa, and S. aureus was mostly associated with prosthetic joint infections. Treatment modalities differed across studies, adverse effects were limited, and success rate was deemed to be 91%.
Collapse
Affiliation(s)
- Kashif Haq
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Martin Figgitt
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - David Lee
- Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
49
|
Wang R, You X, Liu X, Fei B, Li Y, Wang D, Zhu R, Li Y. Characterization of phage HZY2308 against Acinetobacter baumannii and identification of phage-resistant bacteria. Virol J 2024; 21:283. [PMID: 39511647 PMCID: PMC11546264 DOI: 10.1186/s12985-024-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (AB) is a notable cause of hospital-acquired infections, with carbapenem-resistant Acinetobacter baumannii (CRAB) classified as a high-priority critical pathogen. Bacteriophage therapy is emerging as a promising alternative to combat drug-resistant bacterial infections. In this study, a lytic phage, HZY2308, was isolated from hospital sewage, and the biological properties, biosafety and anti-biofilm properties of phage HZY2308 were characterized and identified. Moreover, the antibacterial effect of phage HZY2308 in combination with antibiotics was investigated, and the apparent characteristics of phage-resistant strain AB48-R were demonstrated, which provided data support for further studies to elucidate the mechanism of generating phage resistance. METHODS Phage HZY2308 was isolated by double agar plate method using clinical strain AB48 as the host bacterium. The morphology of phage HZY2308 was identified by transmission electron microscopy (TEM), and biological characteristics of phage HZY2308 were identified by host range, the efficiency of plating (EOP), sensitivity to temperature, pH, and chloroform, one-step growth curve, the optimal multiplicity of infection (MOI), and detection of endotoxin and cytotoxicity. Besides, the complete genome map of HZY2308 was constructed using CGview, and the phylogenetic tree of HZY2308 was constructed with MEGA. Additionally, the full genomic sequence of phage HZY2308 and the selected phage were compared using Easyfig. Checkerboard test of phage HZY2308 in combination with tigecycline (TGC) was performed to investigate their synergistic effect and bactericidal kinetics. The effect of HZY2308 on biofilm was investigated by semi-quantitative staining of biofilm with crystal violet, determination of bacterial activity in biofilm by 2,3-Bis (2-methoxy-4-nitro-5-sulfophenyl) -2 H-tetrazolium-5-carboxanilide (XTT) assay and observation of biofilm structure by fluorescence microscopy. Finally, Phage-resistant bacteria AB48-R were characterized by colony-forming capacity, morphology, growth curves, adsorption efficiency, and antibiotic susceptibility assays. RESULTS A lytic phage, HZY2308, was isolated from hospital sewage, which exhibited advantageous traits such as a brief incubation period, large burst size, and robust stability. Safety assessments conducted at both genetic and cellular levels also have yielded positive outcomes. Besides, phage HZY2308 effectively inhibited AB biofilm formation and disrupted established biofilm structures. Furthermore, a synergistic antibacterial effect was noted when phage HZY2308 was combined with tigecycline. Interestingly, the phage-resistant strain, AB48-R was screened through natural selection. Compared to the wild strain AB48, the adsorption efficiency of the phage to AB48-R diminished. However, AB48-R's sensitivity to antibiotics such as cefepime, gentamicin, amikacin, and tobramycin increased, indicating an evolutionary trade-off. CONCLUSIONS Phage HZY2308 shows strong antimicrobial potential, especially in combination with tigecycline, and the phage-resistant strain exhibits increased antibiotic sensitivity.
Collapse
Affiliation(s)
- Ruilin Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xinwei Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Bing Fei
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Yifan Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Dan Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Rui Zhu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China.
| | - Yongwei Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China.
- The Key Laboratory of Pathogenic Microbes & Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China.
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
50
|
Chen B, Moriarty TF, Metsemakers WJ, Chittò M. Phage therapy: A primer for orthopaedic trauma surgeons. Injury 2024; 55 Suppl 6:111847. [PMID: 39482030 DOI: 10.1016/j.injury.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024]
Abstract
Phage therapy (PT) continues to attract interest in the fight against fracture-related infection (FRI), particularly for recurring infections that have not been resolved using conventional therapeutic approaches. The journey PT has taken from early clinical application in the pre-antibiotic era to its recent reintroduction to western clinical practice has been accelerated by the increased prevalence of multi-drug resistant (MDR) pathogens in the clinic. This review will present PT's potential as a precise, adaptable, and effective treatment modality, with a focus on patient and phage selection, as well as the various administration protocols currently applied to patients. The challenges for PT, for example the most optimal application technique and dosing, are also discussed and underscore the importance of personalized approaches and the urgent need for more robust clinical evidence. Future perspectives, including phage engineering and innovative delivery systems will be discussed, as they may broaden the applicability of PT to a point where it may become a standard rather than an option of last resort for orthopedic infection management.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|